上海初中数学一模-2019年-填选合集(含解析)
2019年上海市金山区中考数学一模试卷-解析版

2019年上海市金山区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.下列函数是二次函数的是()A. y=xB. y=1x C. y=x−2+x2 D. y=1x22.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. ACAB B. BCABC. ACBCD. BCAC3.如图,已知BD与CE相交于点A,ED//BC,AB=8,AC=12,AD=6,那么AE的长等于()A. 4B. 9C. 12D. 164.已知e⃗是一个单位向量,a⃗、b⃗ 是非零向量,那么下列等式正确的是()A. |a⃗|e⃗=a⃗B. |e⃗|b⃗ =b⃗C. 1|a⃗ |a⃗=e⃗ D. 1|a⃗ |a⃗=1|b⃗|b⃗5.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A. a<0、b>0、c>0B. a<、b<0、c>0C. a<0、b>0、c<0D. a<0、b<0、c<06.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A. 点B、点C都在⊙A内B. 点C在⊙A内,点B在⊙A外C. 点B在⊙A内,点C在⊙A外D. 点B、点C都在⊙A外二、填空题(本大题共12小题,共48.0分)7.已知二次函数f(x)=x2−3x+1,那么f(2)=______.8.已知抛物线y=12x2−1,那么抛物线在y轴右侧部分是______(填“上升的”或“下降的”).9.已知xy =52,那么x+yy=______.10.已知α是锐角,sinα=12,那么cosα=______.11.一个正n边形的中心角等于18°,那么n=______.12.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=______.13.如图,为了测量铁塔AB的高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=______米.14.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是______.15.如图,已知O为△ABC内一点,点D、E分别在边AB、AC上,且ADAB =25,DE//BC,设OB⃗⃗⃗⃗⃗⃗ =b⃗ 、OC⃗⃗⃗⃗⃗ =c⃗,那么DE⃗⃗⃗⃗⃗⃗ =______(用b⃗ 、c⃗表示).16.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于______.17.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=45,那么GE=______.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′),那么△ABC与△A′B′C′的重叠部分的面积是______三、解答题(本大题共7小题,共78.0分)19.计算:cos245°−cot30°2sin60∘+tan260°−cot45°⋅sin30°.20.已知二次函数y=x2−4x−5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)(1)当y=0时,求x的值.(2)点M(6,m)在二次函数y=x2−4x−5的图象上,设直线MP与x轴交于点C,求cot∠MCB的值.21.如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.22.如图,已知AB是⊙O的直径,C为圆上一点,D是BC⏜的中点,CH⊥AB于H,垂足为H,联OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求EH的长.23.如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF⋅MH.(2)若BC2=BD⋅DM,求证:∠AMB=∠ADC.24.已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=−x−2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物线y=x2+bx+c的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).25.已知多边形ABCDEF是⊙O的内接正六边形,联结AC、FD,点H是射线AF上的一个动点,联结CH,直线CH交射线DF于点G,作MH⊥CH交CD的延长线于点M,设⊙O的半径为r(r>0).(1)求证:四边形ACDF是矩形.(2)当CH经过点E时,⊙M与⊙O外切,求⊙M的半径(用r的代数式表示).(3)设∠HCD=α(0<α<90°),求点C、M、H、F构成的四边形的面积(用r及含α的三角比的式子表示).答案和解析1.【答案】C【解析】解:A、y=x属于一次函数,故本选项错误;B、y=1x的右边不是整式,不是二次函数,故本选项错误;C、y=x−2+x2=x2+x−2,符合二次函数的定义,故本选项正确;D、y=1x2的右边不是整式,不是二次函数,故本选项错误;故选:C.根据二次函数的定义判定即可.本题考查二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.【答案】A【解析】解:∵∠C=90°,∴sin∠B=ACAB,故选A.我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键.3.【答案】B【解析】【分析】本题考查了平行线分线段成比例定理的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.根据平行线分线段成比例定理即可得到结论.【解答】解:∵ED//BC,∴ABAD =ACAE,即86=12AE,∴AE=9,故选B.4.【答案】B【解析】解:A.由于单位向量只限制长度,不确定方向,故本选项错误;B.符合向量的长度及方向,故本选项正确;C.得出的是a的方向不是单位向量,故本选项错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故本选项错误.故选B.长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.本题考查了向量的性质,属于基础题.5.【答案】D【解析】解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,<0,由对称轴可知:−b2a∴b<0,即a<0,b<0,c<0,故选D.根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6.【答案】D【解析】【分析】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了含30°角的直角三角形的性质.先解直角△ABC,求出AB、AC的长,再根据点到圆心距离与半径的关系可以确定点B、点C与⊙A的位置关系.【解答】解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=√3BC=2√3,∵⊙A的半径为3,4>3,2√3>3,∴点B、点C都在⊙A外.故选:D.7.【答案】−1【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.计算自变量为2对应的函数值即可.【解答】解:把x=2代入f(x)=x2−3x+1得f(2)=22−3×2+1=−1.故答案为−1.8.【答案】上升的【解析】【分析】本题主要考查二次函数的增减性,掌握开口向上的二次函数在对称轴右侧y随x的增大而增大是解题的关键.根据抛物线解析式可求得其对称轴,结合抛物线的增减性可得到答案.【解答】x2−1,解:∵y=12∴其对称轴为y轴,且开口向上,∴在y轴右侧,y随x增大而增大,∴其图象在y 轴右侧部分是上升的, 故答案为:上升的.9.【答案】72【解析】 【分析】此题主要考查了比例的性质,正确表示出x ,y 的值是解题关键.直接根据已知用同一未知数表示出各数,进而得出答案. 【解答】 解:∵xy =52,∴设x =5a ,则y =2a , 那么x+y y =2a+5a 2a =72. 故答案为:72.10.【答案】√32【解析】 【分析】本题考查了特殊角的三角函数值,解决问题的关键是熟记一些特殊角的三角函数值.先确定α的度数,即可得出cosα的值. 【解答】解:∵α是锐角,sinα=12, ∴α=30°, ∴cosα=√32. 故答案为:√32.11.【答案】20【解析】 【分析】本题考查的是正多边形和圆,熟知正多边形的中心角和为360°是解答此题的关键.根据正多边形的中心角和为360°计算即可. 【解答】 解:n =360°18∘=20,故答案为:20. 12.【答案】2√5−2【解析】 【分析】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的3−√52,较长的线段=原线段的√5−12.根据黄金分割点的定义,知AP 是较长线段;则AP =√5−12AB ,代入数据即可得出AP 的长. 【解答】解:由于P 为线段AB =4的黄金分割点, 且AP 是较长线段;则AP =√5−12AB =√5−12×4=2√5−2. 故答案为2√5−2. 13.【答案】20√3【解析】 【分析】此题主要考查了解直角三角形的应用−仰角俯角问题,正确掌握锐角三角函数关系是解题关键.直接利用锐角三角函数关系得出AB 的值进而得出答案. 【解答】解:由题意可得:tan30°=AB CB=AB 60=√33, 解得:AB =20√3,答:铁塔的高度AB 为20√3m. 故答案为:20√3. 14.