浙教版八年级上数学期末试卷(含答案)-

合集下载

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级第一学期期末数学试卷(考试时间:80分钟 满分50分)一、选择题(每小题2分,共10分)1、如图,直线l 1:1y x =+与直线2l :12y x =--把平面直角坐标系分成四个部分,点(12-,1)在( ) (A )第一部分 (B )第二部分 (C )第三部分 (D )第四部分 2、下列说法正确的个数有( )①等边三角形有三条对称轴;②在△ABC 中,若222a b c +≠,则△ABC 不是直角三角形;③等腰三角形的一边长为4,另一边长9,则它的周长为17或22;④一个三角形中至少有两个锐角。

(A )1个 (B )2个 (C )3个 (D )4个 3、已知一组数据6,8,10,x 的中位数与平均数相等,这样的x 有( ) (A )1个(B ) 2个 (C )3个(D )4个以上(含4个)4、在平面直角坐标系中,O 为坐标原点,直线221+=x y 与x 轴交于点P ,点Q 在直线上,且满足△OPQ 为等腰三角形,则这样的Q 点有( )个 (A )1 (B )2 (C )3 (D )4 5、如图所示,已知Rt ABC ∆中,90B ∠=,3AB =,4BC =,,,D E F 分别是三边,,AB BC CA 上的点,则DE EF FD ++的最小值为( )(A )125(B )245 (C )5 (D )6二、填空题(每小题2分,共12分)6、一个样本为1、3、2、2、,,a b c .已知这个样本的众数为3,平均数为2,那么这个样本的方差为_________.7、已知不等式30x a -≤的正整数解为1,2,3,则a 的取值范围是 .A 'B'BCA8、在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图,你能根据三视图,帮他清点一下箱子的数量吗?这些箱子共有 个9、如图,有一种动画程序,屏幕上方正方形区域ABCD 表示黑色物体甲,其中A ( 1,1 ) B ( 2,1 ) C ( 2,2 ) D ( 1,2 ),用信号枪沿直线2y x b =+发射信号,当信号遇到区域甲时,甲由黑变白,则当b 的取值范围为___________时,甲能由黑变白.10、如图,在直角三角形ABC 中,∠C=90°,∠A=25°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____________。

