不定积分的四则运算公式

合集下载

有理函数的不定积分(1)

有理函数的不定积分(1)

R(
x)
P( Q(
x) x)
为真分式
,

R(
x)dx
的步骤:
1. 将 Q(x) 在实数范围内分解成一次式和二 次质因式的乘积 .
2. 将 R( x) P( x) 拆成若干个部分分式之和.
Q( x)
(分解后的部分分式必须是最简分式).
3. 求出各部分分式的原函数 , 即可求得 R( x)dx .
11
1dx
,
其中A _____,B _____,C _______;
3、计算
2
dx sin
x
, 可用万能代换sin
x
___________,
dx _____________;
4、计算
dx
, 令t ___,x ___,dx ____ .
ax b m
32
5、有理函数的原函数都是_________ .
2(1 x)2 1 x
2、ln( x sin x) C ;
3、
(1 x 2 )3
1 x2 C;
3x3
x
4、 sin x 1 ln(sec x tan x) C ; 2 cos2 x 2
5、 8(1
x4
x
8
)
1 arctan 8
x4
C

6、 2 x C ,或sec x x tan x C ; 1 tan x 2
原式
(t
2
1)
t
(t
2t 2 1)2
dt
2
t
t
2
2
1
dt
2
(1
t
2
1
) 1

常用的基本求导定律

常用的基本求导定律

1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。

特别地:1)(='x ,x x 2)(2=',21)1(x x -=',xx 21)(='。

⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。

⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。

2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。

3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e xx +=⎰; )1,0( ln ≠>+=⎰a a C a a dx a x x ; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念 (1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a aa a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h g f e d c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。

理学新不定积分分部积分

理学新不定积分分部积分

sinx
2t 1 t
2
,
cosx
1 1
t t
2 2
,
dx
1
2 t
2
dt
R(sin x,cos x)dx
R
1
2t t
2
1t2
, 1
t
2
1
2 t
2
dt.
例16

1 sin x sin x(1 cos
x)
dx
.
解:令 t tan x , 则 2
sinx
1
2
tan
x 2
u tan x, v tan x
原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx
tan x lncos x tan x x C
例9 求
解: 令 u
x2 a2 , v 1, 则 u
x x2a2
,
vx
x2 a2 dx x x2 a2
1 2
(1
1
1 x
2
)dx
x2 arctan x 1 ( x arctan x) C .
2
2
一般地
把被积函数视为两个函数之积 ,按“反对幂指三”的
顺序, 前者为 u 后者为 v.
例3 求积分 x2e xdx.
解 u x2 , e xdx de x dv,
x2e xdx x2e x 2 xe xdx
假定分子与分母之间没有公因式
(1) n m, 这有理函数是真分式; (2) n m, 这有理函数是假分式;
利用多项式除法, 假分式可以化成一个多项式和 一个真分式之和.

不定积分一

不定积分一
x u (x2-a2)1/2
(C C1 ln a)
a
不定积分
(3)倒数代换
x a 1 解 : 令x t
2
x
1
2
dx
原式
1 1 a dt arccos(at ) C arccos C 2 a a x 1 (at )
1
不定积分
二、分步积分法
函数乘积的微分形式 函数乘积的积分形式。
不定积分
4、许多情况,换元法和分步积分法同时使用, 选取顺序很重要。如果顺序不当,计算很麻烦 甚至算不出来。p80 例29 例:
x e dx x de x e e dx x e 2 xe dx xe dx xe e dx xe e C
不定积分
sin 2 x 解二: f ' (sin 2 x) 1 2 sin 2 x 2 1 sin x x2 ' 2 f ( x) 1 2 x 2 1 x 2 3 1 1 x f ( x ) x ln C 3 2 1 x
不定积分
2、第二类换元法 (凑微分法无法进行)设 x (u )将积分 f ( x ) dx 化成[ f ( (u )) ' (u ) du ]
不定积分
(2)三角代换 1 例: dx ___令x a sec u x 2 a 2 atgu 2 2
x a dx a sec utgudu 原式 sec udu ln sec u tgu C1 x ln a x2 a2 C1 ln x x 2 a 2 C a
a0 x a1 x an1 x an P( x ) m m 1 Q( x) b0 x b1 x bm1 x bm