【答案】3<d <7【解析】 【分析】本题考查了圆与圆的位置关系:两圆的圆心距为d 、两圆的半径分别为r 、R :①两圆外离⇔d >R +r ;②两圆外切⇔d =R +r ;③两圆相交⇔R −r <d <R +r(R ≥r);④两圆内切⇔d =R −r(R >r);⑤两圆内含⇔d <R −r(R >r).利用两圆相交⇔R −r <d <R +r(R ≥r)求解. 【解答】解:∵⊙O 1与⊙O 2相交, ∴3<d <7.故答案为3<d <7. 15.【答案】−25b ⃗+25c ⃗【解析】 【分析】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.根据三角形法则和平行线分线段成比例来求DE⃗⃗⃗⃗⃗⃗ . 【解答】解:∵ADAB =25,DE//BC , ∴DEBC =ADAB =25, ∴DE =25BC . ∵OB ⃗⃗⃗⃗⃗⃗ =b ⃗ 、OC ⃗⃗⃗⃗⃗=c ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗⃗ =c ⃗ −b ⃗ , ∴DE ⃗⃗⃗⃗⃗⃗ =−25b ⃗ +25c ⃗ .故答案是:−25b ⃗+25c ⃗ . 16.【答案】2√3【解析】 【分析】本题考查了相交两圆的性质,圆周角定理,正确的作出辅助线是解题的关键.连接AB 交O 1P 于C ,根据相交两圆的性质得到AB ⊥O 1P ,AC =BC ,得到∠APC =12∠APB =30°,根据直角三角形的性质得到AC =12AP =3,连接AO 2,解直角三角形即可得到结论. 【解答】解:连接AB 交O 1P 于C , 则AB ⊥O 1P ,AC =BC , ∴AP =PB ,∴∠APC =12∠APB =30°,∴AC =12AP =3, 连接AO 2, ∵AO 2=PO 2, ∴∠AO 2C =60°, ∴AO 2=ACsin60∘=√32=2√3,∴⊙O 2的半径等于2√3.17.【答案】√172【解析】 【分析】本题考查等腰三角形的性质、相似三角形的判定和性质以及锐角三角函数定义,解答本题的关键是正确作出辅助线构造相似三角形,作EF ⊥BC 于点F ,根据余弦定义求出CD 长,根据等腰三角形性质求出BC 长,根据平行关系易证△BDG∽△BFE ,再根据相似三角形的对应边成比例结合线段的和差关系求出GE 即可. 【解答】解:作EF ⊥BC 于点F ,∵AD 、BE 分别是边BC 、AC 上的中线,AB =AC =5,cos∠C =45, ∴AD ⊥BC ,AD =3,CD =4, ∴AD//EF ,BC =8,∴EF =1.5,DF =2,△BDG∽△BFE ,∴DGFE =BDBF=BGBE,BF=6,∴DG=1,∴BG=√17,∴46=√17BE,得BE=3√172,∴GE=BE−BG=3√172−√17=√172,故答案为√172.18.【答案】5.76【解析】【分析】本题考查了旋转的性质,勾股定理,相似三角形的判定和性质,正确的画出图形是解题的关键.根据勾股定理得到AB=10,根据旋转的性质得到OA′=OA=4,∠A′=∠A,根据相似三角形的性质得到OM=3,求得AM=1,根据相似三角形的性质得到S△AON=6,同理,S△AMP= 0.24,于是得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BO=BC=6,∵把△ABC逆时针旋转90°,得到△A′B′C′,∴OA′=OA=4,∠A′=∠A,∵∠A′OM=∠C=90°,∴△A′OM∽△ACB,∴OMBC =OA′AC,∴OM=3,∴AM=1,∵∠A′MO=∠AMP,∴∠APM=∠A′ON=90°,∴△AON∽△ACB,∴S△AONS△ACB =(AOAC)2=14,∵S△ABC=12×8×6=24,∴S△AON=6,同理,S△AMP=0.24,∴△ABC与△A′B′C′的重叠部分的面积是6−0.24=5.76.故答案为:5.76.19.【答案】解:原式=(√22)2−√32×√32+(√3)2−1×12=12−1+3−12 =2.【解析】直接利用特殊角的三角函数值代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.【答案】解:(1)把y =0代入y =x 2−4x −5,得x 2−4x −5=0,解得,x 1=5,x 2=−1,即当y =0时,x 的值是−1或5;(2)∵点M(6,m)在二次函数y =x 2−4x −5的图象上,∴m =62−4×6−5=7,∴点M(6,7),∵二次函数y =x 2−4x −5,与y 轴的交点为P ,∴点P 的坐标为(0,−5),设直线MP 的函数解析式为y =kx +b ,{6k +b =7b =−5,得{k =2b =−5, 即直线MP 的解析式为y =2x −5,当y =0时,x =52,即点C 的坐标为(52,0),由(1)知,当y =0时,x 的值是−1或5,∵二次函数y =x 2−4x −5与x 轴交于A 、B 两点(点B 在点A 的右侧),∴点B 的坐标为(5,0),∴cot∠MCB =6−527=12.【解析】(1)根据题目中的函数解析式,可以求得当y −0时对应的x 值;(2)根据题意可以求得点M 的坐标,点C 的坐标和点B 的坐标,从而可以求得cot∠MCB 的值.本题考查抛物线与x 轴的交点、一次函数与二次函数图象上点的坐标特征,解直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 21.【答案】解:(1)分别过点A 、D 作AM ⊥BC ,DN ⊥BC ,垂足分别为点M 、N ,根据题意,可知AM =DN =24(米),MN =AD =6(米),在Rt △ABM 中,∵AM BM =13,∴BM =72(米),∵AB 2=AM 2+BM 2,∴AB =√242+722=24√10(米),答:背水坡AB 的长度为24√10米;(2)在Rt△DNC中,DNCN =12,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【解析】(1)直接分别过点A、D作AM⊥BC,DN⊥BC垂足分别为点M、N,得出AM= DN=24(米),MN=AD=6(米),进而利用坡度以及勾股定理进而得出答案;(2)利用(1)中所求,进而得出BC的长.此题考查了解直角三角形的应用−坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.22.【答案】(1)证明:∵OD为圆的半径,D是BC⏜的中点,∴OD⊥BC,BE=CE=12BC,∵CH⊥AB,∴∠CHB=90°,∴HE=12BC=BE,∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B∴△BHE∽△BCO.(2)解:∵△BHE∽△BCO,∴BHBC =BEOB,∵OC=4,BH=1,∴OB=4,得12BE =BE4,解得BE=√2,∴EH=BE=√2.【解析】(1)根据两角对应相等的两个三角形相似即可证明;(2)由△BHE∽△BCO,可得BHBC =BEOB,由此即可解决问题;本题考查垂径定理,相似三角形的判定和性质,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴AMMF =DMMB,DMMB=MHAM,∴AMMF =MHAM,即AM2=MF⋅MH.(2)∵四边形ABCD是平行四边形,∴AD=BC,又∵BC2=BD⋅DM,∴AD 2=BD ⋅DM 即AD DB =DM AD ,又∵∠ADM =∠BDA ,∴△ADM∽△BDA ,∴∠AMD =∠BAD ,∵AB//CD ,∴∠BAD +∠ADC =180°,∵∠AMB +∠AMD =180°,∴∠AMB =∠ADC .【解析】(1)根据平行线分线段成比例定理即可解决问题;(2)由△ADM∽△BDA ,推出∠AMD =∠BAD ,由AB//CD ,推出∠BAD +∠ADC =180°,由∠AMB +∠AMD =180°,可得∠AMB =∠ADC ;本题考查平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)把点A 、B 坐标代入y =x 2+bx +c 得:{c =63=1+b +c ,解得:{b =−4c =6, 则抛物线的表达式为:y =x 2−4x +6;(2)y =x 2−4x +6=(x −2)2+2,故顶点坐标为(2,2),把点P 坐标代入直线l 1表达式得:2=2k ,即k =1,∴直线l 1表达式为:y =x ,设:点M(2,m)代入直线l 2的表达式得:m =−4,即点M 的坐标为(2,−4),设:点N(n,−4)代入直线l 1表达式得:n =−4,则点N 坐标为(−4,−4),同理得:点D 、E 的坐标分别为(−2,0)、(0,−2)、联立l 1、l 2得{y =x y =−x −2,解得:{x =−1y =−1,即:点C 的坐标为(−1,−1), ∴OC =√(−1−0)2+(−1−0)2=√2,CE =√2=OC ,∵点C 在直线y =x 上,∴∠COE =∠OEC =45°,∴∠OCE =90°,即:NC ⊥l 2,NC =√(−1+4)2+(−1+4)2=3√2>4,∴以点N 为圆心,半径长为4的圆与直线l 2相离;(3)①当点F 在直线l 2下方时,设:∠OBK =α,点A 、B 的坐标分别为(0,6),(1,3),则AO =6,AB =BO =√10, 过点B 作BL ⊥y 轴交于点L ,则tan∠OAB =13,sin∠OAB =√10,OK =AOsin∠OAB =√10×6√10,sinα=OK OB =35, ∵等腰△MHF 和等腰△OAB 相似,∴∠HFM =∠ABO ,则∠KBO =∠OFM =α,点C 、M 的坐标分别为(−1,−1)、(2,−4), 则CM =3√2,FM =CM sinα=5√2,CF =4√2,OF =OC +FC =5√2,则点F 的坐标为(−5,−5),∵FH =FM =5√2,OH =OF +FH =10√2,则点H 的坐标为(−10,−10);②当点F 在直线l 2上方时,同理可得点F 的坐标为(8,8),点H 的坐标为(3,3)或(−10,10);故:点F 、H 的坐标分别为(−5,−5)、(−10,−10)或(8,8)、(3,3)或(8,8)、(−10,−10).