浙教版八年级上册数学期末考试试卷含答案

浙教版八年级上册数学期末考试试卷含答案

浙教版八年级上册数学期末考试试题一、单选题1.在△ABC中,△A=60°,△B=50°,则△C的度数为()A.60°B.30°C.70°D.50°2.下列图案中为轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(1,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若x<y,则下列结论成立的是()A.x+2>y+2B.-2x<-2y C.3x>3y D.1-x>1-y 5.已知正比例函数y=2x,下列各点在该函数图象上的是()A.(1,2)B.(2,1)C.(1,12)D.(-12,1)6.不等式10x+>的解集在数轴上表示正确的是()A.B.C.D.7.如图,已知AD=AE,添加下列条件仍无法证明△ABE△△ACD的是()A.AB=AC B.△B=△CC.BE=CD D.△ADC=△AEB8.如图,在△ABC中,AB=AC,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧相交于点E、F,直线EF交BC于点D.连接AD,已知AC=4,△ABD的周长是10,则BC的长是()A.5B.6C.7D.89.若一次函数y=(m-1)x+m-2的图象不经过第二象限,则m的取值范围是()A.m>1B.m<2C.1<m<2D.1<m≤210.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+mC.1000m D.(300+m二、填空题11.函数1=自变量x的取值范围是_____.yx12.如图,在△ABC中,△ACB=90°,CE是△ABC的角平分线,△AEC=105°,则△B=___°.13.在平面直角坐标系中,将点A(a,1)先向右平移3个单位,再向下平移2个单位,得到点B(5,b),则ab的值为___.14.某批电子产品进价为300元/件,售价为400元/件.为提高销量,商店准备将这批电子产品降价出售,若要保证单件利润率不低于20%,则最多可降价___元.15.古代数学问题△“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可表述为△“有一面墙,高1丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上,如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上,则木杆长为___尺.”(说明:1丈=10尺)16.如图,在平面直角坐标系中,一次函数y=-2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(-8,0).(1)k的值为___;(2)点M为直线BC上一点,若△MAB=△ABO,则点M的坐标是___.三、解答题17.解不等式组20620xx+≥⎧⎨-⎩>,并把解表示在数轴上.18.如图,△D=△ACB=△E=90°,AC=BC.求证:△ADC△△CEB.19.某公交车司机统计了月乘车人数x(人)与月利润y(元)的部分数据如下表,假设每位乘客的公交票价固定不变,公交车月支出费用为6000元.(月利润=月收入-月支出费用)(1)根据函数的定义,y是关于x的函数吗?(2)结合表格解答下列问题:△公交车票的单价是多少元?△当x=2750时,y 的值是多少?它的实际意义是什么?20.已知:如图,在△ABC 中,△B=30°,△ACB=45°,AD 是BC 边上的高线,CE 是AB 边上的中线.(1)求证:AE=CD ; (2)求△ACE 的度数.21.已知一次函数y=kx+b(k≠0)的图象过点(0,1). (1)若函数图象还经过点(-1,3), △求这个函数的表达式;△若点P (a ,a +3)关于x 轴的对称点恰好落在该函数的图象上,求a 的值. (2)若函数图象与x 轴的交点的横坐标0x 满足2<0x <3,求k 的取值范围.22.已知,一次函数y=12x +4的图象与x 轴、y 轴分别交于点A ,点B ,点C 的坐标为(-2,0).(1)求点A ,点B 的坐标;(2)过点C 作直线CD ,与AB 交于点D ,且2AOB ACD S S △△,求点D 的坐标;(3)连接BC ,将△OBC 沿x 轴向左平移得到△O′B′C′,再将以A ,B ,B′,C′为顶点的四边形沿O′B′剪开得到两个图形.若用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,求△OBC 平移的距离.23.如图,△ABC中,AB=AC,BE△AC于E,且D、E分别是AB、AC的中点.延长BC 至点F,使CF=CE.(1)求△ABC的度数;(2)求证:BE=FE;(3)若AB=2,求△CEF的面积.24.如图,有88⨯的正方形网格(每个小正方形的边长为1),按要求作图并计算.(1)在88⨯的正方形网格中建立平面直角坐标系,使点A的坐标为(2,4),点B的坐标为(4,2);(2)将点A向下平移6个单位,再关于y轴对称得到点C,求点C坐标;(3)画出三角形ABC,请判断ABC的形状并说明理由.25.项目研究:剪等腰三角形(1)动手尝试:如图,有甲,乙两张三角形纸片,甲三角形纸片的内角分别为40°,60°,80°;乙三角形纸片的内角分别为35°,40°,105°,你能把每一张三角形纸片剪成两个等腰三角形吗?若能,请画出剪痕并标出各角的度数;若不能,请说明理由.(2)项目研究:结合上述尝试,请思考归纳出一张三角形纸片能剪成两个等腰三角形需具备的条件,并画出相应的示意图说明剪法.参考答案1.C【分析】根据三角形内角和定理计算即可. 【详解】解:△6050A B ∠=︒∠=︒,,△180180605070C A B ∠=︒-∠-∠=︒-︒-︒=︒ , 故选:C .【点睛】本题考查了三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键. 2.D【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,以此进行分析判断即可.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形, 故选:D .【点睛】本题主要考查了轴对称图形的概念.寻找一条直线,使得直线两旁的部分折叠后可重合是解题的关键. 3.A【分析】根据在各象限内,点坐标的符号规律即可得. 【详解】解:△10>,30>,∴在平面直角坐标系中,点P(1,3)所在的象限是第一象限,故选:A.【点睛】本题考查了坐标系中各象限内的坐标特点,熟练掌握点坐标的符号规律是解题关键:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).4.D【分析】根据不等式的性质求解即可.【详解】解:A、由x<y,可得x+2<y+2,原结论不成立,不符合题意;B、由x<y,可得-2x>-2y,原结论不成立,不符合题意;C、由x<y,可得3x<3y,原结论不成立,不符合题意;D、由x<y,可得-x>-y,则1-x>1-y,原结论成立,符合题意;故选D.【点睛】本题主要考查了不等式的性质,熟知不等式两边同时加上或减去一个整式,不等式方向不改变,不等式两边同时乘以或除以一个正数,不等式不改变方向,不等式两边同时乘以或除以一个负数,不等式改变方向是解题的关键.5.A【分析】分别求出当横坐标为1、2、12-的时候的函数值即可得到答案.【详解】解:当x=1时,y=2,当x=2时,y=4,当12x=-时,y=-1,△点(1,2)在正比例函数y=2x上,点(2,1),点(1,12),点(12-,1)不在正比例函数y=2x上,故选A.【点睛】本题主要考查了正比例函数的性质,熟知在函数图象上的点一定满足函数解析式是解题的关键.6.D【分析】根据不等式的性质,求出不等式的解集即可.【详解】△10x+>△x>-1在数轴上表示D选项是正确的;故选:D【点睛】本题主要考查了解不等式并把解集在数轴上表示,熟练的掌握不等式的性质,会求不等式的解集,是解题的关键.注意:“>、<”在数轴上是空心小圆圈,“≥、≤”在数轴上是实心小圆点.7.C【分析】在△ABE和△ACD中, 已知AD=AE, 且公共角△A=△A, 因此再添加一组角相等或边相等的条件即可证明△ABE△△ACD, 依据全等三角形判定定理对各个选项进行判断即可得到答案.【详解】解:AD=AE, △A=△A,当AB=AC时, △ABE△△ACD, 选项A与题意不符,当△B=△C时, △ABE△△ACD, 选项B与题意不符,当BE=CD时, △ABE与△ACD不一定全等, 选项C与题意相符,当△ADC=△AEB时, △ABE△△ACD, 选项D与题意不符.故选C.【点睛】由题意可知, 本题需要借助全等三角形的判定进行分析, 关键是熟练掌握全等三角形的判定定理;8.B【分析】由线段垂直平分线的性质得到AD=CD,再根据△ABD的周长为10,推出AC+CD+BD=10,由此即可得到答案.【详解】解:由作图方法可知直线EF是线段AC的垂直平分线,△AD=CD,△△ABD的周长为10,△AB+AD+BD=10,△AC=AB,AD=CD,△AC+CD+BD=10,△CD+BD=10-AC=6,即BC=6,故选B.【点睛】本题主要考查了线段垂直平分线的性质,线段垂直平分线的尺规作图,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键.9.D【分析】根据一次函数图象不经过第二象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:△y =(m−1)x +m−2的图象不经过第二象限,△1020m m ->⎧⎨-≤⎩, 解得:1<m≤2, 故选:D .【点睛】本题考查一次函数图象与系数的关系:△k >0,b >0△y =kx +b 的图象在一、二、三象限;△k >0,b <0△y =kx +b 的图象在一、三、四象限;△k <0,b >0△y =kx +b 的图象在一、二、四象限;△k <0,b <0△y =kx +b 的图象在二、三、四象限.也考查了一元一次不等式组的解法. 10.C【分析】作点A 关于CD 的对称点E ,过点E 作BD 的垂线,交BD 延长线于点F ,连接BE 交CD 于点O ,连接OA ,先根据矩形的判定与性质、勾股定理可得1000m BE =,再根据轴对称的性质、两点之间线段最短即可得.【详解】解:如图,作点A 关于CD 的对称点E ,过点E 作BD 的垂线,交BD 延长线于点F ,连接BE 交CD 于点O ,连接OA ,则,300m OA OE CE AC ===,四边形CDFE 是矩形, 600m,300m EF CD DF CE ∴====,500m BD =,800m BF BD DF ∴=+=,1000m BE ∴==,由两点之间线段最短可知,牧童要走的路程OA OB OE OB +=+,它的最小值为BE 的长,即为1000m ,故选:C .【点睛】本题考查了矩形的判定与性质、勾股定理、轴对称的性质、两点之间线段最短,利用轴对称的性质找出牧童要走的最短路程是解题关键. 11.x≠0.【分析】根据分母不等于0即可得出答案. 【详解】解:根据题意得,x≠0. 故答案为:x≠0.【点睛】本题主要考查自变量的取值范围,掌握分是有意义的条件是解题的关键. 12.60【分析】先根据角平分线的定义求出△BCE 的度数,再利用三角形外角的性质即可求出△B 的度数.【详解】解:△CE 平分△ACB ,△ACB=90°,△1452BCE ACB ==︒∠∠,△△AEC=105°,△△B=△AEC -△BCE=60°, 故答案为:60. 13.-2【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案. 【详解】解:将点(,1)A a 向右平移3个单位,再向下平移2个单位得到点B , 则点B 的坐标为(3,1)a +-. 又△点B 的坐标为(5,b ) △2,1a b ==-, △2ab =-, 故答案为:2-. 14.40【分析】设降价x 元,利用单件利润率不低于20%列出不等式,求解即可.100%-=⨯售价成本利润率成本.【详解】解:设降价x 元,则利润率为400300100%300x --⨯,△列得不等式:400300100%20%300x --⨯≥, 解得:40x ≤ △最多可降价40元.故答案为:40.【点睛】本题考查一元一次不等式的实际应用,根据题意列出不等式是解题的关键. 15.1012##50.5##1502【分析】当木杆的上端与墙头平齐时,木杆与墙、地面构成直角三角形,设木杆长为x 尺,则木杆底端离墙有()1x -尺,根据勾股定理可列出方程,解方程即可得出答案.【详解】解:如图,设木杆AB 长为x 尺,则木杆底端B 离墙的距离即BC 的长有()1x -尺,在Rt ABC 中,222AC BC AB +=,△()222101x x +-=, 解得:1012x = 故答案为:1012. 【点睛】本题考查了勾股定理的应用,由实际问题抽象出直角三角形,从而运用勾股定理列出方程是解题的关键.16. 12 (-2,3),(2,5)【分析】(1)由y=-2x+4求得点,A B 的坐标,根据,B C 的坐标待定系数法求解析式即可求解;(2)根据题意画出图形,分M 在B 点左边与右边两种情况分类讨论即可求解.【详解】(1)解:△一次函数y=-2x+4的图象与x 轴、y 轴分别交于点A 和点B , 令0y =,得2x =,则()2,0A ,令0x =,得4y =,则()0,4B ,将()0,4B ,()8,0C -代入y=kx+b ,得480b k b =⎧⎨-+=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,△直线BC 得到解析式为142y x =+, 故答案为:12;(2)△()2,0A ,()0,4B ,()8,0C -,△10AB BC AC ==,△222AB BC AC +=,△90ABC ∠=︒,如图,△MAB=△ABO ,点M 为直线BC 上△当M 在B 点右侧时,△△MAB=△ABO ,点M 为直线BC 上∴AM OB ∥,所以M 的横坐标为2,代入142y x =+,得5y =,所以M ()2,5,△当M 在B 点左侧时,如果,设AM 交y 轴于点N ,△△MAB=△ABO ,△AN NB =,设()0,N n ,所以4BN n AN =-=,在Rt AON △中,222AN AO ON =+,△()22242n n -=+, 解得32n =, △30,2N ⎛⎫⎪⎝⎭,设AN 解析式为y sx t =+,2032s t t +=⎧⎪⎨=⎪⎩,解得3432s t ⎧=-⎪⎪⎨⎪=⎪⎩,△AN 的解析式为3342y x =-+,联立,AN AB 解析式得1423342y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得:23x y =-⎧⎨=⎩,△M ()2,3-,综上,M ()2,5,()2,3-,故答案为:M ()2,5或()2,3-17.-2≤x <3,数轴表示见详解【分析】分别解不等式,求出不等式组的解集,然后在数轴上表示即可.【详解】解:解不等式△,得x≥-2,解不等式△,得x<3,把△,△两个不等式的解表示在数轴上,如下图:△不等式组的解是-2≤x <3.18.证明见详解【分析】一线三直角的全等三角形模型,使用AAS 证明即可.【详解】证明:△△D=△ACB=△E=90°,△△DAC+△ACD=△ACD+△ECB=90°,即△DAC=△ECB .在△ADC 与△CEB 中,90D E DAC ECB AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩△△ADC△△CEB .19.(1)y 是关于x 的函数,理由见详解(2)△2元;△当x=2750时,函数值y=-500,实际意义是:月乘车人数为2750人时,公交车本月亏损500元.【分析】(1)根据函数的定义:在一个变化过程中,因变量随着自变量的变化而变化,对于每一个确定的自变量都有唯一确定的因变量与之对应,进行解答即可;(2)结合表格进行解答即可.(1)解:根据函数的定义可知:y 是关于x 的函数.(2)解:△由题意得:公交车票价:6000÷3000=2(元).△当x=2750时,函数值y=-500,实际意义是:月乘车人数为2750人时,公交车本月亏损500元.20.(1)证明见详解(2)30°【分析】(1)根据AD 是BC 边上的高线,△B=30°得到AD=AE=12AB ,计算得到△ACB=△CAD =45°得到AD=CD ,从而得到AE=CD ;(2)利用直角三角形斜边上得中线等于斜边的一半和等量代换得到DE=BE=AE=CD ,从而得到△EDB =△B =30°,△ECD=12EDB ∠=15°,再用减法得到△ACE=△ACD -△ECD=30°. (1)证明:△AD 是BC 边上的高线,△△ADB=△ADC=90°,△△B=30°, △AD=12AB , △CE 是中线, △AE=12AB , △AD=AE .△△ACB=45°,△ADC=90°,△△ACB=△CAD =45°△AD=CD ,△AE=CD .(2)连接DE ,△在Rt△ADB 中,E 是AB 中点, △DE=BE=AE=CD=12AB , △△EDB =△B =30°,△ECD=△CED △△ECD=12EDB ∠=15°, △△ACE=△ACD -△ECD=45°-15°=30°.21.(1)△y=-2x+1;△4(2)-12<k <-13【分析】(1)△把点(0,1),(-1,3)代入y=kx+b ,待定系数法求解析式即可求解;△P(a ,a +3)关于x 轴对称的对称点是(a ,-a -3),代入解析式即可求解;(2)把x=2,y=0; x=3,y=0代入一次函数解析式,求出对应的k 值,即可求解.(1)解:△把点(0,1),(-1,3)代入y=kx+b ,得,1,3b k b =⎧⎨-+=⎩解得:1,2b k =⎧⎨=-⎩△一次函数的表达式为y=-2x+1.△P(a ,a +3)关于x 轴对称的对称点是(a ,-a -3),△该对称点在函数的图象上,△-a -3=-2a +1,△a =4.(2)由已知,得y=kx+1,把x=2,y=0代入,得0=2k+1,解得k=-12,把x=3,y=0代入,得0=3k+1,解得k=-13, △k 的取值范围是-12<k <-13. 22.(1)点A 的坐标为(-8,0),点B 的坐标为(0,4);(2)(-83,83)或(403-,83-); (3)2或8或12.【分析】(1)分别令y=0求x ,令x=0求y ,可以得到点A ,点B 的坐标;(2)利用2AOB ACD S S =△△,点A ,点B 的坐标得到8ACD S =△,设点D 的横坐标为a ,AC 边上的高线长为h ,则h=|12a +4|=83,解出a ,从而得到点D 的坐标; (3)分三种情况讨论,然后根据剪下的部分和要拼补的部分全等来求平移距离即可.(1)解:将y=0代入表达式得:0=12x+4,解得:8x =-,将x=0代入表达式,得:y=4,△点A 的坐标为(-8,0),点B 的坐标为(0,4).(2)△点C 的坐标为(-2,0),△(86)2AC -=--=,△2AOBACD S S =△△, △12ACD AOB S S =△△=12×12×8×4=8, 设点D 的横坐标为a ,AC 边上的高线长为h ,则h=|12a +4| △1163822ACD S AC h h h =⨯=⨯⨯==△ △h=83, △83=|12a +4|,解得:a=-83或-403,当a=-83时,12a +4=83当a=-403时,12a +4=83-,△点D 的坐标为(-83,83)或(403-,83-).(3)△如图1,△要拼成无缝不重叠的三角形,△△O'C'B'△△O'EA ,△O'A =O'B'=OB =4,△OO'=4+8=12,△平移的距离为12.△如图2,△要拼成无缝不重叠的三角形,则A 与O'重合,△OO'=OA=8,△平移的距离为8.△如图3,△要拼成无缝不重叠的三角形,△△B'BE△△O'C'E ,△B'B=O'C'=OC=2,△平移的距离为2.综上所述:平移的距离为2或8或12.23.(1) △ABC=60°;(2)证明见解析;(3)4ECF S .【详解】试题分析:(1)根据等边三角形的判定得出△ABC 是等边三角形,即可得出△ABC 的度数;(2)根据BE=FE 得出△F=△CEF=30°,再等边三角形的性质得出△EBC=30°,即可证明;(3)过E 点作EG△BC ,根据三角形面积解答即可.试题解析:(1)△BE△AC 于E ,E 是AC 的中点,△△ABC 是等腰三角形,即AB=BC ,△AB=AC ,△△ABC 是等边三角形,△△ABC=60°;(2)△CF=CE ,△△F=△CEF ,△△ACB=60°=△F+△CEF ,△△F=30°,△△ABC 是等边三角形,BE△AC ,△△EBC=30°,△△F=△EBC ,△BE=EF ;(3)过E 点作EG△BC ,如图:△BE△AC ,△EBC=30°,AB=BC=2,CE=1=CF ,在△BEC 中,EG=·CE BE BC =△11224ECF S =⨯⨯=. 考点:1.等边三角形的判定与性质;2.等边三角形的性质.24.(1)画图见解析;(2)(2,2)C -;(3)ABC 为等腰三角形.【详解】试题分析:(1)将A 点向左平移2个单位,再向处平移4个单位即可得到原点,然后建立坐标系即可;(2)先平移,然后再根据关于y 轴对称的点的坐标特征即可得;(3)利用勾股定理求出各边的长,比较即可得.试题解析:(1)如图所示;-,再关于y轴对称,(2)A向下平移6个单位得到点(2,2)C--;△(2,2)(3)AC===BC==又AB==,ABC为等腰三角形.△AC BC25.见详解【分析】(1)根据等腰三角形的与三角形内角和定理将甲分成两个底角分别为40°与80°的等腰三角形,将乙分成两个底角分别为35°与70°的等腰三角形即可求解;(2)分为三类情况讨论,分别画出图形,结合等腰三角形的性质与三角形内角和即可求解.【详解】解:(1)如图所示,(2)分为三类,如图△,直角三角形一定可以剪成两个等腰三角形,剪痕为斜边上的中线;如图△,原三角形中有一个角是另一个角的两倍,且最小角小于45°;如图△,原三角形中有一个角是另一个角的三倍.【点睛】本题考查了等腰三角形的定义,三角形的内角和定理,三角形外角的性质,分类讨论找到规律是解题的关键.21。

浙教版八年级(上)期末数学试卷(含解析)

浙教版八年级(上)期末数学试卷(含解析)