不定积分的四则运算公式

不定积分的四则运算公式

不定积分的四则运算公式
不定积分是微积分中的重要概念之一,而四则运算也是基本的数学运算。

在对不定积分进行计算时,常常需要运用四则运算。

以下是不定积分的四则运算公式:
1. 和的不定积分等于各部分不定积分的和。

∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
2. 差的不定积分等于各部分不定积分的差。

∫(f(x)-g(x))dx=∫f(x)dx-∫g(x)dx
3. 乘积的不定积分可以通过积分分部法来求得。

∫f(x)g'(x)dx=f(x)g(x)-∫g(x)f'(x)dx
4. 商的不定积分可以通过换元积分法来求得。

∫f(x)/g(x)dx=∫[f(g(x))/g(x)]g'(x)dx
在实际计算中,不定积分的四则运算常常需要与其他的积分技巧和公式相结合,才能得到最终的结果。

因此,对于不定积分的学习和掌握,需要不断地进行练习和实践。

- 1 -。

第四章1-5 不定积分与定积分讲解

第四章1-5  不定积分与定积分讲解

a2 − x2 cost = 1− sin t = a a2 x 1 arcsin + x a2 − x2 + C 原式= 原式= 2 a 2
2
例 5:求∫
dx x +a
2 2
(a > 0)

设 解: x = a tan t 原式= 原式=∫
π
2
<t <
π
2
asec2 t dt = ∫ sectdt = ln(sect + tant) + C asect
§
4.4ቤተ መጻሕፍቲ ባይዱ
分部积分法
′ uv′ = ( uv) − u′v 分析: 分析:(uv)′ = u′v + uv′ ∫uv′dx = ∫ (uv′)dx − ∫u′vdx
∫udv = uv − ∫ vdu 分部积分公式: 分部积分公式: ∫ udv = uv − ∫ vdu
例 1:求∫ xcos xdx
设 解: u = x,dv = cos x;dx = d(sin x), v = sin x 原式= 原式=∫ xd(sin x) = x ⋅ sin x − ∫ sin xdx =xsin x + cos x + C
例 2:求∫ xexdx
解:设u = x, dv = exdx
原式= 原式=∫ xd(ex ) = xex − ∫ exdx = xex − ex + C
例 3:求∫ x ln xdx
解:设u = ln x, dv = xdx 1 2 1 2 1 2 1 原式= 原式=∫ ln xd( x ) = x ⋅ ln x − ∫ x ⋅ dx 2 2 2 x 1 2 1 1 2 1 2 = x ⋅ ln x − ∫ xdx = x ln x − x + C 2 2 2 4

高等数学笔记(含数一内容)