【解析】(1)把点A 、B 坐标代入y =x 2+bx +c ,即可求解;(2)求而出点N 、点C 的坐标,计算NC 得长度即可求解;(3)分点F 在直线l 2下方、点F 在直线l 2上方两种情况,求解即可.本题考查的是二次函数综合运用,难点在(3),利用等腰三角形相似得出∠KBO =∠OFM =α,再利用解直角三角形的方法求线段的长度,从而求解.25.【答案】解:(1)证明:∵多边形ABCDEF 是⊙O 的内接正六边形,∴AB =AC ,∠ABC =∠BAF =180×(6−2)6=120°,∴∠BAC =∠BCA ,∵∠BAC +∠BCA +∠ABC =180°,∴∠BAC =30°,得∠CAF =90°,同理∠ACD =90°,∠AFD =90°,∴四边形ACDF 是矩形;(2)如图1,连接OC 、OD ,由题意得:OC =OD ,∠COD =360°6=60°,∴△OCD 为等边三角形,∴CD =OC =r ,∠OCD =60°,作ON ⊥CD ,垂足为N ,即ON 为CD 弦的弦心距,∴CN =12CD =12r ,由sin∠OCD =ON OC =√32得ON =√32r , 作OP ⊥AC 垂足为P ,即OP 为AC 弦的弦心距,∴CP=12AC,∵∠OCP=90°−60°=30°,∴CP=OC⋅cos30°=√32r,得AC=√3r,当CH经过点E时,可知∠ECD=30°,∵四边形ACDF是矩形,∴AF//CD,∴∠AHC=∠ECD=30°,∴在Rt△ACH中,CH=2AC=2√3r,∵MH⊥CH,∴cos∠HCM=CHCM =√32,得CM=4r,∴MN=72r,∴在Rt△MON中,OM=√ON2+MN2=√13r,∵⊙M与⊙O外切,∴r Q+r M=OM,即⊙M的半径为(√13−1)r.(3)如图2,作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,∵AF//CD,AC⊥CD,∴HQ=AC=√3r,∴CQ=HQ·1tan∠HCQ =√3r⋅1tanα,MQ=HQ⋅tan∠QHM=√3r⋅tanα,即CM=√3r(tanα+1tanα),①当0°<α<60°时,点H在边AF的延长线上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CQ−CD=√3r⋅1tanα−r,∴S=(FH+CM)⋅HQ2=(6×1tana)2.②当α=60°时,点H与点F重合,此时点C、M、H、F构成三角形,非四边形,所以舍去.③当60°<α<90°时,点H在边AF上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CD−CQ=r−√3r⋅1tanα,∴S=(FH+CM)⋅HQ2=(√3+3tanα)⋅r22.综上所述,当∠HCD=α(0°<α<90°)时,点C、M、H、F构成的四边形的面积为(6tan+3tana−√3)·r22或(√3+3tanα)⋅r22.【解析】(1)根据正多边形的性质和矩形的判定解答即可;(2)连接OC、OD,证△OCD为等边三角形得CD=OC=r,∠OCD=60°,作ON⊥CD求得ON=√32r,再作OP⊥AC,求得AC=√3r,由四边形ACDF是矩形知∠AHC=∠ECD=30°,据此得CH=2AC=2√3r,由cos∠HCM=CHCM =√32,得CM=4r,MN=72r,利用勾股定理求得OM=√ON2+MN2=√13r,依据⊙M与⊙O外切可得答案;(3)作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,再由AF//CD,AC⊥CD知HQ=AC=√3r,继而求得CQ=√3r⋅1tanα,MQ=√3r⋅tanα,则CM=√3r(tanα+1tanα),再分0°<α<60°、α=60°和60°<α<90°三种情况分别求解可得.本题是圆的综合问题,解题的关键是掌握矩形的判定与性质、垂径定理、平行线的性质、圆与圆的位置关系、三角函数的应用及分类讨论思想的运用等知识点.。
2019届上海市宝山区中考一模数学试卷【含答案及解析】

2019届上海市宝山区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知∠A=30°,下列判断正确的是()A.sinA= B.cosA= C.tanA= D.cotA=2. 如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A. B. C. D.3. 二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数 C.y>2 D.y为一切实数4. 已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向 B.南偏西60°方向C.南偏东30°方向 D.南偏东60°方向6. 二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限二、填空题7. 已知2a=3b,则= .8. 如果两个相似三角形的相似比为1:4,那么它们的面积比为.9. 如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.10. 如图,△ABC中,∠C=90°,若CD⊥AB于点D,且BD=4,AD=9,则tanA=_________.11. 计算:2(+3)﹣5= .12. 如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13. 二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14. 如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15. 已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1 y2.(填不等号)16. 如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= .17. 数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18. 如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF═ .三、计算题19. 计算:﹣cos30°+(1-sin45°)0.四、解答题20. 如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设,,求向量(用向量、表示).五、判断题21. 如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.六、解答题22. 直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23. 如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC 交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24. 如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25. 如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2019年上海市松江区中考数学一模试卷(解析版)

2019年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.2.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)23.下列各组图形中一定是相似形的是()A.两个直角三角形B.两个等边三角形C.两个菱形D.两个矩形4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.=B.=C.=D.=5.已知为单位向量,=﹣3,那么下列结论中错误的是()A.∥B.||=3C.与方向相同D.与方向相反6.如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,那么=.8.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是千米.9.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.10.已知线段AB=2cm,点C在线段AB上,且AC2=BC•AB,则AC的长cm.11.已知某二次函数图象的最高点是坐标原点,请写出一个符合要求的函数解析式:.12.如果点A(﹣4,y1)、B(﹣3,y2)是二次函数y=2x2+k(k是常数)图象上的两点,那么y1 y2.(填“>”、“<”或“=”)13.小明沿坡比为1:的山坡向上走了100米.那么他升高了米.14.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果AC=3,CE=5,DF=4,那么BD=.15.如图,已知△ABC,D、E分别是边AB、AC上的点,且==.设=,=,那么=.(用向量、表示)16.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE∥BC.如果=,CE=4,那么AE的长为.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.18.如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x 轴交于点C,那么AC:BC的值为.三、解答题:(本大题共7题,满分78分)19.(10分)将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.20.(10分)如图,已知△ABC中,AB=AC=5,cos A=.求底边BC的长.21.