浙教版八年级(上)期末数学试卷一、选择题(共10小题).1.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)2.由下列长度的三条线段能组成三角形的是()A.1cm,2cm,3.5cm B.4cm,9cm,5cmC.3cm,7cm,3cm D.13cm,6cm,8cm3.一个等腰三角形的顶角等于50°,则这个等腰三角形的底角度数是()A.50°B.65°C.75°D.130°4.要说明命题“两个无理数的和是无理数”,可选择的反例是()A.2,﹣3B.,C.,﹣D.,5.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.已知实数a,b满足a>b,则下列不等式不一定成立的是()A.a﹣1>b﹣1B.2a>2b C.a2>b2D.7.已知(x1,y1),(1,y2)是直线y=﹣x+a(a为常数)上的两点,若y1<y2,则x1的值可以是()A.﹣1B.0C.1D.28.如图,在△ABC中,∠ACB=90°,边AB的垂直平分线交AB于点D,交AC于点E,连接BE,CD,若BC =5,CD=6.5,则△BCE的周长为()A.16.5B.17C.18D.209.小聪区商店买笔记本和钢笔,共用了60元钱,已知每本笔记本2元,每支钢笔5元,若笔记本和钢笔都购买,且笔记本的数量多于钢笔的数量,则小聪的购买方案有()A.3种B.4种C.5种D.6种10.甲、乙两位同学住在同一小区,学校与小区相距2700米,一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象,则()A.乙骑自行车的速度是180米/分B.乙到还车点时,甲、乙两人相距850米C.自行车还车点距离学校300米D.乙到学校时,甲距离学校200米二、填空题.(本题6个小题,每小题4分,共24分)11.把点A(2,﹣5)向上平移4个单位得到的点的坐标为.12.如图,点D在△ABC的边AC的延长线上,DE∥BC,若∠A=65°,∠B=40°,则∠D的度数为.13.若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是.14.如图,△ABC是等边三角形,点D在BC的延长线上,△ADE是等腰直角三角形,其∠ADE=90°.若AB =2,AE=4,则△ACD的面积为.15.如图,一次函数y=﹣x﹣6与y=kx+b(k、b为常数,且k≠0)的图象相交于点A(m,﹣2),则m=,关于x的不等式组的解是.16.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),点D在边AC上,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点是E.若点B、D、E在同一条直线上,则∠ABD的度数为(用含α的代数式表示).三、解答题.17.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.18.解下列一元一次不等式(组):(1)7x﹣2<9x+3,并把它的解表示在数轴上.(2)19.如图,点E在边BC上,∠1=∠2,∠C=∠AED,BC=DE.(1)求证:AB=AD;(2)若∠C=70°,求∠BED的度数.20.已知y是关于x的一次函数,如表列出了这个函数部分的对应值:x﹣312ny0m﹣1﹣4(1)求这个一次函数的表达式.(2)求m,n的值.(3)已知点A(x1,y1)和点B(x2,y2)在该一次函数图象上,设t=判断正比例函数y=(t﹣3)x 的图象是否有可能经过第一象限,并说明理由.21.已知,DA,DB,DC是从点D出发的三条线段,且DA=DB=DC.(1)如图①,若点D在线段AB上,连接AC,BC,试判断△ABC的形状,并说明理由.(2)如图②,连接AC,BC,AB,且AB与CD相交于点E,若AC=BC,AB=16,DC=10,求CE和AC 的长.22.设一次函数y=kx+b﹣3(k,b是常数,且k≠0).(1)该函数的图象过点(﹣1,2),试判断点P(4,5k+2)是否也在此函数的图象上,并说明理由.(2)已知点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,求k的值.(3)若k+b<0,点Q(5,m)(m>0)在该一次函数上,求证:k>.23.如图,在△ABC中,AB=AC,点P是AB边上的动点(不与点A、B重合),把△ABC沿过点P的直线l折叠,点B的对应点是点D,折痕为PQ.(1)若点D恰好在AC边上.①如图1,当PQ∥AC时,连接AQ,求证:AQ⊥BC.②如图2,当DP⊥AB,且BP=3,CD=2,求△ABC与△CDQ的周长差.(2)如图3,点P在AB边上运动时,若直线l始终垂直于AC,△ACD的面积是否变化?请说明理由.参考答案一、选择题(本大题10个小题,每小题3分,共30分)1.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.2.由下列长度的三条线段能组成三角形的是()A.1cm,2cm,3.5cm B.4cm,9cm,5cmC.3cm,7cm,3cm D.13cm,6cm,8cm【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.解:A、∵1+2<3.5,∴不能组成三角形;B、∵4+5=9,∴不能组成三角形;C、∵3+3<7,∴不能组成三角形;D、∵6+8>13,∴能组成三角形.故选:D.3.一个等腰三角形的顶角等于50°,则这个等腰三角形的底角度数是()A.50°B.65°C.75°D.130°【分析】已知给出了等腰三角形的顶角等于50°,利用等腰三角形的性质及三角形内角和定理直接刻求得答案.解:∵等腰三角形的顶角等于50°,又等腰三角形的底角相等∴底角等于(180°﹣50°)×=65°.故选:B.4.要说明命题“两个无理数的和是无理数”,可选择的反例是()A.2,﹣3B.,C.,﹣D.,【分析】根据相反数和为零进行分析即可.解:两个无理数的和是无理数是假命题,例如互为相反数的两个无理数和为0,0是有理数,故选:C.5.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.6.已知实数a,b满足a>b,则下列不等式不一定成立的是()A.a﹣1>b﹣1B.2a>2b C.a2>b2D.【分析】根据不等式的性质,可得答案.解:A、两边都减1,不等号的方向不变,故A不符合题意;B、两边都乘以2,不等号的方向不变,故B不符合题意;C、0>a>b时,a2<ab,ab<b2,即a2<b2,故C符合题意;D、两边都除以﹣,不等号的方向改变,故D不符合题意;故选:C.7.已知(x1,y1),(1,y2)是直线y=﹣x+a(a为常数)上的两点,若y1<y2,则x1的值可以是()A.﹣1B.0C.1D.2【分析】由k=﹣1<0可得出y值随x值的增大而减小,结合y1<y2可得出x1>1,此题得解.解:∵k=﹣1<0,∴y值随x值的增大而减小,∵(x1,y1),(1,y2)是直线y=﹣x+a上的两点,且y1<y2,∴x1>1.∴x1的值可以为2.故选:D.8.如图,在△ABC中,∠ACB=90°,边AB的垂直平分线交AB于点D,交AC于点E,连接BE,CD,若BC=5,CD=6.5,则△BCE的周长为()A.16.5B.17C.18D.20【分析】根据直角三角形的性质求出AB,根据勾股定理求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.解:在Rt△ABC中,AD=DB,∴AB=2CD=13,由勾股定理得,AC===12,∵DE是边AB的垂直平分线,∴EA=EB,∴△BCE的周长=BC+CE+EB=BC+CE+AE=BC+AC=17,故选:B.9.小聪区商店买笔记本和钢笔,共用了60元钱,已知每本笔记本2元,每支钢笔5元,若笔记本和钢笔都购买,且笔记本的数量多于钢笔的数量,则小聪的购买方案有()A.3种B.4种C.5种D.6种【分析】根据题意得出方程解答即可.解:设x本笔记本,y支钢笔,可得:2x+5y=60,且x>y,x,y取正整数,解得:,,故小聪的购买方案有四种,故选:B.10.甲、乙两位同学住在同一小区,学校与小区相距2700米,一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象,则()A.乙骑自行车的速度是180米/分B.乙到还车点时,甲、乙两人相距850米C.自行车还车点距离学校300米D.乙到学校时,甲距离学校200米【分析】根据甲12分钟步行了960米可得甲步行的速度,根据乙骑自行车8分钟行驶的路程比甲多960米即可得出乙骑自行车的速度;根据乙骑自行车的速度和乙步行的速度求出求出c的值,进而求出乙到还车点时,甲、乙两人的距离;同时可以求出自行车还车点到学校的距离;根据乙在甲出发31分后到达学校,即可求出乙到学校时,甲到学校的距离.解:甲步行的速度为:960÷12=80(米/分),乙骑自行车的速度为:80+960÷(20﹣12)=200(米/分),故选项A错误;乙步行的速度为:80﹣5=75(米/分),乙全程:200(c﹣12)﹣75(31﹣c)=2700,解得c=27,所以乙骑自行车的路程为:200×(27﹣12)=3000(米),所以自行车还车点距离学校为:3000﹣2700=300(米),故选项C正确;乙到还车点时,乙的路程为3000米,甲步行的路程为:80×27=2160(米),此时两人相距:3000﹣2160=840(米),故选项B错误;乙到学校时,甲的路程为:80×31=2480(米),此时甲离学校:2700﹣2480=220(米).故选项D错误.故选:C.二、填空题.(本题6个小题,每小题4分,共24分)11.把点A(2,﹣5)向上平移4个单位得到的点的坐标为(2,﹣1).【分析】让点的横坐标不变,纵坐标加4即可.解:平移后点M的横坐标为2;纵坐标为﹣5+4=﹣1;∴点P(2,﹣5)向上平移4个单位后的点的坐标为(2,﹣1).故答案为(2,﹣1).12.如图,点D在△ABC的边AC的延长线上,DE∥BC,若∠A=65°,∠B=40°,则∠D的度数为105°.【分析】由三角的内角和定理和角的和差求出∠ACB=75°,再由平行线的性质求出∠CDE=105°.解:延长ED,如图所示:∵∠A+∠B+∠ACB=180°,∠A=65°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣65°﹣40°=75°,又∵DE∥BC,∴∠ACB=∠CDF,∴∠CDE=105°.故答案为:105°.13.若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据已知得关于m的不等式,求出即可.解:4x+m+1=x﹣1,移项得:4x﹣x=﹣1﹣1﹣m,∴x=,∵方程的解是负数,∴<0,∴m>﹣2,故答案为m>﹣2.14.如图,△ABC是等边三角形,点D在BC的延长线上,△ADE是等腰直角三角形,其∠ADE=90°.若AB =2,AE=4,则△ACD的面积为.【分析】作辅助线,构建直角三角形,先根据等腰三角形三线合一得:BF=BC=,由勾股定理计算AF 和DF的长,最后根据三角形面积公式可得结论.解:过A作AF⊥BD于F,∵△ABC是等边三角形,AB=2,∴BF=BC=,∴AF===3,∵△ADE是等腰直角三角形,∠ADE=90°,AE=4,∴AD=4,由勾股定理得:DF===,∴CD=BF+DF﹣BC=+﹣2=﹣,则△ACD的面积===,故答案为:.15.如图,一次函数y=﹣x﹣6与y=kx+b(k、b为常数,且k≠0)的图象相交于点A(m,﹣2),则m=﹣3,关于x的不等式组的解是﹣<x<﹣3.【分析】先把A(m,﹣2)代入y=﹣x﹣6可求出m=﹣3,则A(﹣3,﹣2),再求出直线y=﹣x﹣6与x轴的交点坐标为(﹣,0),然后结合图象写出关于x的不等式组的解集.解:把A(m,﹣2)代入y=﹣x﹣6得﹣m﹣6=﹣2,解得m=﹣3,当y=0时,﹣x﹣6=0,解得x=﹣,即直线y=﹣x﹣6与x轴的交点坐标为(﹣,0),当x>﹣时,y=﹣x﹣6<0,而当x<﹣3时,kx+b<﹣x﹣6,所以关于x的不等式组的解集为﹣<x<﹣3.故答案为﹣3,﹣<x<﹣3.16.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),点D在边AC上,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点是E.若点B、D、E在同一条直线上,则∠ABD的度数为90°﹣α(用含α的代数式表示).【分析】由旋转的性质可得∠BAC=∠DAE=α,AD=AE,由等腰三角形的性质和外角的性质可求解.解:如图,∵将△ABD绕点A逆时针旋转,∴∠BAC=∠DAE=α,AD=AE,∴∠ADE=,∵∠ABD+∠BAC=∠ADE,∴∠ABD=90°﹣α,故答案为:90°﹣α.三、解答题.17.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.【分析】(1)依据△ABC的三个顶点的坐标即可得到△ABC.(2)依据轴对称的性质,即可得到△ABC关于y轴对称的轴对称图形△A′B′C′,进而写出B′的坐标.解:(1)如图所示,△ABC即为所求.(2)如图所示,△A′B′C′即为所求,点B′的坐标为(﹣4,﹣3).18.解下列一元一次不等式(组):(1)7x﹣2<9x+3,并把它的解表示在数轴上.(2)【分析】(1)移项,合并同类项,系数化成1即可.(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:(1)7x﹣2<9x+3,7x﹣9x<3+2,﹣2x<5,x>﹣2.5,在数轴上表示为;(2)由①得:x>﹣,由②得:x≤2,∴不等式组的解集是﹣<x≤2.19.如图,点E在边BC上,∠1=∠2,∠C=∠AED,BC=DE.(1)求证:AB=AD;(2)若∠C=70°,求∠BED的度数.【分析】(1)由“AAS”可证△ABC≌△ADE,可得AB=AD;(2)由全等三角形的判定和性质可得∠C=∠AEC=70°=∠AED,由平角的性质可求解.解:(1)∵∠1=∠2,∴∠CAB=∠EAD,∴△ABC≌△ADE(AAS),∴AB=AD;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=70°,∵∠AED=∠C=70°,∴∠BED=180°﹣70°﹣70°=40°.20.已知y是关于x的一次函数,如表列出了这个函数部分的对应值:x﹣312ny0m﹣1﹣4(1)求这个一次函数的表达式.(2)求m,n的值.(3)已知点A(x1,y1)和点B(x2,y2)在该一次函数图象上,设t=判断正比例函数y=(t﹣3)x 的图象是否有可能经过第一象限,并说明理由.【分析】(1)用待定系数法可求出函数关系式,(2)把x=1代入,得到m的值,把y=﹣4代入得出n的值;(3)根据一次函数的性质可知t=<0,进一步得出t﹣3<0,根据一次函数的性质即可判断.解:(1)设y=kx+b,当x=﹣3时,y=0;x=2时,y=﹣1.据此列出方程组,解得,∴一次函数的解析式y=﹣x﹣,(2)把x=1代入,得到y=m=﹣.把y=﹣4代入得出,得出﹣4=﹣n﹣,解得:n=17;(3)正比例函数y=(t﹣3)x的图象不可能经过第一象限,理由:∵k=﹣,∵点A(x1,y1)和点B(x2,y2)在该一次函数图象上,∴t=<0,∴t﹣3<0,∴正比例函数y=(t﹣3)x的图象经过二、四象限,不经过第一象限.21.已知,DA,DB,DC是从点D出发的三条线段,且DA=DB=DC.(1)如图①,若点D在线段AB上,连接AC,BC,试判断△ABC的形状,并说明理由.(2)如图②,连接AC,BC,AB,且AB与CD相交于点E,若AC=BC,AB=16,DC=10,求CE和AC 的长.【分析】(1)根据等腰三角形的性质得到∠A=∠ACD,∠B=∠BCD,根据三角形的内角和得到∠ACB=90°,于是得到△ABC是直角三角形;(2)根据线段垂直平分线的判定定理得到CD垂直平分AB,根据勾股定理即可得到结论.解:(1)△ABC是直角三角形,理由:∵DA=DB=DC,∴∠A=∠ACD,∠B=∠BCD,∵∠A+∠ACD+∠B+∠BCD=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形;(2)∵DA=DB,∴点D在线段AB的垂直平分线上,∵AC=BC,∴点C在线段AB的垂直平分线上,∴CD垂直平分AB,∴∠AEC=∠AED=90°,∵AB=16,DC=10,∴AE=8,AD=CD=10,∴CE=CD﹣DE=4,∴AC===4.22.设一次函数y=kx+b﹣3(k,b是常数,且k≠0).(1)该函数的图象过点(﹣1,2),试判断点P(4,5k+2)是否也在此函数的图象上,并说明理由.(2)已知点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,求k的值.(3)若k+b<0,点Q(5,m)(m>0)在该一次函数上,求证:k>.【分析】(1)根据该函数的图象过点(﹣1,2),即可判断点P(4,5k+2)也在此函数的图象上;(2)把点A(a,y1)和点B(a﹣2,y1+2)代入该一次函数解析式即可求出k的值;(3)关键k+b<0,点Q(5,m)(m>0)在该一次函数上,即可证明.解:(1)点P(4,5k+2)在此函数的图象上,理由如下:∵该函数的图象过点(﹣1,2),∴2=﹣k+b﹣3,∴k﹣b=﹣5.把点P(4,5k+2)代入一次函数y=kx+b﹣3,5k+2=4k+b﹣3k﹣b=﹣5.∴点P(4,5k+2)也在此函数的图象上;(2)∵点A(a,y1)和点B(a﹣2,y1+2)都在该一次函数的图象上,∴解得k=﹣1.答:k的值为﹣1;(3)∵k+b<0,解得b<﹣k,∵点Q(5,m)(m>0)在该一次函数上,∴m=5k+b﹣3>0,解得b>3﹣5k所以3﹣5k<b<﹣k所以3﹣5k<﹣k解得k>.故得证.叠,点B的对应点是点D,折痕为PQ.(1)若点D恰好在AC边上.①如图1,当PQ∥AC时,连接AQ,求证:AQ⊥BC.②如图2,当DP⊥AB,且BP=3,CD=2,求△ABC与△CDQ的周长差.(2)如图3,点P在AB边上运动时,若直线l始终垂直于AC,△ACD的面积是否变化?请说明理由.【分析】(1)①如图1中,连接AQ,BD.BD交PQ于O.证明点Q是BC使得中点即可解决问题.②设PA=x,则AB=AC=x+3,AD=AC﹣CD=x+1,在Rt△APD中,利用勾股定理构建方程求出x即可解决问题.(2)如图3中,连接BD.证明BD∥AC,利用等高模型解决问题即可.解:(1)①如图1中,连接AQ,BD.BD交PQ于O.∵△PQD是由△PQB翻折得到,∴PQ垂直平分线段BD,∴OB=OD,∵PQ∥AC,∴BQ=QC,∵AB=AC,∴AQ⊥BC.②如图2中,设PA=x,则AB=AC=x+3,AD=AC﹣CD=x+1,∵PB=PD=3,PD⊥AB,∴∠APD=90°,∴AD2=PA2+PD2,∴(x+1)2=x2+32,解得x=4,∵BQ=DQ,∴△ABC的周长﹣△QDC的周长=AB+AC+BC﹣(QD+QC+CD)=2AB﹣CD=14﹣2=12.(2)如图3中,结论:S△ADC=S△ABC=定值.理由:连接BD.∵△APD与△CPB关于直线PQ对称,∴BD⊥PQ,∵AC⊥PQ,∴BD∥AC,∴S△ADC=S△ABC=定值.。