高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算

高等数学(上)第四章不定积分

高等数学(上)第四章不定积分

第四章 不定积分内容:不定积分的概念和性质、换元积分法、分部积分法、几种特殊类型函数的积分、简单无理函数的积分、积分表的使用。

要求:理解不定积分的概念和性质,掌握不定积分的基本公式、换积分法和分部积分法,理解有理函数的积分,了解简单无理函数的积分重点:不定积分的概念和性质;不定积分的基本公式;换元积分法、分部积分法、 难点:凑微分、三角代换法、分部积分法到目前为止,我们已经学会了对函数作如下运算:四则、复合、求导. 在四则运算中, 加减法互为逆运算, 积商也互为逆运算; 我们能将简单函数复合, 也能将复合函数分解. 于是, 我们自然会想到这点: 既然我们能求得任一函数的导数, 我们当然也想知道谁的导数是一个任意给定的函数呢? 即研究求导的逆运算.例: 对于变速直线运动, 若已知位移函数)(t s s =, 则即时速度)(t s v '=, 反之, 若已知)(t v v =, 能否求得位移函数?§1. 不定积分的概念与性质一、原函数与不定积分的概念1. 原函数定义: 设)(),(x F x f 在区间I 上有定义, 若∀x ∈I, 有)()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f 在I 上的原函数.例: -sinx 是cosx 的原函数, x ln 是x1的原函数. 我们自然会提出三个问题:(1) 是不是任一函数都有有原函数. (2) 一个函数的原函数是否唯一.(3) 若不唯一, 不同的原函数间的关系. 逐一回答:(1) 定理: 若)(x f 在I 上连续, 则存在)(x F , 使得)()(x f x F ='. (2) 常数的导数为0. 若)()(x f x F =', 则())()(x f C x F ='+. (3) 若)()()(x G x f x F '==', 则()0)()(='-x F x G . 回忆中值定理得到的重要结果, 可得:Cx F x G Cx F x G +==-)()()()(综合(2), (3), 得出结论: 若)(x F 是)(x f 的一个原函数, 则 1°所有的)(x F +C 也是)(x f 的原函数. 2°)(x f 的任一原函数也写成)(x F +C.即})({C x F +(C 为任意常数)是)(x f 的所有原函数的集合. 命名之. 2. 不定积分定义: 函数)(x f 的全体原函数称为)(x f 的不定积分, 记作⎰dx x f )(.若)()(x f x F =', 则⎰dx x f )(=)(x F +C.⎰: 积分符号; )(x f 被积函数; dx x f )(被积表达式;x : 积分变量; C: 积分常量. 例1.C x xdx C x dx x +=+=⎰⎰sin cos ,4143例2. 证明:C x dx x +=⎰ln 1.证一: ⎩⎨⎧<->=0)ln(0ln ln x x x xx()⎪⎪⎩⎪⎪⎨⎧<-->='0101ln x xx x x证二: 2ln ln x x =为简便, 记C x dx +=⎰ln 1.(曲线族中任意一条曲线都可由另一条曲线经过上下平移而得到, 表现在图形上, 即: 所有平行于y 轴的虚线被相同的两条积分曲线所截得的长度都相同.)3. 不定积分与导数、微分的关系()()Cx F x dF C x F dx x F dxx f dx x f dx f dx x f +=+='=='⎰⎰⎰⎰)()(,)()()2()()(),()()1(不定积分与导数、微分互为逆运算. 注2: 导数是一个函数, 不定积分是一族函数.二、基本积分公式由导数公式,可直接得出积分公式Caa dx a C e dx e C x xdx x C x xdx x C x xdx dx x C x xdx dx x Cx xdx C x xdx Cx dx x Cx dx x Cx dx x C x dx x C kx kdx xxx x +=+=+-=⋅+=⋅+-==+==+-=+=+=-+=++=-≠++=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+ln )13()12(csc cot csc )11(sec tan sec )10(cot csc sin 1)9(tan sec cos 1)8(cos sin )7(sin cos )6(arcsin 11)5(arctan 11)4(ln 1)3()1(11)2()1(2222221μμμμ三、不定积分的运算法则[]⎰⎰⎰⎰⎰⎰±±±=±±±=dxx f dx x f dx x f dx x f x f x f dxx f k dx x kf n n )()()()()()()2()()()1(2121.例1.⎰⎰+--+dxx x xdxx e x )213114()2()cos 52()1(2 例2.