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.22.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B 处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)23.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC•CE=AD•BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF•AD.24.如图,抛物线y=﹣x2+bx+c经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.25.(14分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP 与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.2019年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.【分析】根据三角函数的定义即可得到结论.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.【点评】本题考查了锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.2.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2【分析】先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.下列各组图形中一定是相似形的是()A.两个直角三角形B.两个等边三角形C.两个菱形D.两个矩形【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【解答】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点评】本题主要考查了相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等.4.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE ∥BC的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理的逆定理,当=或=时,DE∥BD,然后可对各选项进行判断.【解答】解:当=或=时,DE∥BD,即=或=.故选:D.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.5.已知为单位向量,=﹣3,那么下列结论中错误的是()A.∥B.||=3C.与方向相同D.与方向相反【分析】根据向量的定义,即可求得答案.【解答】解:A、由为单位向量,=﹣3知:两向量方向相反,相互平行,即∥,故本选项错误.B、由=﹣3得到||=3,故本选项错误.C、由为单位向量,=﹣3知:两向量方向相反,故本选项正确.D、由为单位向量,=﹣3知:两向量方向相反,故本选项错误.故选:C.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握单位向量的知识.6.如图,在△ABC中,D、E分别在边AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.=B.=C.=D.=【分析】根据相似三角形的性质可求解.【解答】解:∵DE∥BC,EF∥CD∴△ADE∽△ABC,△AFE∽△ADC,∴,∴故选:C.【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,那么=.【分析】因为,所以a=b,代入求解即可.【解答】解:∵,∴a=b,∴原式==.故答案为.【点评】本题主要考查比例的基本性质,解题关键是熟练应用比例的基本性质,本题注意掌握比例的合比性质即可得出结果.8.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是6千米.【分析】根据=比例尺列方程即可得到结论.【解答】解:设甲、乙两地的实际距离为xcm,根据题意得,=,解得:x=600000cm=6km,故答案为:6.【点评】本题考查了比例线段,熟练掌握=比例尺是解题的关键.9.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10.【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.【点评】本题主要考查解直角三角形,熟练掌握正弦函数的定义是解题的关键.10.已知线段AB=2cm,点C在线段AB上,且AC2=BC•AB,则AC的长﹣1cm.【分析】根据黄金分割的定义得到点C是线段AB的黄金分割点,根据黄金比值计算得到答案.【解答】解:∵AC2=BC•AB,∴点C是线段AB的黄金分割点,AC>BC,∴AC=AB=×2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比值为是解题的关键.11.已知某二次函数图象的最高点是坐标原点,请写出一个符合要求的函数解析式:y=﹣x2.【分析】根据二次函数的顶点是坐标原点,设函数的解析式为:y=ax2,根据顶点是二次函数图象的最高点,结合二次函数的性质,得到a<0,任取负数a代入原解析式,即可得到答案.【解答】解:∵二次函数的顶点是:(0,0),∴设函数的解析式为:y=ax2,又∵点(0,0)是二次函数图象的最高点,∴抛物线开口方向向下,∴a<0,令a=﹣1,则函数解析式为:y=﹣x2.【点评】本题考查了二次函数的性质,二次函数的图象,二次函数图象上点的坐标特征,二次函数的最值,正确掌握二次函数的性质是解题的关键.12.如果点A(﹣4,y1)、B(﹣3,y2)是二次函数y=2x2+k(k是常数)图象上的两点,那么y1>y2.(填“>”、“<”或“=”)【分析】先根据二次函数的性质得到当x<0时,y随y的增大而减小,然后比较自变量的大小得到函数值的大小关系.【解答】解:抛物线的对称轴为y轴,所以当x<0时,y随y的增大而减小,所以y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.小明沿坡比为1:的山坡向上走了100米.那么他升高了50米.【分析】设BC=x米,根据坡度的概念得到AC=x米,根据勾股定理计算即可.【解答】解:∵坡比为1:,∴设BC=x米,则AC=x米,由勾股定理得,BC2+AC2=AB2,即x2+(x)2=1002,解得,x1=50,x2=﹣50(舍去),∴BC=50米,故答案为:50.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.14.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果AC=3,CE=5,DF=4,那么BD=.【分析】利用平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵a∥b∥c,∴=,即=,解得,BD=,故答案为:.【点评】本题考查的是平行线分线段成比例定理的应用,灵活运用定理、找准对应关系是解题的关键.15.如图,已知△ABC,D、E分别是边AB、AC上的点,且==.设=,=,那么=+3.(用向量、表示)【分析】由题意可得△ADE∽△ABC,可得BC=3DE,根据向量的加法可求解.【解答】解:∵==,∠BAC=∠DAE∴△ADE∽△ABC∴∴BC=3DE∵设=,=,∴==故答案为:+3【点评】本题考查了相似三角形的判定与性质,向量的性质,熟练运用相似三角形的判定是本题的关键.16.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE∥BC.如果=,CE=4,那么AE的长为.【分析】根据相似三角形的性质可得,即可求AE的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴∴设AE=3k,AC=5k(k≠0)),∴CE=3k+5k=4∴k=∴AE=3k=故答案为:【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.17.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.【分析】根据线段中点的定义得到AD=3,根据角平分线的定义得到∠BAG=∠EAF,根据相似三角形的性质即可得到结论.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.18.如图,在直角坐标平面xOy中,点A坐标为(3,2),∠AOB=90°,∠OAB=30°,AB与x 轴交于点C,那么AC:BC的值为.【分析】作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E,先求得OA的长,然后证明△OEB∽△ODA,依据相似三角形的性质可得到==,最后依据AC:BC=S△AOC :S△OBC=AD:OE求解即可.【解答】解:如图所示:作AD⊥x轴,垂足为D,作BE⊥y轴,垂足为E.∵A(3,2),∴OA==,∵∠OAB=30°,∠AOB=90°,∴=,∵∠AOB=90°,∠EOC=90°,∴∠EOB=∠AOD,又∵∠BEO=∠ADO,∴△OEB∽△ODA,∴==,即=,解得:OE=,∵AC:BC=S△AOC :S△OBC=AD:OE=2:=,故答案为:.【点评】本题主要考查的是含30°的直角三角形的性质,相似三角形的判定和性质,证得△OEB∽△ODA是解答本题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.【分析】利用配方法把将二次函数y=2x2+4x﹣1的解析式化为y=a(x+m)2+k的形式,利用二次函数的性质指出函数图象的开口方向、顶点坐标和对称轴,即可得到答案.