浙教版八年级上册数学期末测试卷及含答案

浙教版八年级上册数学期末测试卷及含答案

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()A. B.4 C. D.2、下列长度的4根木条中,能与4cm和9cm长的2根木条首尾依次相接围成一个三角形的是()A.4cmB.9cmC.5cmD.13cm3、一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,5,9C.5,12,13D.7,15,245、已知如图,两个三角形全等,则∠1等于()A.73°B.57°C.50°D.60°6、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7、如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15°B.40°C.75°D.35°8、下列图形是公共设施标志,其中是轴对称图形的是( )A. B. C. D.9、传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中是轴对称图形的有()A. 个B. 个C. 个D. 个10、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m 2B.150m 2C.330m 2D.450m 211、下列各组线段,能组成三角形的是()A.1cm,1cm,3cmB.2cm,3cm,5cmC.3cm,4cm,8cm D.5cm,6cm,10cm12、如图,在中,,为斜边的中点,在内绕点转动,分别交边,于点,(点不与点,重合),下列说法正确的是()①;②;③A.①②B.①③C.②③D.①②③13、如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A. π–24B.9πC. π–12D.9π–614、一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A.x>3B.x≥3C.x>1D.x≥115、将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原三角形向左平移两个单位B.将原三角形向右平移两个单位C.关于x轴对称D.关于y轴对称二、填空题(共10题,共计30分)16、若不等式组的解集是-1<x<1,则(a+b)2019=________.17、如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是________(写出一个即可)18、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B 运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.19、如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD=21°时,∠B=________.20、如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为________.21、等腰三角形的一边长7cm,另一边长8cm,那么这个三角形的周长是________cm.22、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是________.23、我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为________度.24、如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.25、已知在Rt△ABC中,P为斜边AB上一点,且PB=PC=2,那么AB=________.三、解答题(共5题,共计25分)26、解不等式组:,并在数轴上表示解集.27、如图,AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程解:∵AD∥BE(已知),∴∠A=∠▲(▲)又∴∠1=∠2(已知),∴AC∥▲(▲)∴∠3=∠▲(▲)∴∠A=▲(▲)28、如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.29、如图,AE是△ABC的角平分线,D是AE上一点,∠DBE=∠DCE.求证:BE =CE.30、如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、C5、C6、B7、D9、D10、B11、D12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°2.若点P的坐标是(1,-2),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A.30° B.20° C.10° D.40°4.如图,AB=AC,BD=1,BD⊥AD,则数轴上点C所表示的数为( )A.5+1 B.-5-1 C.-5+1 D.5-15.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.不等式4x -1>2x +1的解集在数轴上表示为( )7.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A .x >4B .x >-4C .x >2D .x >-28.在等腰三角形中,有一个角是70°,则它的一条腰上的高与底边的夹角是( )A .35°B .40°或30°C .35°或20°D .70°9.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象的是( )10.如图,在平面直角坐标系中有一点A (1,0),点A 第一次向左跳动至A 1(-1,1),第二次向右跳动至A 2(2,1),第三次向左跳动至A 3(-2,2),第四次向右跳动至A 4(3,2),…,依照此规律跳下去,点A 第100次跳动至A 100,则A 100的坐标为( )A .(50,49)B .(51,50)C .(-50,49)D .(100,99) 二、填空题(每题3分,共24分)11.把命题“等腰直角三角形是轴对称图形”的逆命题改写成“如果……那么……”的形式是_______________________________________________________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为________.13.在平面直角坐标系中,已知点O (0,0),A (1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是________,A 1的坐标是________. 14.如图是一副三角板拼成的图案,则∠CEB =________°.15.如果不等式(m +1)x <m +1的解集是x >1,那么m 的取值范围是________. 16.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么(m +n )2 019=________.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是________.18.如图,在直角坐标系中,一次函数y =34x +6的图象与两坐标轴分别交于A ,B 两点,OC ⊥AB ,垂足为点C ,在直线AB 上有一点P ,y 轴的正半轴上有一点Q ,使得以O ,P ,Q 为顶点的三角形与△OCP 全等,请写出所有符合条件的点Q 的坐标:__________________.三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.解下列不等式(组),并把解集在数轴上表示出来.(1)4x -13-x >1; (2)⎩⎪⎨⎪⎧1+x >-2,2x -13≤1.20.已知一次函数y=ax+c与y=kx+b的图象如图,且点B的坐标为(-1,0),请你确定这两个一次函数的表达式.21.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.22.如图,在△ABC中,D在AB上,E在AC的延长线上,连结DE交BC于P,BD=CE,DP =EP.求证:AB=AC.23.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格中建立平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)求出△A′B′C′的面积.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(元/千克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数表达式;(3)试比较第10天与第12天的销售金额哪天多.25.如图①,在△ABC中,CD⊥AB于D,且BD∶AD∶CD=2∶3∶4.(1)试说明△ABC是等腰三角形.(2)已知S△ABC=40 cm2,如图②,动点M从点B出发以每秒1 cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值.②若点E是AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案一、1.解:∵∠A =50°,∠B =80°, ∴∠ACD =∠A +∠B =50°+80°=110°, 故选:C .2.D 点拨:由题意知,点P 的横坐标为正,纵坐标为负,这样的点在第四象限内. 3.C 点拨:∵AB ∥CD ,∴∠EFC =∠ABE =60°.∵∠EFC =∠D +∠E ,∴∠E =∠EFC -∠D=60°-50°=10°,故选C.4.D 点拨:∵在直角三角形ABD 中,∠ADB =90°,∴AB =AD 2+BD 2=22+12=5,∴点C 到原点的距离为5-1,∴点C 表示的数是5-1.故选D. 5.C 6.C7.B 点拨:将一次函数y =12x 的图象向上平移2个单位后,所得图象对应的函数的表达式为y =12x +2,令y >0,即12x +2>0,解得x >-4.8.C 点拨:70°的角可能是顶角,也可能是底角.分两种情况讨论:如图①,当顶角∠A=70°时,底角∠ABC =∠C =12(180°-∠A )=55°,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =35°.如图②,当底角∠ABC =∠C =70°时,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =20°.9.C10.B 点拨:观察发现,第2次跳动至点A 2(2,1),第4次跳动至点A 4(3,2),第6次跳动至点A 6(4,3),第8次跳动至点A 8(5,4)……第2n 次跳动至点A 2n (n +1,n ),∴第100次跳动至点A 100(51,50).故选B .二、11.如果一个三角形是轴对称图形,那么这个三角形是等腰直角三角形12.(3,0) 点拨:令y =0,得2x -6=0,解得x =3,所以一次函数y =2x -6的图象与x轴的交点坐标为(3,0).13.(3,0);(4,3) 点拨:将线段OA 向右平移3个单位,线段上任意一点的横坐标增加3,纵坐标不变,所以O 1的坐标是(3,0),A 1的坐标是(4,3). 14.10515.m <-1 点拨:∵不等式(m +1)x <m +1的解集是x >1,∴m +1<0,∴m <-1. 16.-1 17.4718.⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485点拨:∵OC ⊥AB ,∴△OCP 是以OP 为斜边的直角三角形.要使△OCP 与△OPQ 全等,则△OPQ 也是直角三角形,且OP 是斜边,∠OQP =90°,即PQ ⊥y 轴.设P ⎝ ⎛⎭⎪⎫a ,34a +6,则Q ⎝ ⎛⎭⎪⎫0,34a +6.由直线y =34x +6,可得A (-8,0),B (0,6),∴OA =8,OB =6,∴AB=10,∴OC =OA ·OB AB =245.①当OC =OQ 时,∵OP =OP ,∴Rt △OCP ≌Rt △OQP (HL).∵OQ =OC =245,∴Q ⎝ ⎛⎭⎪⎫0,245.②当OC =PQ 时,∵OP =OP , ∴Rt △OCP ≌Rt △PQO (HL), ∴245=|a |,∴a =245或a =-245, ∴34a +6=485或125,∴Q 的坐标为⎝⎛⎭⎪⎫0,485或⎝ ⎛⎭⎪⎫0,125.综上所述,所有符合条件的点Q 的坐标为⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485 .三、19.解:(1)去分母,得4x -1-3x >3,移项、合并同类项,得x >4, 它的解集在数轴上表示如图.(2)由1+x >-2,得x >-3, 由2x -13≤1,得x ≤2.∴原不等式组的解集为-3<x ≤2. 它的解集在数轴上表示如图.20.解:由题图可知交点A 的坐标为(1,3),因为函数y =kx +b 的图象过点A (1,3)和点B (-1,0),所以⎩⎪⎨⎪⎧k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =32,b =32.又因为函数y =ax +c 的图象过点(1,3)和(0,-2),所以⎩⎪⎨⎪⎧a +c =3,c =-2,解得⎩⎪⎨⎪⎧a =5,c =-2.所以这两个一次函数的表达式分别为y =5x -2,y =32x +32.点拨:解此问题先通过图形确定两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的表达式的关键..是确定a ,c ,k ,b 的值. 21.解:(1)如图,点D 即为所求.(2)如图,过点D 作DE ⊥AB 于E , 设DC =x ,则BD =8-x .∵在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴由勾股定理得AB =AC 2+BC 2=10.∵点D 到边AC 、AB 的距离相等,∴AD 是∠BAC 的平分线. 又∵∠C =90°,DE ⊥AB ,∴DE =DC =x .在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,DC =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AE =AC =6,∴BE =4. 在Rt △DEB 中,∠DEB =90°, ∴DE 2+BE 2=BD 2, 即x 2+42=(8-x )2, 解得x =3.∴CD 的长度为3.22.证明:如图,过点D 作DF ∥AC 交BC 于点F .∵DF ∥AC ,∴∠1=∠E ,∠5=∠2. 在△DPF 和△EPC 中, ⎩⎪⎨⎪⎧∠1=∠E ,DP =EP ,∠3=∠4,∴△DPF ≌△EPC (ASA), ∴DF =EC .又∵BD =EC ,∴BD =DF , ∴∠B =∠5.又∵∠5=∠2,∴∠B =∠2, ∴AB =AC .23.解:(1)建立平面直角坐标系如图.(2)△A ′B ′C ′如图.B ′(2,1). (3)S △A ′B ′C ′=12×2×(2+2)=4.24.解:(1)日销售量的最大值为120千克.(2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上, ∴k =10.∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 的函数表达式为y =k 1x +b . ∵点(12,120),(20,0)在y =k 1x +b 的图象上,∴⎩⎪⎨⎪⎧12k 1+b =120,20k 1+b =0, 解得⎩⎪⎨⎪⎧k 1=-15.b =300.