()⎰⎰-=dx x xdx 1sec tan22例3. ⎰⎰+-+=+dt t t dt t t 22221111例4. ⎰⎰+=dt xx x x dt x x 222222cos sin cos sin cos sin 1§2. 换元积分法积分的许多方法都是来源于求导(微分)公式,凑微分法来源于复合函数求导公式,或者说是一阶微分形式不变性.一、第一类换元法(凑微分法)(){}()⎰⎰⎰=='=='⇒'=⋅'=+='⇒'⋅='⋅='⋅'='duu f dx x x f du u F dx x F x F d C x F dx x x f x x f u u f u u F x F x u x x u f u F xx u x)()()]([)()]([)]([)]([()()]([)()]([)()()]([)()()()(ϕϕϕϕϕϕϕϕϕϕϕϕ定理 设)(u f 有原函数,)(x u ϕ=可导,则)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='此定理的实质是将对变量x 的积分转化为对x 的函数)(x ϕ的积分.1. b ax x +=)(ϕ例1.⎰xdx 2sin 2不能对⎰xdx 2sin 直接积分, 但若令u=2x, 则可对⎰udu sin 直接积分, 只需将原积分中的“dx ”转化为“du ”即“d(2x)”.Cx C u udu x xd xdx xu +-=+-===⎰⎰⎰=2cos cos sin )2(2sin 2sin 22 熟练后可省略例2. []⎰⎰⋅++=+21)12()12sin()12sin(x d x dx x 例3. ⎰-dx x 100)45(, ⎰-dx x 23)45(若是二或三次方, 或许可以考虑二项展开, 但对于100次或是非正整数次方显然不适用.例4.⎰⎰+→+dx x dx x a 222111例5.⎰⎰-→-dx xdx xa 222111一般地, ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f . 2.b ax x +=2)(ϕ例6. ⎰dx xe x 22 例7.⎰-dx x a x2一般地,⎰⎰++=+)()(21)(222b ax d b ax f adx b ax xf . 利用1111+++=μμμμdx x dx x , 我们常用的凑微分法有: ⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅xd f dx x fxd f dx x f dx f dx f x 2131232例8.⎰dx x x 1tan 122例9.⎰dx xe x33. 其它类型例10. ⎰⎰=dx xxxdx cos sin tan , ⎰xdx cot 例11.⎰+dx x x 21arctan把对x 积分转化为对)(x ϕ积分,即)()(x d f dx f x ϕϕ⋅→⋅',这实际上也是一个积分过程,只是这个积分较为直接明了,因此,所有积分公式都可以被考虑用于凑微分.如:⎰⎰⋅=⋅x d f dx f x ln 14. 综合性凑微分(先变形, 再凑) ① 代数变形例12. ⎰-dx x x2例13. C ax ax a dx x a C a x ax a dx a x +-+=-++-=-⎰⎰ln 211,ln 2112222例14.⎰⎰++=++dx x dx x x 2)3(1116122例15.⎰⎰-+=--dx x x dx x x )1)(3(12312总之: ⎰⎪⎩⎪⎨⎧→→→++arctanln12不可分解因式可分解因式dx c bx ax 例16.⎰⎰+-=--dx x dx xx 22)1(21211例17.⎰⎰+=dx x xdx 212cos cos 2例18. C x x x dx x xdx +++=⎪⎭⎫ ⎝⎛+=⎰⎰832sin 414sin 321212cos cos 24例19. ⎰⎰--=x d x xdx cos )cos 1(sin 23例20. ⎰⎰--=x xd x xdx x cos cos )cos 1(cos sin2223例21.⎰⎰+=dx xx xdx x 22sin 8sin 3cos 5sin总结之:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222例22.⎰xdx csc()Cx x xx C x x C x x C x x x d x dx xx dx x xdx ++-=+-=+-+-=+-+-=++-=--===⎰⎰⎰⎰)cot ln(csc sin cos 1ln cos 1cos 1ln 21cos 1cos 1ln 211cos 1cos ln 21cos cos 11sin sin sin 1csc 2222 Cx x xdx C x x xdx ++-=++=⎰⎰)cot ln(csc csc )tan ln(sec sec 总结: 三角函数微分、积分公式记忆: (1) 弦函数↔ 弦函数; 切函数↔ 割函数 (2) 正函数→ 正号; 余函数→ 负号例23.⎰⎰⎰-=--=+dx x xdx x x dx x 22cos sin 1sin 1sin 1sin 11在积分过程中, 分母中的正减号是积分的障碍.