【解答】解:y=2(x2+2x)﹣1,y=2(x2+2x+1)﹣2﹣1,y=2(x+1)2﹣3,开口方向:向上,顶点坐标:(﹣1,﹣3),对称轴:直线x=﹣1.【点评】本题考查了二次函数的性质,二次函数的三种形式,正确掌握配方法和二次函数的性质是解题的关键.20.(10分)如图,已知△ABC中,AB=AC=5,cos A=.求底边BC的长.【分析】过点B作BD⊥AC,垂足为点D,解直角三角形即可得到结论.【解答】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A=,∵cos A=,AB=5,∴AD=AB•cos A=5×=3,∴BD==4,∵AC=AB=5,∴DC=2,∴BC==2.【点评】本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.21.(10分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.【分析】设BG=2k,GH=4k,HC=3k,根据平行四边形的性质可得DF=BG=2k,EF=HC=3k,可得DE=5k,根据△ADE∽△FGH可得=()2=.【解答】解:∵BG:GH:HC=2:4:3,∴设BG=2k,GH=4k,HC=3k,(k≠0)∵DE∥BC,FG∥AB,∴四边形BDFG是平行四边形,∴DF=BG=2k,∵DE∥BC,FH∥AC∴四边形EFHC是平行四边形,∴EF=HC=3k,∴DE=5k∵DE∥BC∴∠ADE=∠B,∵FG∥AB∴∠FGH=∠B,∴∠ADE=∠FGH,同理可得:∠AED=∠FHG∴△ADE∽△FGH∴=()2=,【点评】本题考查了相似三角形的判定和性质,平行四边形判定和性质,熟练掌握相似三角形的性质是本题的关键.22.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B 处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.【解答】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.23.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC•CE=AD•BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF•AD.【分析】(1)通过题意可证△ACD∽△CBE,可得∠DCA=∠EBC;(2)通过证明△ABF∽△DAC,可得,可得AB2=AF•AD.【解答】证明:(1)∵AD∥BC,∴∠DAC=∠BCA∵AC•CE=AD•BC,∴∴△ACD∽△CBE∴∠DCA=∠EBC(2)∵AD∥BC,∴∠AFB=∠EBC,且∠DCA=∠EBC,∴∠AFB=∠DCA∵AD∥BC,AB=DC∴∠BAD=∠ADC∴△ABF∽△DAC∴且AB=DC,∴AB2=AF•AD【点评】本题考查了相似三角形的判定和性质,等腰梯形的性质,根据题意找到正确的两个三角形相似是本题的关键.24.如图,抛物线y=﹣x2+bx+c经过点A(﹣2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.【分析】(1)把点A(﹣2,0),点B(0,4)代入解析式求解即可;(2)先确定抛物线的对称轴,再过点P作PG⊥y轴,垂足为G,根据三角函数建立等量关系,求解即可;(3)设新抛物线的表达式为﹣m,则D(0,4﹣m),E(2,4﹣m),DE=2,过点F作FH⊥y轴,垂足为H,运用平行建立线段的比例关系求解即可.【解答】解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)∴,解得∴抛物线解析式为,(2)=,∴对称轴为直线x=1,如图1,过点P作PG⊥y轴,垂足为G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴∴,∴BG=∴OG=,∴P(1,),(3)如图2设新抛物线的表达式为﹣m则D(0,4﹣m),E(2,4﹣m),DE=2过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF∴,∴FH=1,①点D在y轴的正半轴上,则F(﹣1,),∴OH=m﹣∴,∴m=3,②点D在y轴的负半轴上,则F(1,),∴OH=m﹣,∴,∴m=5∴综上所述m的值为3或5.【点评】此题主要考查二次函数的综合问题,会求抛物线解析式,会求抛物线的对称轴,会待定点的坐标根据题意建立方程求解是解题的关键25.(14分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP 与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【分析】(1)根据已知条件得到CP=4,求得BP=2,根据三角形重心的性质即可得到结论;(2)如图1,过点B作BF∥CA交CD的延长线于点F,根据平行线分线段成比例定理得到,求得=,设CP=k,则PA=3k,得到PA=PB=3k根据三角函数的定义即可得到结论;(3)根据直角三角形的性质得到CD=BD=AB,推出△PBD∽△ABP,根据相似三角形的性质得到∠BPD=∠A,推出△DPE∽△DCP,根据相似三角形的性质即可得到结论.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则PA=3k,∵PD⊥AB,D是边AB的中点,∴PA=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,【点评】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.。
上海市青浦区2019年中考数学一模试卷含答案解析

2019年上海市青浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.在下列各数中,属于无理数的是()A.4 B.C.D.2.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b3.一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.抛物线y=2x2+4与y轴的交点坐标是()A.(0,2) B.(0,﹣2)C.(0,4) D.(0,﹣4)5.顺次连结矩形四边中点所得的四边形一定是()A.菱形 B.矩形 C.正方形D.等腰梯形6.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6二、填空题:(本大题共12题,每题4分,满分48分)7.函数y=的定义域是.8.方程=2的根是.9.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.10.从点数为1、2、3的三张扑克牌中随机摸出两张牌,摸到的两张牌的点数之积为素数的概率是.11.将抛物线y=x2+4x向下平移3个单位,所得抛物线的表达式是.12.如果点A(﹣2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么 y1y2.(填“>”、“=”、“<”)13.如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为 .14.点G 是△ABC 的重心,GD ∥AB ,交边BC 于点D ,如果BC=6,那么CD 的长是 .15.已知在△ABC 中,点D 在边AC 上,且AD :DC=2:1.设=, =.那么= .(用向量、的式子表示)16.如图,在△ABC 中,∠C=90°,AC=3,BC=2,边AB 的垂直平分线交AC 边于点D ,交AB 边于点E ,联结DB ,那么tan ∠DBC 的值是 .17.如图,在平行四边形ABCD 中,点E 在边AD 上,联结CE 并延长,交对角线BD 于点F ,交BA 的延长线于点G ,如果DE=2AE ,那么CF :EF :EG= .18.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D处,连接BD ,如果∠DAC=∠DBA ,那么的值是 .三、解答题:(本大题共7题,满分78分)19.计算:÷(a ﹣1)+.20.解方程组:.21.已知:如图,在平面直角坐标系xOy 中,反比例函数y=的图象与正比例函数y=kx (k ≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.(1)求平移后直线的表达式;(2)求∠OBC的余切值.22.某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)23.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF 交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.24.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.(1)求这个抛物线的表达式;(2)求点P的坐标;(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.25.已知:如图,在菱形ABCD中,AB=5,联结BD,sin∠ABD=.点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.2019年上海市青浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.在下列各数中,属于无理数的是()A.4 B.C.D.【考点】分数指数幂;无理数.【分析】根据无理数的定义,可得答案.【解答】解:4=2,,是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【考点】不等式的性质.【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质;一次函数的图象.