∴函数表达式为y =-15x +300.综上:y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间,∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数表达式为z =k 2x +b 1. ∵点(5,32),(15,12)在z =k 2x +b 1的图象上,∴⎩⎪⎨⎪⎧5k 2+b 1=32,15k 2+b 1=12, 解得⎩⎪⎨⎪⎧k 2=-2,b 1=42.∴函数表达式为z =-2x +42. 当x =10时,y =10×10=100,z =-2×10+42=22.销售金额为100×22=2 200(元). 当x =12时,y =120,z =-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多. 25.解:(1)设BD =2x cm ,AD =3x cm ,CD =4x cm ,则AB =5x cm ,AC =AD 2+CD 2=5x cm ,∴AB =AC ,∴△ABC 是等腰三角形.(2)∵S △ABC =12×5x ×4x =40,x >0,∴x =2,∴BD =4 cm ,AD =6 cm ,CD =8 cm ,AC =10 cm. ①当MN ∥BC 时,AM =AN , 即10-t =t , ∴t =5;当DN ∥BC 时,AD =AN ,∴t =6.∴若△DMN 的边与BC 平行,t 的值为5或6. ②∵E 为Rt △ADC 斜边上的中点,∴DE =5 cm.当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM ≠DE . 当t =4时,点M 运动到点D ,不能构成三角形.当点M 在DA 上,即4<t ≤10时,△MDE 为等腰三角形,有3种可能. 若MD =DE ,则BM =9 cm , 此时t =9.若ED =EM ,则点M 运动到点A , 此时t =10.若MD =ME =(t -4)cm , 过点E 作EF ⊥AB 于点F , ∵ED =EA ,∴DF =AF =12AD =3 cm ,在Rt △AEF 中,易得EF =4 cm. ∵BM =t cm ,BF =7 cm , ∴FM =(t -7)cm.在Rt △EFM 中,由勾股定理,得(t -4)2-(t -7)2=42, ∴t =496.综上所述,符合要求的t 的值为9或10或496.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(二)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°3.若a>b,则下列式子中正确的是()A.a+3>b+3B.﹣a>﹣bC.D.﹣3a+2>﹣3b+24.下列四组线段中,能组成三角形的是()A.1,2,3B.2,2,4C.2,4,5D.1,3,55.对假命题“若a2<b2,则a<b”举反例,可以是()A.a=﹣1,b=2B.a=﹣1,b=﹣1C.a=﹣2,b=﹣1D.a=0,b=﹣1 6.如图,已知BE=CF,AC∥DF,添加下列条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.∠B=∠DEC C.AC=DF D.∠A=∠D 7.如图,直线y=kx+b(k≠0)经过点A(0,3),且与直线y=x交于点B(1,1),则不等式kx+b>x的解为()A.x>0B.x>1C.x<1D.x<28.将一根16cm长的细铁丝折成一个等腰三角形(弯折处长度忽略不计),设腰长为xcm,底边长为ycm,则下列选项中能正确描述y与x函数关系的是()A.B.C.D.9.如图,在边长为2的等边△ABC中,点D,P分别为BC,AC的中点,点Q是AD上一动点,则△PQC的周长的最小值为()A.3B.+1C.D.10.如图,已知直线l:y=x,过点A0(1,0)作x轴的垂线交直线l于点B0,过点B0作直线l的垂线交x轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交x轴于点A2,…,按此作法继续下数,记△A0B0A1的面积为S1,△A1B1A2的面积为S2,…,△A n﹣1B n﹣1A n的面积为S n,那么S4的值为()A.3×83B.C.3D.11.若点P(a﹣1,2)在第一象限,则a的取值范围是.12.若点(﹣1,y1)和点(2,y2)是直线y=3x+1上的两个点,则y1y2(填“>”、“<”或“=”).13.如图,在△ABC中,BD是一条角平分线,CE是AB边上的高线,BD,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=9,DE=7.5,则CD的长为.15.如图,将边长为8cm的正方形ABCD沿EF折叠(E,F分别是AD,BC边上的点),使点B恰好落在CD的中点B'处,则BF的长为.16.如图,在长方形ABCD中,AB=4cm,AD=6cm,E为AB的中点.点P从点D出发,以2cm/s的速度沿D→C→B→A路线运动,运动至点A停止,运动时间为t(s).若△DEP 为等腰三角形,则t的值为.17.解一元一次不等式组.18.如图,在平面直角坐标系中,△ABC如图所示.(1)在图中,以y轴为对称轴,作△ABC的轴对称图形△A'B'C'.(2)求△ABC的面积.19.如图,在△ABC中,AB=AC,点D是△ABC内一点,且DB=DC,过点D作DE⊥AB 于点E,DF⊥AC于点F,求证:DE=DF.20.通过测量获得成年女性的脚长与身高的各组数据如下表:脚长x(cm)2222.52323.52424.5身高y(cm)150155161165169175(1)判断成年女性的身高y与脚长x是否满足或近似地满足一次函数关系.如果是,求出y关于x函数表达式.(2)若某人身高为167cm,则其脚长约为多少?21.[旧知重温]课本第64页作业题第2题:如图1,AD平分△ABC的外角∠EAC,AD∥BC,求证:△ABC是等腰三角形.证明:∵AD∥BC,∴∠DAC=∠C,∠EAD=∠B.∵AD平分∠EAC,∴∠DAC=∠EAD,∴∠B=∠C,∴AB=AC,即△ABC为等腰三角形.[拓展知新]如图2,AD平分△ABC的外角∠EAC,AF平分∠BAC交BC于点F,连结DF 交AC于点H,已知DF∥AB,求证:H为DF中点.22.周老师参加了某次半程马拉松比赛(赛程21km).若周老师从甲地出发出发,匀速前进,15分钟后,工作人员以18km/h的速度沿同一路线骑车运送一批运动饮料到距离起点9km的补给站,到达后留在原地.周老师在补给站补充能量后进行了提速并保持匀速,直至到达终点.如图是周老师和工作人员经过的路程y(km)与周老师出发时间x(h)之间的函数关系,根据图象信息回答下列问题:(1)周老师出发多久后,工作人员追上了他?(2)周老师提速后的速度是多少?(3)周老师出发多久后,在工作人员前方2km处?23.如图1,直线l:y=﹣x+6分别与x,y轴交于A,B两点,作∠ABO的角平分线交x 轴于点P.(1)写出A,B的坐标.(2)求OP的长.(3)如图2,点C为线段BP上一点,过点C作CD∥AB交x轴于点D,且CD=OB.求证:P为OD中点.参考答案1.解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.2.解:∵∠A=50°,∠B=80°,∴∠ACD=∠A+∠B=50°+80°=110°,故选:C.3.解:A、不等式a>b的两边同时加上3,不等号的方向不变,即a+3>b+3,原变形正确,故本选项符合题意.B、不等式a>b的两边同时乘﹣1,不等号的方向改变,即﹣a<﹣b,原变形错误,故本选项不符合题意.C、不等式a>b的两边同时除以5,不等号的方向不变,即>,原变形错误,故本选项不符合题意.D、不等式a>b的两边同时乘﹣3,再加上2,不等号的方向改变,即﹣3a+2<﹣3b+2,原变形错误,故本选项不符合题意.故选:A.4.解:A.∵1+2=3,∴不能组成三角形,故本选项不符合题意;B.∵2+2=4,∴不能组成三角形,故本选项不符合题意;C.∵2+4>5,∴能组成三角形,故本选项符合题意;D.∵1+3<5,∴不能组成三角形,故本选项不符合题意;故选:C.5.解:用来证明命题“若a2<b2,则a<b是假命题的反例可以是:a=0,b=﹣1,因为02<(﹣1)2,但是0>﹣1,所以D符合题意;故选:D.6.解:B:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠A=∠D,∵∠B=∠DEC,∴△ABC≌△DEF(AAS),∴不符合题意;C:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵AC=DF,∴△ABC≌△DEF(SAS),∴不符合题意;D::∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵∠A=∠D,∴△ABC≌△DEF(AAS),∴不符合题意;A:无法判定△ABC≌△DEF,∴符合题意;故选:A.7.解:如图所示:不等式kx+b>x的解为:x<1.故选:C.8.解:由已知y=16﹣2x,由三角形三边关系得:,解得:4<x<8,故选:D.9.解:如图,连接BP,与AD交于点Q,连接CQ,∵△ABC是等边三角形,AD⊥BC,∴QC=QB,∴QP+QC=QP+QB=BP,此时QP+QC最小,△PQC的周长QP+QC+PC最小,∵△ABC是一个边长为2的正三角形,点P是边AC的中点,∴∠BPC=90°,CP=1cm,∴BP==,∴△PQC的周长的最小值为+1.故选:B.10.解:∵A0B0⊥x轴交直线l于点B0,A0(1,0),直线l:y=x,∴B0(1,),OA0=1,∴A0B0=,∴∠OB0A0=30°,∠B0OA0=60°,∵A1B0⊥l,∴∠OB0A1=90°,∴∠A0B0A1=60°,∴A0A1=×=3,∴S1=•A0B0•A0A1=××3=,OA1=1+3=4,∴A1(4,0),∵A1B1⊥x轴交直线l于点B1,A1(4,0),直线l:y=x,∴B1(4,4),∴A1B1=4,∴∠OB1A1=30°,∠B1OA1=60°,∵A2B1⊥l,∴∠OB1A2=90°,∴∠A1B1A2=60°,∴A1A2=×4=12,∴S2=•A1B1•A1A2=×4×12=24,OA2=4+12=16,同理可得,S3=×16×48=384,S4=×163,故选:B.11.解:∵点P(a﹣1,2)在第一象限,∴a﹣1>0,∴a>1,故答案为:a>1.12.解:∵y=3x+1,k=3>0,∴y随x的增大而增大,∵点(﹣1,y1)和N(2,y2)是直线y=3x+1上的两个点,﹣1<2,∴y1<y2,故答案为:<.13.解:∵CE是AB边上的高线,∴∠CEB=90°,∵∠EFB=60°,∴∠EBF=30°,∵∠EBD+∠A=∠BDC=70°∴∠A=∠BDC﹣∠EBD=70°﹣30°=40°,故答案为:40°.14.解:∵CD⊥AB于D,E是AC的中点,∴DE=AE=EC,∵AD=9,DE=7.5,∴AC=15,∴在Rt△ADC中AD2+DC2=AC2,即DC2=AC2﹣AD2=225﹣81=144,故DC=12.故答案为:12.15.解:∵点B'是CD中点,∴B'C=DB'=4cm,∵将边长为8cm的正方形ABCD沿EF折叠,∴BF=B'F,∵F'B2=CF2+B'C2,∴BF2=(8﹣BF)2+16,∴BF=5,故答案为:5cm.16.解:①若ED=EP,点P与C重合,∵AB=4cm,∴CD=DP=4cm,∴t==2;②如图,若EP=DP,设PC=xcm,则BP=(6﹣x)(cm),∵EB2+BP2=EP2,CP2+CD2=PD2,∴22+(6﹣x)2=x2+42,解得x=2,∴DC+PC=4+2=6(cm).∴t==3;③如图,若ED=DP,∵AD=6cm,AE=2cm,∴DE===2(cm),∴DP=2(cm),∴PC==2(cm),∴DC+PC=(4+2)(cm),∴t==2+.综合以上可得t的值为2或3或2+.故答案为:2或3或2+.17.解:,由①得,x>1,由②得,x<5,∴原不等式组的解集是1<x<5.18.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积=2×3﹣1×2﹣1×3﹣×1×2=6﹣1﹣﹣1=.19.证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.20.解:(1)身高y与脚长x满足或近似地满足一次函数关系,通过描点发现y与x的关系对应图象成一条直线,近似满足一次函数关系,设y与x的关系为:y=kx+b,将(22,150),(22.5,155)代入,得:,解得:,∴一次函数关系式为:y=10x﹣70,将其它点代入,发现都成立;(2)当y=167时,代入函数关系式,10x﹣70=167,解得:x=23.7,即脚长为23.7厘米.21.证明:∵AF平分∠BAC,∴∠BAF=∠CAF,∵AB∥DF,∴∠BAF=∠AFH,∴∠CAF=∠AFH,∴HA=HF,同理HA=HD,∴HD=HF,即H为DF中点.22.解:(1)直线EF:y=18(x﹣0.25)=18x﹣4.5,由题意:点A坐标为(1,9),∴OA:y=9x,方程组,解得:,∴周老师出发0.5小时后,工作人员追上了他;(2)提速后,速度为==10(km/h),答:周老师提速后的速度是10km/h;(3)①工作人员出发前:(h);②工作人员出发后,为追上周老师:设周老师出发x小时,在工作人员前方2km,则9x﹣(18x﹣4.5)=2,解得:x=;③工作人员达到补给站后:10(x﹣1)=2,解得:x=,答:周老师出发或或后,在工作人员前方2km处.23.(1)解:在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=8,令x=0,则y=6,∴A点的坐标为(8,0),B点的坐标为(0,6);(2)解:如图1,过P作PQ⊥AB于Q,∵BP平分∠ABO,∠BOP=90°,∴PQ=PO,∵PB=PB,∴Rt△PBO≌Rt△PBQ(HL),∴BQ=OB=6,∵AB==10,∴AQ=4,设OP=x,则PQ=PO=x,∵AP2=PQ2+AQ2,∴(8﹣x)2=x2+42,∴x=3,∴OP=3;(3)证明:过D作DE∥OB交BP的延长线于E,则∠OBP=∠DEP,∵AB∥CD,∴∠PCD=∠PBA,∵∠PBA=∠OBP,∴∠PCD=∠OBP,∴∠PCD=∠DEP,∴CD=ED,∵CD=OB,∴DE=DB,在△OPB与△DPE中,,∴△OPB≌△DPE(AAS),∴OP=DP,∴P为OD中点.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(三)一、选择题(80分)1.(2019·模拟·江苏苏州市吴中区)如图,内接于圆O,∠OAC=25∘,则∠ABC的度数为( )A.B.115∘C.D.125∘2.(2020·同步练习·天津天津市)如图,点A表示的实数是( )A.√3B.C.−√3D.−√53.(2019·期中·浙江温州市鹿城区)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图()所示).图()由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若,则S1+S2+S3的值是( )A.B.38C.48D.804.(2019·期末·云南昆明市官渡区)如图,在中,,∠BAC=45∘,BD⊥AC,垂足为D点,平分∠BAC,交于点F交于点E,点为AB的中点,连接DG,交AE于点,下列结论错误的是( )A.B.HE=BE C.AF=2CE D.DH=DF 5.(2019·期中·天津天津市和平区)如图,四边形ABCD,,,点E在边AB上,且AD=AE,BE=BC,则的值为A.√2B.C.√22D.126.(2018·期中·江苏无锡市锡山区)等腰三角形一个角为,则这个等腰三角形的顶角可能为( )A.B.65∘C.80∘D.