二、第二类换元法(变量置换法)定理 设)(t x ψ=是单调且可导的函数,0)(≠'t ψ. 又设)()]([)(t t f t g ψψ'=有原函数, 则[]⎰⎰-='=)(1)()]([)(x t dt t t f dx x f ψψψ.事实上:[]C t G dt t g dt t t f t d t f dxx f x t t x +=='=⋅=⎰⎰⎰⎰-==)()(1)()()()]([)]([)]([)(ψψψψψψ第二类换元的实质是将f (x )复杂式变简单或将明显不可积变为可积. 1. 三角代换例1.⎰+dx x 112Ct t tdt t t d t dxx t x ++=⋅==+⎰⎰⎰=)tan ln(sec sec sec 1)(tan sec 1112tan 2不定积分是被积变量的函数, 故需写成x 的函数. 而用反函数代入的方法显然很繁琐.1tan tan x t t x =⇒=, 即在直角三角形中, t 是一个锐角, x 是其对边, 1是其邻边.⎰⎰+++=++++=++==C x a x dx a x C x x dx x x t t )ln(1)1ln(1111cos 1sec 2222222例2.⎰-dx ax 221xCa x x C aa x a x C t t tdtt t t a d t a dxax xa t ta x +-+=+-+=++=⋅==-==⎰⎰⎰)ln()ln()tan ln(sec tan sec tan 1)sec (tan 12222cos sec 22积分公式:⎰++±=±C x a x dx a x )ln(12222例3.⎰-dx x a 2C ax a a x a x a C t t t a dt t a tdtat td adx x a ax t t a x +-⋅+=++=+===-⎰⎰⎰⎰==)(arcsin 2)cos sin (2)2cos 1(2cossin cos 22222222sin sin 2三角代换的实质:用六角形公式消去根式(或分母)中平方和、平方差.2. 根式代换例4.⎰++dx x 1211Cx x C t t dt t t t d t dxx t x t x +++-+=++-=+-+=-+=++⎰⎰⎰=+-=)121ln(12)1ln(11121111211212212例5.⎰+xx dx)1(322a x -xCt t dt t t dt t t xx t x tx +-=+-+=+=+⎰⎰⎰==arctan 661116)1(1)1(22632366例3.dx xx⎰-+11 (选讲、习题课) 法一:()dt t t t td t xxt t x ⎰⎰+=+-==-++-=2222111114)121(22 法二:()⎰⎰⎰⎰⎰+=--=-=--=--==dt t dt tt dt t t dx x x dx x x t x )sin 1(sin 1sin 1sin 1cos 111122sin 222法三:()()⎰⎰⎰⎰-+-=-+=-+=2222221121111111x d x dx xdx xx dx x x§3.分部积分法由导数的乘法公式:())()()()()()(x g x f x g x f x g x f '+'=',可知)()(x g x f 是)()()()(x g x f x g x f '+'的一个原函数,即[])()()()()()()()()()()()()()()()()()(x df x g x g x f x dg x f dx x g x f x g x f dx x g x f C x g x f dx x g x f x g x f ⎰⎰⎰⎰⎰-=⇔'-='⇒+='+' 其实质是将被积函数看作两个函数的乘积,将其中一个函数先凑到d 的后面(做一部分积分),从而变形为求另一个函数的积分.简言之,将被积表达式写成d 前面一部分,d 后面一部分,再交换前后两部分的位置.分部积分公式:⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u 例1.⎰xdx x sinx,sinx 都可以放到d 的后面去,但是,变形后的结果截然不同:前者变形为求⎰xdx xsin 2,后者变形为求⎰xdx cos ,显然选择后者.注: 选择u,v(d 前函数,d 后函数)的原则: (1)v 明显可求(2)简单比v u u v ''(即新得到的积分比原积分简单) 例2.⎰dx xe x例3. ⎰dx e x x 2例4.⎰xdx x ln 2例5. ⎰xdx ln , ⎰xdx 2ln例6. ⎰xdx arcsin例7. ⎰xdx e xsin例8. ⎰=xdx x I sec tan 2(选讲)⎰⎰⎰⎰⎰⎰⎰--=+-=-=-==⋅==xdxI x x xdx x x x xdx x x x xd x x xxd xdx x x xdxx I sec sec tan sec )1(tan sec tan sec sec tan tan sec sec tan sec tan sec tan tan sec tan 232 注2.