【分析】一次函数y=kx﹣1(常数k<0)的图象一定经过第二、三,四象限,不经过第﹣象限.【解答】解:∵一次函数y=kx﹣1(常数k<0),b=﹣1<0,∴一次函数y=kx﹣1(常数k<0)的图象一定经过第二、三,四象限,不经过第﹣象限.故选:A.【点评】本题主要考查了函数图象上的点与图象的关系,图象上的点满足解析式,满足解析式的点在函数图象上.并且本题还考查了一次函数的性质,都是需要熟记的内容.4.抛物线y=2x2+4与y轴的交点坐标是()A.(0,2) B.(0,﹣2)C.(0,4) D.(0,﹣4)【考点】二次函数图象上点的坐标特征.【分析】要求抛物线与y轴的交点坐标,即要令x等于0,代入抛物线的解析式求出对应的y值,写成坐标形式即可.【解答】解:把x=0代入抛物线y=2x2+4中,解得:y=4,则抛物线y=2x2+4与y轴的交点坐标是(0,4).故选C.【点评】此题考查学生会求函数图象与坐标轴的交点坐标,即要求函数与x轴交点坐标就要令y=0,要求函数与y轴的交点坐标就要令x=0,是学生必须掌握的基本题型.5.顺次连结矩形四边中点所得的四边形一定是()A.菱形 B.矩形 C.正方形D.等腰梯形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:A.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.6.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6【考点】相似三角形的判定与性质;梯形.【专题】推理填空题.【分析】首先根据S△ACD:S△ABC=1:2,可得AD:BC=1:2;然后根据相似三角形的面积的比的等于它们的相似比的平方,求出S△AOD:S△BOC是多少即可.【解答】解:∵在梯形ABCD中,AD∥BC,而且S△ACD:S△ABC=1:2,∴AD:BC=1:2;∵AD∥BC,∴△AOD~△BOC,∵AD:BC=1:2,∴S△AOD:S△BOC=1:4.故选:B.【点评】此题主要考查了相似三角形的判定与性质的应用,以及梯形的特征和应用,要熟练掌握.二、填空题:(本大题共12题,每题4分,满分48分)7.函数y=的定义域是x≠1 .【考点】函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.方程=2的根是x=.【考点】无理方程.【分析】两边平方得出3x﹣1=4,求出即可.【解答】解:∵ =2,∴3x﹣1=4,∴x=,经检验x=是原方程组的解,故答案为:.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是m≤1 .【考点】根的判别式.【分析】方程有实数根即△≥0,根据△建立关于m的不等式,求m的取值范围.【解答】解:由题意知,△=4﹣4m≥0,∴m≤1答:m的取值范围是m≤1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.从点数为1、2、3的三张扑克牌中随机摸出两张牌,摸到的两张牌的点数之积为素数的概率是.【考点】列表法与树状图法.【分析】首先画树状图,然后由树状图求得所有等可能的结果与摸到的两张牌的点数之和为素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图如下:一共有6种等可能结果,其中和为素数的有4种,∴点数之积为素数的概率是=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.将抛物线y=x2+4x向下平移3个单位,所得抛物线的表达式是y=x2+4x﹣3 .【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标要减去3,即可得到答案.【解答】解:∵抛物线y=x2+4x向下平移3个单位,∴抛物线的解析式为y=x2+4x﹣3,故答案为y=x2+4x﹣3.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.12.如果点A(﹣2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么 y1<y2.(填“>”、“=”、“<”)【考点】二次函数图象上点的坐标特征.【分析】把点A、B的横坐标代入函数解析式分别求出函数值即可得解.【解答】解:当x=﹣2时,y1=(﹣2+3)2=1,当x=2时,y2=(2+3)2=25,y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特征,根据函数图象上的点满足函数解析式求出相应的函数值是解题的关键.13.如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为 6 .【考点】多边形内角与外角.【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和是2×360=720度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=8.∴此多边形的边数为6.故答案为:6.【点评】本题主要考查了根据正多边形的外角和求多边形的边数,这是常用的一种方法,需要熟记.14.点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是 4 .【考点】三角形的重心;平行线的性质.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:延长AG交BC与F,∵点G是△ABC的重心,BC=6,∴BF=3,∵点G是△ABC的重心,∴AG:GF=2:1,∵GD∥AB,∴BD:DF=DG:GF=2:1,∴BD=2,DF=1,∴CD=3+1=4,故答案为:4【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.15.已知在△ABC中,点D在边AC上,且AD:DC=2:1.设=, =.那么= +.(用向量、的式子表示)【考点】*平面向量.【专题】推理填空题.【分析】由=2得=,即AD=AC,在根据==+=()+可得答案.【解答】解:如图,∵=2,∴=,即AD=AC,则==+=()+=+=+,故答案为:+.【点评】本题主要考查平面向量,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.16.如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.【考点】解直角三角形;线段垂直平分线的性质.【专题】计算题;等腰三角形与直角三角形.【分析】由DE垂直平分AB,得到AD=BD,设CD=x,则有BD=AD=3﹣x,在直角三角形BCD中,利用勾股定理求出x的值,确定出CD的长,利用锐角三角函数定义求出所求即可.【解答】解:∵边AB的垂直平分线交AC边于点D,交AB边于点E,∴AD=BD,设CD=x,则有BD=AD=AC﹣CD=3﹣x,在Rt△BCD中,根据勾股定理得:(3﹣x)2=x2+22,解得:x=,则tan∠DBC==,故答案为:【点评】此题考查了解直角三角形,以及线段垂直平分线性质,熟练掌握性质及定理是解本题的关键.17.如图,在平行四边形ABCD中,点E在边AD上,联结CE并延长,交对角线BD于点F,交BA的延长线于点G,如果DE=2AE,那么CF:EF:EG= 6:4:5 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设AE=x,则DE=2x,由四边形ABCD是平行四边形得BC=AD=AE+DE=3x,AD∥BC,证△GAE∽△GBC、△DEF∽△BCF得==、==,即=,设EF=2y,则CF=3y、GE=y,从而得出答案.【解答】解:设AE=x,则DE=2x,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3x,AD∥BC,∴△GAE∽△GBC,△DEF∽△BCF,∴==, ==,∴=,设EF=2y,则CF=3y,∴EC=EF+CF=5y,∴GE=y,则CF:EF:EG=3y:2y: y=6:4:5,故答案为:6:4:5.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,已知△ABC,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,如果∠DAC=∠DBA,那么的值是.【考点】旋转的性质.【分析】由旋转的性质得到AB=AD,∠CAB=∠DAB,根据三角形的内角和得到∠ABD=∠ADB=72°,∠BAD=36°,过D作∠ADB的平分线DF推出△ABD∽△DBF,解方程即可得到结论.【解答】解:如图,由旋转的性质得到AB=AD,∠CAB=∠DAB,∴∠ABD=∠ADB,∵∠CAD=∠ABD,∴∠ABD=∠ADB=2∠BAD,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D作∠ADB的平分线DF,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD,∴△ABD∽△DBF,∴,即,解得=,故答案为:.【点评】本题考查了旋转的性质,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题:(本大题共7题,满分78分)19.计算:÷(a﹣1)+.【考点】分式的混合运算.【分析】结合分式混合运算的运算法则进行求解即可.【解答】解:原式=×+=+=+=.【点评】本题考查了分式的混合运算,解答本题的关键在于熟练掌握分式混合运算的运算法则.20.解方程组:.【考点】高次方程.【分析】由①得出x﹣2y=2或x﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.【解答】解:由①得:x﹣2y=2或x﹣2y=﹣2.原方程可化为,解得,原方程的解是,.