或80∘7.(2020·单元测试)如图,在△ABC和中,点在边BD上,边交边BE于点.若AC=BD,AB=ED,BC=BE,则∠ACB等于A.∠EDB B.∠BED C.12∠AFB D.2∠ABF 8.(2019·期中·河北石家庄市新华区)如图,在和△OCD中,,OC=OD,OA>OC,,连接,BD交于点M,连接OM.下列结论:① AC=BD;② ∠AMB=40∘;③ OM平分∠BOC;④ MO平分∠BMC,其中正确的个数为A.4B.C.D.19.(2017·期中·天津天津市和平区)如图,在平面直角坐标系中,为坐标原点,四边形ABCD是矩形,顶点,,C,D的坐标分别为(−1,0),,(5,2),,点E(3,0)在x轴上,点P在CD边上运动,使为等腰三角形,则满足条件的P点有A.3个B.4个C.5个D.个10.(2020·期中·江苏苏州市相城区)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重合的四边形EFGH,EH=12cm,EF=16cm,则边的长是A.12cm B.16cm C.D.24cm 11.(2017·期末·江苏苏州市昆山市)如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且过点A作AB⊥x轴于点B,将△ABO绕点逆时针旋转60∘得到,则点C的坐标为A.(−√3,2)B.(−√3,1)C.(−2,√3)D.(−1,√3) 12.(2020·单元测试·上海上海市)如图,已知在△ABC,中,∠BAC=∠DAE=90∘,,AD=AE,点,,E三点在同一条直线上,连接,.以下四个结论:① BD=CE;② ;③ BD⊥CE;④ ∠BAE+∠DAC=180∘.其中结论正确的个数是( )A.B.C.3D.13.(2019·期中·江苏徐州市新沂市)如图,在△ABC中,∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边的中点,CD=CF,则( )A.125∘B.C.175∘D.14.(2018·期中·广东深圳市)如果三角形满足有一个角是另一个角的倍,那么我们称这个三角形为完美三角形.下列各组数据中,能作为一个完美三角形三边长的一组是( )A.2,,2B.1,,√2C.2,,2√3D.1,,215.(2019·模拟·浙江温州市苍南县)如图,的半径为2√3,四边形为⊙O的内接矩形,AD=6,M为中点,E为⊙O上的一个动点,连接,作DF⊥DE交射线EA于,连接MF,则MF的最大值为( )A.B.6+√57C.2√3+√61D.16.(2017·期中·天津天津市红桥区)如图,点是△ABC外的一点,PD⊥AB于点,PE⊥AC于点,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70∘,则∠BPC的度数为A.B.30∘C.35∘D.17.(2020·专项)如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90∘.在上取一点,以为折痕,使的一部分与BC重合,点A与延长线上的点重合,则DE的长度为( )A.6B.C.2√3D.√318.(2018·期末·江苏苏州市张家港市)如图,矩形ABCD中,AB=2,,对角线的垂直平分线分别交AD,于点E,,连接CE,则△DCE的面积为( )A.5B.C.2D.119.(2020·同步练习·上海上海市)已知三角形的两边长分别为和9cm,则下列长度的四条线段中能作为第三边的是A.13cm B.6cm C.5cm D20.(2019·模拟·天津天津市和平区)如图,四边形中,DC∥AB,BC=1,AB=AC=AD=2,则的长为( )A.B.√14C.√15D.3√2二、填空题(30分)x+4交轴于点A,交轴于21.(2019·期末·广东佛山市禅城区)如图,直线y=43点,点为线段OB上一点,将△ABC沿着直线翻折,点B恰好落在轴上的处,则△ACD的面积为.22.(2019·期中·浙江温州市龙湾区)如图,△ABC中,,∠BAC=120∘,是边上的中线,且BD=BE,则是度.23.(2020·单元测试·上海上海市)如图,在直角坐标系中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,A n B n C n C n−1的顶点A1,,A3,⋯,均在直线上,顶点C1,C2,C3,,C n在x轴上,若点的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.24.(2019·单元测试)如图,正方形ABDE,CDFI,EFGH的面积分别为,9,16,,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=.25.(2020·专项·上海上海市闵行区)如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.26.(2019·期中·江苏苏州市常熟市)如图,在△ABC中,ED∥BC,∠ABC和的平分线分别交ED于点G,,若BE=6,DC=8,DE=20,则.三、解答题(40分)27.(2021·专项)如图,等腰直角△ABC的斜边AB在轴上且长为,点在轴上方.矩形ODEF中,点D,F分别落在,轴上,边OD长为2,长为,将等腰直角△ABC沿x轴向右平移得等腰直角△AʹBʹCʹ.(1) 当点Bʹ与点D重合时,求直线AʹCʹ的解析式;(2) 连接CʹF,CʹE.当线段和线段之和最短时,求矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积;(3) 当矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积为 2.5时,求直线AʹCʹ与轴交点的坐标.(本问直接写出答案即可)28.(2019·单元测试·黑龙江哈尔滨市香坊区)如图,在△ABC中,∠C=90∘,是∠BAC的平分线,DE⊥AB于点E,点在上,BD=DF.求证:(1) CF=EB;(2) AB=AF+2EB.29.(2019·期末·广东佛山市高明区)如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,,B(−2,1),.(1) 作出关于轴对称的△A1B1C1;(2) 写出△A1B1C1的各顶点的坐标;(3) 求△ABC的面积.30.(2018·期末·江苏苏州市)已知:Rt△ABC中,∠BAC=90∘,,点是BC的中点,点是BC边上的一个动点.(1) 如图①,若点与点重合,连接,则与BC的位置关系是;(2) 如图②,若点P在线段上,过点作BE⊥AP于点E,过点作CF⊥AP于点,则CF,和EF这三条线段之间的数量关系是;(3) 如图③,在(2)的条件下若的延长线交直线于点M,找出图中与相等的线段,并加以证明;(4) 如图④,已知BC=4,AD=2,若点P从点出发沿着BC向点运动,过点B作BE⊥AP于点,过点作CF⊥AP于点F,设线段的长度为,线段的长度为d2,试求出点P在运动的过程中d1+d2的最大值.答案一、选择题1. 【答案】B【解析】∵OA=OC,∠OAC=25∘,,由圆周角定理得,∠ABC=(360∘−130∘)÷2=115∘,故选:B.【知识点】等腰三角形的性质、三角形的内角和、圆周角定理及其推理2. 【答案】D【知识点】勾股定理、在数轴上表示实数3. 【答案】C【解析】因为八个直角三角形全等,四边形,EFGH,MNKT是正方形,所以CG=KG,CF=DG=KF,所以S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,所以S2=GF2=EF2,S3=(KF−NF)2=KF2+NF2−2KF⋅NF,所以.【知识点】勾股定理4. 【答案】A【解析】∵∠BAC=45∘,,∴∠CAB=∠ABD=45∘,,∵AB=AC,平分,BC,∠CAE=∠BAE=22.5∘,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90∘,且∠C+∠DBC=90∘,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90∘,∴△ADF≌△BDC(AAS),,故选项C不符合题意;∵点为的中点,AD=BD,∠ADB=90∘,,∴AG=BG,DG⊥AB,∠AFD=67.5∘,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意;连接BH,∵AG=BG,DG⊥AB,,∴∠HAB=∠HBA=22.5∘,∴∠EHB=45∘,且,∴∠EHB=∠EBH=45∘,∴HE=BE,故选项B不符合题意.【知识点】等腰三角形的判定、等腰三角形“三线合一”5. 【答案】B【解析】过点A作AF⊥BC于点,∵∠D=∠C=90∘,四边形是矩形,,AF=CD,设AE=x,BE=y,则AB=x+y,∵AD=AE,,∴BF=BC−CF=BC−AD=y−x,∵CD=2,∴AF=CD=2,在Rt△ABF中,根据勾股定理可得22+(y−x)2=(x+y)2,解得xy=1,∴AE⋅BE=1.【知识点】矩形的判定、勾股定理6. 【答案】D【解析】分两种情况:当角为等腰三角形的顶角时,此时等腰三角形的顶角;当50∘角为等腰三角形的底角时,此时等腰三角形的顶角为:180∘−50∘×2=80∘,综上,等腰三角形的顶角为50∘或80∘.【知识点】等腰三角形的性质、三角形的内角和7. 【答案】C【解析】在和△DEB中,{AC=DB,AB=DE,BC=EB,(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,.【知识点】边边边8. 【答案】B【解析】∵∠AOB=∠COD=40∘,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB,∠AOC=∠BOD, OC=OD,∴△AOC≌△BOD(SAS),,,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40∘,②正确;作OG⊥MC于,OH⊥MB于,如图所示:则∠OGC=∠OHD=90∘,在△OCG和△ODH中,,∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,当∠DOM=∠AOM时,OM才平分∠BOC,假设,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,∴∠COM=∠BOM,在△COM和中,{∠COM=∠BOM,OM=OM,∠CMO=∠BMO,,∴OB=OC,,∴OA=OC,与矛盾,∴③错误.正确的个数有3个.【知识点】角边角9. 【答案】A【知识点】等腰三角形的判定10. 【答案】C【解析】如图所示,由折叠过程可知:,∠MEF=∠BEF,∵∠AEH+∠AHE=90∘,∠HEM+∠MEF=90∘,∴∠MEF=∠BEF=∠AHE,同理可得∠EHM=∠DGH=∠GFN,∴∠HEM=∠FGN;在与△GFN中,{∠HME=∠FNG,EM=NG,∠HEM=∠FGN,,∴NF=HM=AH=FC,,在Rt△EFH中,由勾股定理知EH2+EF2=HF2=AD2,.【知识点】折叠问题、对应边相等、角边角、勾股定理11. 【答案】D【解析】作CH⊥x轴于H点,如图,设,∴n=√3m,∴tan∠AOB=ABOB=√3,∴∠AOB=60∘,∵OA=4,∴OB=2,,∵△ABO绕点B逆时针旋转60∘,得到△CBD,,∠ABC=60∘,∴∠CBH=30∘,BC=√3,BH=√3CH=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,点坐标为(−1,√3).【知识点】坐标平面内图形的旋转变换、正切、正比例函数的图象12. 【答案】D【解析】如图:① ∵∠BAC=∠DAE=90∘,,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(),∴BD=CE①正确;② ∵∠BAC=90∘,AB=AC,∴∠ABC=45∘,∴∠ABD+∠DBC=45∘.∴∠ACE+∠DBC=45∘,②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90∘,∴∠ABD+∠AFB=90∘,.∵∠DFC=∠AFB,,∴∠FDC=90∘.∴BD⊥CE,∴③正确;④ ∵∠BAC=∠DAE=90∘,∠BAC+∠DAE+∠BAE+∠DAC=360∘,∴∠BAE+∠DAC=180∘,故④正确.所以①②③④都正确,共计4个.【知识点】等腰直角三角形、边角边13. 【答案】C【解析】,为边AC的中点,,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60∘,∵∠B=50∘,∴∠BCD+∠BDC=130∘,和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65∘,∴∠CED=115∘,.【知识点】直角三角形斜边的中线、等边三角形三个角相等,都等于60°14. 【答案】C【解析】A、若三边为,2,2,则此三边构成等边三角形,三个角相等,所以这个三角形不是“完美三角形”,所以A选项不符合题意;B、若三边为1,,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“完美三角形”,所以B选项不符合题意;C、若三边为2,,,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“完美三角形”,所以C选项符合题意;D、若三边为,,,由于12+(√3)2=22,此三边构成一个直角三角形,最小角为30∘,所以这个三角形不是“完美三角形”,所以D选项不符合题意.故选:C.【知识点】30度所对的直角边等于斜边的一半、勾股逆定理15. 【答案】B【解析】如图,连接AC交BD于点,以AD为边向上作等边△ADJ,连接JF,,JD,JM.四边形是矩形,∴∠ADC=90∘,,AC=4√3,∴sin∠ACD=ADAC =4√3=√32,∴∠ACD=60∘,,∵DF⊥DE,,∴∠EFD=30∘,是等边三角形,∴∠AJD=60∘,∴∠AFD=12∠AJD,∴点的运动轨迹是以J为圆心JA为半径的圆,当点F在MJ的延长线上时,FM的值最大,此时,JM=√(4√3)2+32=√57,∴FM的最大值为6+√57.【知识点】勾股定理、圆周角定理及其推理16. 【答案】C【解析】在Rt△BDP和Rt△BFP中,{PD=PF, BP=BP,∴Rt△BDP≌Rt△BFP(HL),,在Rt△CEP和Rt△CFP中,{PE=PF,PC=PC,,∴∠ACP=∠FCP,∵∠ACF是的外角,,两边都除以2,得:12∠ABC+12∠BAC=12∠ACF,即∠PBC+12∠BAC=∠FCP,∵∠PCF是△BCP的外角,,∴∠BPC=12∠BAC=12×70∘=35∘.【知识点】斜边、直角边17. 【答案】C【知识点】勾股定理18. 【答案】B【解析】因为四边形ABCD是矩形,所以,AD=BC=4,因为是AC的垂直平分线,所以AE=CE,设CE=x,则ED=AD−AE=4−x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4−x)2,,解得:x=52即CE的长为5,,2所以△DCE的面积.【知识点】矩形的性质、垂直平分线的性质、勾股定理19. 【答案】B【知识点】三角形的三边关系20. 【答案】C【解析】过点C作的垂线交于点G,作AF⊥BC交BC于点F,作交BA的延长线于点E,,AB=AC=AD=2,,∴CF=12∴AF=√AC2−CF2=√15.2又,,∴CG=√154∴AG=√AC2−CG2=7,,∵DE⊥AB,CG⊥AB,,又∵CD∥AB,∠CGE=90∘,∴四边形是矩形,,∴DE=CG=√154又,∠CGA=∠DEA=90∘,∴△DEA≌△CGA(HL),∴EA=AG,,∴BE=2AG+BG=154。