分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx x ax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e ax ax ax ax cos sin sin cos cos sin cos sin )3(\例9.⎰dx ex例10. dx xexdx e xx⎰⎰-=22cos 1sin 2例11. dx xe dx x e xx ⎰⎰=22sin cos sin 例12. ()dx x x xdx x ⎰⎰-=1sec tan 22 例13. ⎰=dx x I )sin(ln例14.⎰+++dx xx x 221)11ln(不定积分小结一积分公式(分类分组) 1.幂函数类⎪⎩⎪⎨⎧-≠⎰⎰dx xdx x 11(μμ ⎪⎪⎩⎪⎪⎨⎧-+⎰⎰dx ax dx ax 222211⎪⎪⎩⎪⎪⎨⎧±-⎰⎰dx a x dx x a 222211 2.指数函数类⎪⎩⎪⎨⎧⎰⎰dx a dxe xx3.三角函数类⎪⎩⎪⎨⎧⎰⎰xdx xdx cos sin⎪⎩⎪⎨⎧⎰⎰x d x x d x s e c t a n⎪⎩⎪⎨⎧⎰⎰x d x x d x c s c c o t⎪⎩⎪⎨⎧⎰⎰xdx xdx 22csc sec⎪⎩⎪⎨⎧⎰⎰x d x x x d x x c s c c o t s e c t a n 二、凑微分法)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='常用的凑微分法有:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅⋅=⋅+⋅=⋅xd f dx x fx d f dx x f dx f dx f x dx f dx xf b ax d f a dx f 213121)(12322⎰⎰⎰⎰⎰⎰⋅=⋅⋅⋅-=⋅⋅⋅=⋅xxdef dx f e x d f dx f x x d f dx xfcos sin ln 二、变量置换法[])()(1)()]([)]([)]([)(x t t x dt t t f t d t f dx x f -==⎰⎰⎰'=⋅=ψψψψψψ 常用代换:1. 三角代换⎰⎰⎰⎰⎰⎰====-=+=-tdtt t a f a dx a x f tdtt a f a dx x a f tdtt a f a dx x a f ta x ta x ta x tan sec )tan ()(sec )sec ()(cos )cos ()(22sec 22222tan 2222sin 222. 根式代换⎰⎰--=+=⋅=++dt t t t f anmdxb ax b ax f nm n m ab tx b ax t mn nmnm 1),(),( 三、分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx xax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ 类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e axax ax axcos sin sin cos cos sin cos sin )3(\ 注2:有些函数经过变形、代换后成为上述类型.注3:选择u,v(d 前函数,d 后函数)的原则:留在d 前的函数求导后变易, 进入d 的函数积分后不变难.四、特殊函数积分归类 归类1:⎰⎪⎩⎪⎨⎧→→→++arctan ln 12平方和平方差dx c bx ax 归类2:⎰⎩⎨⎧→<→>→++arcsin 0012a a dx c bx ax 三角代换 归类3:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222 归类4:有理函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分的四则运算公式
不定积分是求导的反向运算,是解决微积分问题的重要方法之一,而四则运算则是数学中最基本的运算方法之一。

在进行不定积分的过程中,我们也需要运用四则运算的相关公式,以便更加高效地解决问题。

下面是不定积分的四则运算公式:
1. 常数倍法则:∫ k*f(x) dx = k*∫ f(x) dx (k为常数)
2. 和差法则:∫ [f(x) + g(x)] dx = ∫ f(x) dx + ∫ g(x) dx;
∫ [f(x) - g(x)] dx = ∫ f(x) dx - ∫ g(x) dx
3. 积法公式:∫ f(x)g'(x) dx = f(x)g(x) - ∫ g(x)f'(x) dx
4. 倒代换公式:∫ f(g(x))g'(x) dx = ∫ f(u) du (其中 u = g(x))
通过掌握这些不定积分的四则运算公式,我们可以更加轻松地进行不定积分的计算,提高我们的数学解题能力。

- 1 -。

相关文档
最新文档