【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.已知:如图,在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.(1)求平移后直线的表达式;(2)求∠OBC的余切值.【考点】反比例函数与一次函数的交点问题;坐标与图形变化-平移;解直角三角形.【分析】(1)根据点A在反比例函数图象上可求出点A的坐标,进而可求出正比例函数表达式,根据平移的性质可设直线BC的函数解析式为y=2x+b,根据点B的坐标利用待定系数法即可求出b值,此题得解;(2)利用一次函数图象上点的坐标特征即可求出点C的坐标,从而得出OC的值,再根据余切的定义即可得出结论.【解答】解:(1)当x=2时,y==4,∴点A的坐标为(2,4).∵A(2,4)在y=kx(k≠0)的图象上,∴4=2k,解得:k=2.设直线BC的函数解析式为y=2x+b,∵点B的坐标为(3,0),∴0=2×3+b,解得:b=﹣6,∴平移后直线的表达式y=2x﹣6.(2)当x=0时,y=﹣6,∴点C的坐标为(0,﹣6),∴OC=6.∴.【点评】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及解直角三角形,根据点B的坐标利用待定系数法求出直线BC的解析式是解题的关键.22.某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△AEH中利用三角函数求得AF的长,进而求得AB的长.【解答】解:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中, =i=1:,∴设BF=k,则CF=,BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+6.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.答:大楼AB的高度约为33.3米.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.23.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF 交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.【考点】相似三角形的判定与性质.【分析】(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.【解答】证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.(1)求这个抛物线的表达式;(2)求点P的坐标;(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.【考点】相似形综合题.【分析】(1)利用待定系数法即可得出结论;(2)先判断出△PMC≌△PNB,再用PC2=PB2,建立方程求解即可;(3)先判断出点Q只能在点O左侧,再分两种情况讨论计算即可.【解答】解:(1)∵抛物线y=ax2﹣4ax+1,∴点C的坐标为(0,1).∵OB=3OC,∴点B的坐标为(3,0).∴9a﹣12a+1=0,∴.∴.(2)如图,过点P作PM⊥y轴,PN⊥x轴,垂足分别为点M、N.∵∠MPC=90°﹣∠CPN,∠NPB=90°﹣∠CPN,∴∠MPC=∠NPB.在△PCM和△PBN中,,∴△PMC≌△PNB,∴PM=PN.设点P(a,a).∵PC2=PB2,∴a2+(a﹣1)2=(a﹣3)2+a2.解得a=2.∴P(2,2).(3)∵该抛物线对称轴为x=2,B(3,0),∴A(1,0).∵P(2,2),A(1,0),B(3,0),C(0,1),∴PO=,AC=,AB=2.∵∠CAB=135°,∠POB=45°,在Rt△BOC中,tan∠OBC=,∴∠OBC≠45°,∠OCB<90°,在Rt△OAC中,OC=OA,∴∠OCA=45°,∴∠ACB<45°,∴当△OPQ与△ABC相似时,点Q只有在点O左侧时.(i)当时,∴,∴OQ=4,∴Q(﹣4,0).(ii)当时,∴,∴OQ=2,∴Q(﹣2,0).当点Q在点A右侧时,综上所述,点Q的坐标为(﹣4,0)或(﹣2,0).【点评】此题是相似形综合题,主要考查了待定系数法,全等三角形的判定和性质,等腰直角三角形的性质,相似三角形的性质,解本题的关键是判断出点Q只能在点O的左侧,是一道很好的中考常考题.25.已知:如图,在菱形ABCD中,AB=5,联结BD,sin∠ABD=.点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.【考点】四边形综合题.【分析】(1)由菱形的性质得出BA=BC,∠ABD=∠CBD.由SAS证明△ABE≌△CBE,即可得出结论.(2)联结AC,交BD于点O,过点A作AH⊥BC于H,过点E作EF⊥BC于F,由菱形的性质得出AC⊥BD.由三角函数求出AO=OC=,BO=OD=.由菱形面积得出AH=4,BH=3.由相似三角形的性质得出,求出EF的长,即可得出答案;∴,(3)因为点P在线段BC的延长线上,所以∠EPC不可能为直角.分情况讨论:①当∠ECP=90°时,②当∠CEP=90°时,由全等三角形的性质和相似三角形的性质即可得出答案.【解答】解:(1)∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,又∵BE=BE,∴△ABE≌△CBE∴AE=CE.(2)连接AC,交BD于点O,过点A作AH⊥BC,过点E作EF⊥BC,如图1所示:垂足分别为点H、F.∵四边形ABCD是菱形,∴AC⊥BD.∵AB=5,,∴AO=OC=,BO=OD=.∵,∴AH=4,BH=3.∵AD∥BC,∴,∴,∴,∴.∵EF∥AH,∴,∴.∴.(3)因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵,∴,∴BP=.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴,∴,.∵AD∥BP,∴,∴,∴BP=15.综上所述,当△EPC是直角三角形时,线段BP的长为或15.【点评】本题是四边形综合题目,考查了菱形的性质、勾股定理、三角函数、全等三角形的判定与性质、相似三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.。
上海市2019届初三数学一模填空选择题汇编——二次函数(word版含答案)

2019 届一模填空选择题汇编——二次函数(一)选择题【 2019 届一模徐汇】2.将抛物线yx2先向右平移1 个单位长度,再向上平移 2 个单位长度后的表达式是2 2 2 2A.yx 1 +2 ; B.y x 1 +2 ; C.y x 1 -2 ;D .y x 1 -2 .【A】【 2019 届一模徐汇】6.已知抛物线 y ax2bx c 上部分点的横坐标x 与纵坐标 y 的对应值如下表:x ⋯ 1 0 1 2 3⋯y ⋯ 3 0 1 m 3⋯①抛物线开口向下;②抛物线的对称轴为直线x 1;③ m 的值为 0;④图像不经过第三象限.上述结论中正确的是..A.①④;B.②④;C.③④;D.②③.【C】【 2019 届一模浦东】3. 已知二次函数y ( x 3)2,那么这个二次函数的图像有()(A)最高点( 3,0);(B)最高点(﹣ 3,0);( C)最低点( 3,0);(D )最低点(﹣ 3,0).【B】【 2019 届一模浦东】4. 如果将抛物线y x24x 1 平移,使它与抛物线y x2 1 重合,那么平移的方式可以是()1(A)向左平移 2 个单位,向上平移 4 个单位;(B)向左平移 2 个单位,向下平移 4 个单位;(C)向右平移 2 个单位,向上平移 4 个单位;(D )向右平移2 个单位,向下平移 4 个单位;【C】【 2019 届一模杨浦】5.如果二次函数中函数值y 与自变量 x 之间的部分对应值如下表所示:x... 1 12 ...0 12 2y... 3 213 ...3 64 4那么这个二次函数的图像的对称轴是直线( A) x 0 ;( B) x 1 ;(C) x 3 ;( D) x 1.2 4【D 】【 2019 届一模普陀】1.已知二次函数y (a 1)x2 3 的图像有最高点,那么 a 的取值范围是(▲)(A) a 0 ;( B) a 0 ;(C) a 1 ;( D) a 1 .【D 】【 2019 届一模普陀】2.下列二次函数中,如果图像能与y 轴交于点 A 0,1 ,那么这个函数是(▲)2(A) y 3x2;( B) y 3x21;(C) y 3( x 1)2;( D) y 3x2x .【B】【 2019 届一模奉贤】2.关于二次函数y = 1 ( x+ 1)2的图像,下列说法正确的是(▲)2(A)开口向下;( B)经过原点;( C)对称轴右侧的部分是下降的;( D)顶点坐标是(- 1,0).【D 】【 2019 届一模奉贤】5.某同学在利用描点法画二次函数y = ax 2 + bx + c (a ? 0) 的图像时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:x ⋯0 1 2 3 4 ⋯y ⋯- 3 0 - 1 0 3 ⋯接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是(▲)ììììx = 0 ? x = 2 ? x = 3 x = 4? ?? ? ? ?.( A)í;( B)í;( C)í;( D)í?3 ?1? ??y = - ?y = - ? y = 0?y = 3 【A】3【 2019 届一模松江】2.把抛物线 y x2向右平移 1 个单位后得到的抛物线是()( A) y x21;( B) y x 21;(C) y (x 1) 2;( D) y ( x 1)2.【D 】【 2019 届一模嘉定】1.下列函数中,是二次函数的是( ▲ )( A) y 2x 1;(B)( C) y 1 x2;(D )y ( x1) 2x2;y1.x2【C】【 2019 届一模嘉定】2.