浙教版八年级(上)期末数学试题(含答案)

浙教版八年级(上)期末数学试题(含答案)

浙教版八年级(上)数学期末试卷一、细心选一选(本题有10个小题,每小题3分,共30分)1.如图,直线a//b ,且a 、b 被直线c 所截.已知∠l=50°, ∠2= 48°,则∠3的度数是 ( )A. 98°B. 102°C. 130°D.无法确定2.化简2)2(-的结果是( )A. -2B.±2C.2 D 、43.以下各组数据能作为直角三角形三边长的是( ) A.2,1,5 B. 5,11,12 C.6,12,13 D.3,4,54.如图,1个长方体和1个圆柱体按如图所示的方式摆放在桌面上,其左视图是( )5.班里选举班长,采用全班无记名投票的方式民主选举,选举结果主要依据是( )A..平均数B.中位数C.众数D.方差6.小明向大家介绍自己家的位置,其表述正确的是 ( )A.在学校的正南方向B.距学校300米处C.在学校正南方向300米处D.在正南方向300米处7.已知等腰三角形ABC 的底边BC=5,且BC AC -=2,那么腰AC 的长为( )A. 3B. 3或7C. 7D. 4或78.如图, ∠ABC=∠ADC=Rt ∠,E 是AC 的中点,则( )A. ∠l>∠2B. ∠l=∠2C. ∠1<∠2D. ∠l 与∠2大小关系不能确定9.如图,把一长方形纸片ABCD 沿EG 折叠后,点A 、B 分别落在A'、B'的位置上,EA'与 BC 相交于点F ,已知∠1=130°,则∠2的度数是( )A. 40°B. 50°C. 65°D. 80°10.如图中的图象(折线ABCDE)描述了一汽车在某一直线道路上的行驶过程中,汽车离出发地的距离s(干米)和行驶①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时; ③汽车在整个行驶过程中的平均速度为80/3千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.A. 1个B. 2个C. 3个D. 4个二、认真填一填{本题共6小题,每小题4分,共24分)11、现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为=0.32米2,S 乙2=0.26米2,则身高较整齐的球队是 队。

浙江省八年级数学上学期期末试卷(含解析)浙教版

浙江省八年级数学上学期期末试卷(含解析)浙教版

八年级(上)期末数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.三根木条的长度如图,能组成三角形的是()A.B.C.D.2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)3.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b| D.由a>b,得a2>b24.若点P(a,4﹣a)是第二象限的点,则a必须满足()A.a<4 B.a>4 C.a<0 D.0<a<45.点A(﹣4,0)与点B(4,0)是()A.关于y轴对称 B.关于x轴对称C.关于坐标轴都对称 D.以上答案都错6.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80° C.70° D.50°8.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.310.若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7二、认真填一填(本题有6小题,每小题4分,共24分)11.“x减去y不大于﹣4”用不等式可表示为.12.函数y=中自变量x的取值范围是.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.若直角三角形的两个锐角之差为25°,则较小角的度数为.15.如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是.16.在平面直角坐标系xOy中,有点A(2,1)和点B,若△AOB为等腰直角三角形,则点B的坐标为.三、解答题(本大题有8小题,共66分)17.已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(﹣2,﹣3).画出示意图,然后写出其他各顶点的坐标.18.在直角三角形ABC中,∠C=90°,AB=5,BC=3.求斜边上的高线及中线的长.19.已知线段a,c(如图),用直尺和圆规作Rt△ABC,使∠C=Rt∠,BC=a,AB=c.(温馨提醒:1.请保留作图痕迹,不用写作法;2.如果用直尺和圆规无法作出符合条件的图形时,用三角板、量角器等工具画图,分数也可得5分)20.解不等式组(1)5x+3<3(2+x)(2).21.一次函数y=kx+4的图象过点(﹣1,7).(1)求k的值;(2)判断点(a,﹣3a+4)是否在该函数图象上,并说明理由.22.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AM B=70°,求∠N的度数.23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段以期待达到节水的目的,图是此区自来水厂对居民某月用水量x吨与水费y元的函数图象(水费按月结算).(1)填空价目表(2)若某户居民9月份用水量为9.5吨,求该用户9月份水费;(3)若某户居民10月份水费30元,求该用户10月份用水量;(4)若某户居民11月、12月共用水18吨,其中11月用水a(吨),用含a的代数式表示该户居民11月、12月共应交水费Q(元).参考答案与试题解析一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.三根木条的长度如图,能组成三角形的是()A.B.C.D.【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,可选出答案.【解答】解:A、2+2=4<5,不能构成三角形,故此选项错误;B、2+2=4,不能构成三角形,故此选项错误;C、2+3=5,不能构成三角形,故此选项错误;D、2+2=5>4,能构成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)【考点】点的坐标.【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b| D.由a>b,得a2>b2【考点】不等式的性质.【专题】应用题.【分析】根据不等式的性质判断即可.要注意选项C中a,b的正负性.【解答】解:A、由a>b,得a﹣2>b﹣2,故选项错误;B、由a>b,得﹣2a<﹣2b,故选项正确;C、a>b>0时,才有|a|>|b|,0>a>b时,有|a|<|b|,故选项错误;D、1>a>b>0时,a2<b2,故选项错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.若点P(a,4﹣a)是第二象限的点,则a必须满足()A.a<4 B.a>4 C.a<0 D.0<a<4【考点】点的坐标.【分析】根据点P在第二象限内,那么点的横坐标<0,纵坐标>0,可得到关于a的两不等式,求a的范围即可.【解答】解:∵点P(a,4﹣a)是第二象限的点,∴a<0,4﹣a>0,解得:a<0.故选C.【点评】本题主要考查了平面直角坐标系中各个象限内点的坐标的符号特点及不等式的解法,牢记四个象限的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.点A(﹣4,0)与点B(4,0)是()A.关于y轴对称 B.关于x轴对称C.关于坐标轴都对称 D.以上答案都错【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:点A(﹣4,0)与点B(4,0)是关于y轴对称,故选:A.【点评】本题考查了关于y轴对称的点的坐标,关于y轴对称的点的横坐标互为相反数,纵坐标相等.6.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)【考点】一次函数图象与几何变换;正比例函数的性质.【分析】根据平移性质可由已知的解析式写出新的解析式.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=2(x﹣2).故选C.【点评】能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx ±|b|.7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80° C.70° D.50°【考点】三角形的外角性质;三角形内角和定理.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【点评】本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.8.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3【考点】两条直线相交或平行问题.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.10.若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.二、认真填一填(本题有6小题,每小题4分,共24分)11.“x减去y不大于﹣4”用不等式可表示为x﹣y≤﹣4 .【考点】由实际问题抽象出一元一次不等式.【分析】x减去y即为x﹣y,不大于即≤,据此列不等式.【解答】解:由题意得,x﹣y≤﹣4.故答案为:x﹣y≤﹣4.【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.函数y=中自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1≠0,解得x≠.故答案为:x≠.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是∠APO=∠BPO等(只写一个即可,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP.【解答】解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO等.【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.14.若直角三角形的两个锐角之差为25°,则较小角的度数为32.5°.【考点】直角三角形的性质.【分析】根据直角三角形中两锐角和为90°,再根据两个锐角之差为25°,设其中一个角为x,则另一个为90°﹣x,即可求出最小的锐角度数.【解答】解:∵两个锐角和是90°,∴设一个锐角为x,则另一个锐角为90°﹣x,∵一个直角三角形两个锐角的差为25°,得:90°﹣x﹣x=25°,得:x=32.5°,∴较小的锐角的度数是32.5°.故答案为:32.5°.【点评】本题考查了直角三角形的性质,两锐角和为90°,关键是根据两锐角的关系设出未知数,列出方程.15.如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是﹣2≤a≤2 .【考点】坐标与图形性质;一次函数的性质;矩形的性质.【专题】压轴题;动点型.【分析】P点在x轴上,根据对称性,求出在一边的最远距离后便可求出取值范围.【解答】解:连接QC延长与x轴相交于P1,根据中位线定理可知OP1=2,连接QD延长与x轴交于点P2,则OP2=2,所以实数a的取值范围是﹣2≤a≤2.故答案为:﹣2≤a≤2.【点评】主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式有机的和图形结合起来求解的方法.关键是找到最大值和最小值.16.在平面直角坐标系xOy中,有点A(2,1)和点B,若△AOB为等腰直角三角形,则点B的坐标为(1,﹣2),(﹣1,2),(3,﹣1),(1,3),(,﹣)或(,).【考点】等腰直角三角形;坐标与图形性质.【分析】首先画出坐标系,分别以O为直角顶点,B为直角顶点,A为直角顶点,利用坐标系找出B 点坐标,注意要细心,不要漏解.【解答】解:如图所示,故答案为:(1,﹣2),(﹣1,2),(3,﹣1),(1,3),(,﹣)或(,).【点评】此题主要考查了坐标与图形,以及勾股定理逆定理的应用,关键是要分类讨论,不要漏解.三、解答题(本大题有8小题,共66分)17.已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(﹣2,﹣3).画出示意图,然后写出其他各顶点的坐标.【考点】坐标与图形性质.【专题】作图题.【分析】根据题意可以画出相应的长方形、建立合适的坐标系,写出各点的坐标.【解答】解:由题意可得,如下图所示,点A的坐标为(﹣2,﹣3),则其他各点的坐标是:B(4,﹣3)、C(4,1)、D(﹣2,1).【点评】本题考查坐标与图形的性质,是一道开放性的题目,解题的关键是画出符合要求的图形,写出相应的各点的坐标,注意画出的图形不同,写出的点的坐标也不相同.18.在直角三角形ABC中,∠C=90°,AB=5,BC=3.求斜边上的高线及中线的长.【考点】勾股定理.【分析】根据直角三角形的性质可求斜边上中线的长,根据勾股定理求得AC的长,再根据面积公式求得斜边上的高线的长.【解答】解:∵在直角三角形ABC中,∠C=90°,AB=5,BC=3,∴斜边上中线的长=AB=2.5,根据勾股定理,得:AC==4,三角形的面积是×3×4=6,AB边上的高为=2.4.【点评】本题考查了勾股定理,熟练运用勾股定理进行计算.注意:直角三角形的面积等于两条直角边的乘积的一半;直角三角形的斜边上的高等于两条直角边的乘积除以斜边.19.已知线段a,c(如图),用直尺和圆规作Rt△ABC,使∠C=Rt∠,BC=a,AB=c.(温馨提醒:1.请保留作图痕迹,不用写作法;2.如果用直尺和圆规无法作出符合条件的图形时,用三角板、量角器等工具画图,分数也可得5分)【考点】作图—复杂作图.【分析】先在直线m上截取CB=a,再过点C作直线m的垂线n,然后以点B为圆心,c长为半径作弧交直线n于点A,则△ABC为所作.【解答】解:如图,△ABC为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.解不等式组(1)5x+3<3(2+x)(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)去括号得,5x+3<6+3x,移项得,5x﹣3x<6﹣3,合并同类项得,2x<3,把x的系数化为1得,x<;(2),由①得,x>,由②得,x≤4,故不等式组的解集为:<x≤4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.一次函数y=kx+4的图象过点(﹣1,7).(1)求k的值;(2)判断点(a,﹣3a+4)是否在该函数图象上,并说明理由.【考点】一次函数图象上点的坐标特征.【分析】(1)将已知点坐标代入一次函数解析式中即可求出k的值;(2)把点(a,﹣3a+4)代入解析式即可判断.【解答】解:(1)把x=﹣1,y=7代入y=kx+4中,可得:7=﹣k+4,解得:k=﹣3,(2)把x=a代入y=﹣3x+4中,可得:y=﹣3a+4,所以点(a,﹣3a+4)在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AMB=70°,求∠N的度数.【考点】全等三角形的判定与性质.【分析】(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.【解答】解:(1)在△ABC和△DCB中,,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形,∴∠N=∠BMC,∵∠AMB=70°,∴∠N=∠BMC=110°.【点评】此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【考点】勾股定理;全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS 得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.【点评】本题考查三角形全等的判定方法,及勾股定理的运用.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段以期待达到节水的目的,图是此区自来水厂对居民某月用水量x吨与水费y元的函数图象(水费按月结算).(1)填空价目表(2)若某户居民9月份用水量为9.5吨,求该用户9月份水费;(3)若某户居民10月份水费30元,求该用户10月份用水量;(4)若某户居民11月、12月共用水18吨,其中11月用水a(吨),用含a的代数式表示该户居民11月、12月共应交水费Q(元).【考点】一次函数的应用.【专题】应用题.【分析】(1)利用函数图象,用水量除以总水费可得各阶段的水费单价;(2)9月份用水量为9.5吨,用水量超出6吨不超出10吨的部分,则前面6吨缴12元,超过的3.5吨按4元每吨缴费;(3)10月份水费30元,说明用水量超过10吨,前面10吨的费用为28元,超过10吨部分按每吨8元缴费,于是设该用户10月份用水量为x吨得到28+8(x﹣10)=30,然后解方程即可;(4)分类讨论:当0≤a≤6、6<a≤8、8<a≤10、10<a≤12、12<a≤18,确定11月和12月用水量在哪个阶段,然后乘以对应的水价表示出每个月的水费,再把两个月的水费相加即可.【解答】解:(1)12÷6=2,(28﹣12)÷(10﹣6)=4,(40﹣28)÷(11.5﹣10)=8,所以用水量不超出6吨时,每吨2元;用水量超出6吨不超出10吨时,每吨4元;用水量超出10吨时,每吨8元;故答案为2,4,8;(2)该用户9月份水费=12+4(9.5﹣6)=26(元);(3)设该用户10月份用水量为x吨,28+8(x﹣10)=30,解得x=10.25(吨),即该用户10月份用水量为10.25钝;(4)11月用水a(吨),12月用水(18﹣a)吨,当0≤a≤6时,Q=2a+28+8(18﹣a﹣10)=﹣6a+92;当6<a≤8时,Q=12+4(a﹣6)+28+8(18﹣a﹣10)=﹣4a+80;当8<a≤10时,Q=12+4(a﹣6)+12+4(18﹣a﹣6)=48;当10<a≤12时,Q=28+8(a﹣10)+12+4(18﹣a﹣6)=4a+8;当12<a≤18时,Q=28+8(a﹣10)+2(18﹣a)=6a﹣16,【点评】本题考查为一次函数的应用:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.解决(4)小题时要同时考虑11月和12月的用水量的范围.21。

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期末数学检测试卷
一.、精心选一选(请把正确答案前的大写字母填在相应题后的括号内。

每小题3分,共21分)
1.下列各点中,在第三象限的点是 ( )
A. ( -2 , -3 )
B.(-2 , 3 )
C.( 2 ,-3 )
D. ( 2 , 3 )
2. 等腰三角形的腰长是5cm ,则它的底边不可能...
是( ) A .10cm B .9cm C . 5cm D .3cm
3.下列条件中使两个直角三角形全等的条件是 ( )
A . 两条直角边对应相等
B . 两锐角对应相等
C . 一条边对应相等
D .一锐角对应相等
4、一元一次不等式组1x a x >⎧⎨>-⎩
的解集为x>a ,且a ≠-1,则a 取值范围是( )。

A 、a>-1 B 、a<-1 C 、a>0 D 、a<0
5、等边三角形绕中心按顺时针旋转最小角度是( )时,图形与原图形重合.
6. 如果ab <0,那么下列判断正确的是( )。

A .a <0,b <0
B . a >0,b >0
C . a ≥0,b ≤0
D . a <0,b >0或a >0,b <0
7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水)。

在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系的图象大致为( )
A. B. C. D.
二、仔细填一填(每小题4分,共20分)
8.若关于x 的不等式组0,122
x a x x +⎧⎨->-⎩≥有解,则写出符合条件的一个a 的值__________ 9.小明骑自行车的速度是15千米/时,步行的速度是6千米/时。

若小明先骑自行车1小
时,然后又步行2小时,那么他的平均速度是千米/时。

10.如图,等边△ABC的边长为2 cm,D、E分别是AB、AC上的点,将△ADE沿直线DE 折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为cm.
11. 根据指令[s,A] (s≥0, 00<A<1800), 机器人在平面上能完成下列动作: 先原地逆时针旋转角度A, 再朝其面对的方向沿直线行走距离s. 现机器人在直角坐标系的坐标原点, 且面对x轴正方向.
(1) 若给机器人下了一个指令[6,600],则机器人应移动到点;
(2)请你给机器人下一个指令 , 使其移动到点 (-4,4)。

12. 如图,已知∠AOB=80°,在射线OA、OB上分别取OA= OB1,连结AB1,在AB1、B1B
上分别取点A
1、B
2
,使A
1
B1= B1 B
2
,连结A
1
B
2
…,按此规律下去,记∠A
1
B1 B
2
=θ1 ,
∠A2B2B3 =θ2,…,∠A n B n B n+1 =θn ,则θ2= ;θ2013= 。

三、认真解一解(本大题共6小题,共46分)
13、(8分)解下列不等式(组),并把解集表示在数轴上。

(1)2
4
x
+

3
1
2-
x
(2)
⎪⎩




-
-
>
+
5
2
1
3
7
2
x
x
x
A
B C
D
E
A′
(第15题图)
(第18题图)
14.(8分)如图:△ABC 中,AD 是高,CE 是中线,G 是CE 的中点,DG ⊥CE ,G 为垂足。

请说明下列结论成立的理由:
(1)DC =BE ; (2)∠B =2∠BCE 。

15、一牧童在A 处牧马,牧童的家在B 处,A 、B 处距河岸
的距离分别是AC=500m ,BD=700m ,且C 、D 两地间距离
也为500m ,天黑前牧童从A 点将马牵到河边去饮水,
再赶回家,为了使所走的路程最短。

(1)牧童应将马赶到河边的什么地点?请你在图中画出来(4分),
(2)请你求出他至少要走的路程。

(6分)
16.某班有住宿生若干人,住若干间宿舍,若每间住4人,则余20人无宿舍住;若每间
住8人,则有一间宿舍不空也住不满。

求该班的住宿人数和宿舍间数.
A B C
D
E G C A D B
17.如图,小刚准备测量一条河的深度,他把一根竹竿插到离岸边1.5米远的水底,竹竿
高出水面0.5米,再把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐;请计算并推断河水的深度为几米?
16. (10分) 某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),月租费是 元;
(2)分别求出①,②两种收费方式中y 与自变量x 之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议。

17.(10分)如右上图:一次函数y =-4
3x+6的图象与x 轴和y 轴分别交于点A 和B ,再将△AOB
沿直线CD 对折,使点A 与点B 重合。

直线CD 与x 轴交于点C,与AB 交于点D 。

(1)点A 的坐标为 ,点B 的坐标为 。

(2)求OC 的长度 ;
(3)在x 轴上有一点P ,且△PAB 是等腰三角形,不需计算过程,直接写出点P 的坐标 。

(第23题) ②①100908070605040302010
500400300200(分钟)
(元)
y x O 100。

相关文档
最新文档