已知抛物线 y x 23向左平移 2 个单位,那么平移后的抛物线表达式是( ▲ )( A) y ( x 2) 2 3 ;(B)( C) y x 21;(D )【A】y (x 2) 2 3 ;y x25.【 2019 届一模青浦】2bx c 的图像如图所示,那么下列结论中正确的是(y6.已知二次函数y ax )x= 1 A. ac 0 ;B. b 0 ;C. a c 0; D . a +b c=0 .O 1x(第 6 题图)【D 】4【 2019 届一模静安】2.下列抛物线中,顶点坐标为(2,1 ) 的是( A) y (x 2)21;( B )( C) y (x 2)21;( D )【B】y (x 2) 21;y(x 2)21.【 2019 届一模宝山】3.已知二次函数的图像经过点(1, -2),那么的值为(▲)( A);( B);( C);( D).【D 】【 2019 届一模长宁】1.抛物线 y 2( x2)23的顶点坐标是(▲ )( A)(2, 3) ;(B)(2, 3) ;(C)( 2,3) ;(D) (2,3) .【B】【 2019 届一模金山】1.下列函数是二次函数的是(▲ )y x y 1 2y1A.B.xC.y x 2 x D.x2【C 】【2019 届一模金山】5.已知抛物线y ax 2bx c a 0 如图所示,那么 a 、 b 、 c 的取值范围是(▲)5A. a 0 、 b 0 、 c 0 B. a 0 、 b 0 、 c 0y C. a 0 、 b 0 、 c 0 D . a 0 、 b 0 、 c 0xO第5题图【D 】【2019 届一模闵行】3.将二次函数y 2(x 2) 2 的图像向左平移1 个单位,再向下平移3 个单位后所得图像的函数解析式为( A) y 2( x 2) 2 4 ;( B) y 2( x1) 2 3 ;( C) y 2( x 1) 23;( D) y 2x2 3 .【C】【 2019 届一模闵行】4.已知二次函数 y a x2 b x c 的图像如图所示,那么根据图像,6WORD格式yO x(第 4 题图)下列判断中不正确的是7( A) a < 0 ;( B) b > 0;( C)c > 0 ;( D) abc > 0.【B】【 2019 届一模虹口】1.抛物线 y x21与 y 轴交点的坐标是A.(- 1, 0);B.( 1,0);C.(0, - 1); D. ( 0,1).【C】【 2019 届一模虹口】2.如果抛物线y ( a 2) x2开口向下,那么a 的取值范围为A. a 2 ;B. a 2 ;C. a 2 ; D. a 2 .【D 】(二)填空题【 2019 届一模徐汇】2 , y1)、B (3 , y2)是抛物线 y x1210.已知 A( c 上两点,则 y1▲y2(填“ >”“ =”或“ <”).【】8【 2019 届一模浦东】8. 如果 y (k 3) x2k( x 3) 是二次函数,那么k 需满足的条件是__________.【 k 3】【 2019 届一模浦东】13. 如果抛物线经过点 A( 2,5)和点 B( 4 ,5),那么这条抛物线的对称轴是直线__________.【x 1 】【2019 届一模浦东】14. 已知点 A(5 ,m)、B( 3 , n)都在二次函数y 1 x2 5 的图像上,那么 m、 n 的大2小关系是: m__________ n.(填“>”、“=”或“<”)【】【 2019 届一模杨浦】12.如果开口向下的抛物线y = ax 2 + 5x + 4 - a 2 ( a ? 0) 过原点,那么 a 的值是▲.【- 2】【2019 届一模杨浦】13.如果抛物线y = - 2x2 + bx + c 的对称轴在y 轴的左侧,那么 b ▲0(填入“ <”或“ >”) .【<】【2019 届一模杨浦】14.已知点 A( x1 , y1)、B( x2 , y2)在抛物线y = x2 + 2 x + m 上,如果 0 < x1 < x2,那么 y1▲y2(填入“ <”或“ >”) .【<】9【 2019 届一模普陀】 9.如果抛物线 y2 x 2xm 1 经过原点,那么 m 的值等于 ▲ .【1】【2019 届一模普陀】1 2 先向右平移 2 个单位, 再向上平移 3 个单位, 那么平移后 .将抛物线 y( x 3 ) 4 102所得新抛物线的表达式是 ▲. 【 1 2 】y( x )1 2 1【 2019 届一模普陀】 11.已知抛物线 y2x 2bx 1 的对称轴是直线 x 1 ,那么 b 的值等于 ▲ .【 4 】【 2019 届一模普陀】17.已知二次函数 y ax 2c( a 0) 的图像上有纵坐标分别为 y 1 、 y 2 的两点 A 、 B ,如果点 A 、 B 到对称轴的距离分别等于 2、3,那么 y 1 ▲ y 2 .(填“ <”、“=”或“ >”)【<】【 2019 届一模奉贤】9.如果函数 y = (m - 1)x 2+ x ( m 是常数)是二次函数,那么 m 的取值范围是 ▲ .【 m 1】【2019 届一模奉贤】10.如果一个二次函数的图像在其对称轴左侧部分是上升的, 那么这个二次函数的解析式可以是 ▲ .(只需写一个即可)【 y 2x2(等)】10【 2019 届一模奉贤】11.如果将抛物线y = - 2x2向右平移 3 个单位,那么所得到的新抛物线的对称轴是直线▲.【x 3 】【2019 届一模松江】11.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.【 y x2等】【 2019 届一模松江】12.如果点A 4, y、B 3, y2是二次函数y2x2 +k ( k 是常数)图像上的两点,那1么y1 _______ y2.(填“ >”、“ <”或“ =”)【】【2019 届一模嘉定】7.如果抛物线 y (k 2) x2k 的开口向上,那么 k 的取值范围是▲.【 k 2 】【 2019 届一模嘉定】8.抛物线 y x 22x 与 y 轴的交点坐标是▲.【 (0,0) 】【 2019 届一模嘉定】9.二次函数 y x 24x a 图像上的最低点的横坐标为▲.【 2 】11【 2019 届一模青浦】10.二次函数y x24x 1 的图像的顶点坐标是▲ .【( 2, - 5)】【 2019 届一模青浦】11.抛物线y x 2mx 3m的对称轴是直线x 1 ,那么 m= ▲.【2 】【2019 届一模青浦】12.抛物线y x2 2 在 y 轴右侧的部分是▲.(填“上升”或“下降”)【上升】【 2019 届一模静安】13.抛物线 y ax 2(a 1) ( a 0) 经过原点,那么该抛物线在对称轴左侧的部分是▲的. (填“上升”或“下降”)【下降】【 2019届一模宝山】21图像的顶点坐标是▲ .7.二次函数 y x【( 0,- 1)】【 2019届一模宝山】8.将二次函数y2x2的图像向右平移 3 个单位,所得图像的对称轴为▲.【直线 x=3】12【 2019 届一模宝山】9.请写出一个开口向下,且经过点(0,2)的二次函数解析式▲.【y = - x 2+ 2等】【2019 届一模长宁】8.如果抛物线 y (3 m) x2 3 有最高点,那么m 的取值范围是▲.【 m 3 】【 2019届一模长宁】13.若点 A( 1,7) 、B(5,7) 、 C (2, 3) 、 D(k,3) 在同一条抛物线上,则 k 的值等于▲.【 6】【 2019届一模金山】7.已知二次函数 fx x23x 1 ,那么 f2 ▲.【 1】【 2019届一模金山】8.已知抛物线y 1 x2 1 ,那么抛物线在 y 轴右侧部分是▲(填“上升的”或2“下降的”).【上升的】【 2019 届一模闵行】9.抛物线 y x2 3 x 2 与 y 轴的公共点的坐标是▲.【( 0, 2)】13【 2019 届一模闵行】10.已知二次函数 y 1 x 23 ,如果 x > 0,那么函数值 y 随着自变量 x 的增大而2▲(填“增大”或“减小” ).【减小 】【 2019 届一模虹口】9.如果抛物线 y ax 22 经过点( 1, 0),那么 a 的值为 ▲ . 【- 2】【 2019 届一模虹口】10.如果抛物线y (m 1)x 2 有最低点,那么 m 的取值范围为 ▲ .【m>1】【 2019 届一模虹口】11.如果抛物线 y ( x m) 2m 1的对称轴是直线 x= 1,那么它的顶点坐标为▲.【( 1, 2)】14。
2019年上海市嘉定区中考数学一模试卷-解析版

2021年上海市嘉定区中考数学一模试卷一、选择题〔本大题共6小题,共24.0分〕1.以下函数中,是二次函数的是〔〕A. y = 2% + 1B. y = 〔% - l〕2 - %2C. y = 1- x2D, y =之2.抛物线y = "2 + 3向左平移2个单位,那么平移后的抛物线表达式是〔〕A, y = 〔X + 2> + 3 B. y = 〔4 - 2〕2 + 3C. y = x2 + 1D. y =x2 + S3. 在At △力8c中,乙C = 90., BC = 5>那么A3的长为〔〕A. 5sinAB. 5cosA4.如图,在△ABC中,点.是在边3c上, 就=芯,那么布等于〔〕A. AD = a+bC. 7D = a-^bD•而5.如果点.、E分别在△ABC中的边A8和AC上,那么不能判定OE〃 8c的比例式是〔〕A..AD: DB =AE: ECB. DE: BC = AD: ABC. BD: AB = CE: ACD. A& AC = AD: AE6.点.在线段AB上〔点.与点月、8不重合〕,过点A、B的圆记作为圆0],过点B、C的圆记作为圆.2,过点.、A的圆记作为圆O3,那么以下说法中正确的选项是〔〕A.圆.1可以经过点.B.点.可以在圆.1的内部C.点A可以在圆02的内部D.点B可以在圆03的内部二、填空题〔本大题共12小题,共48.0分〕7.如果抛物线^ = 〔4-2〕/+及的开口向上,那么女的取值范围是__________________ .8.抛物线y = x2 + 2%与y轴的交点坐标是__________ .9.二次函数y = X2+4X + a图象上的最低点的横坐标为.10.如果3a =4b〔a、b都不等于零〕,那么管=.11.尸是线段A3的黄金分割点,AB = 6cm, AP> BP,那么/P =cm.12.如果向量公、方、歹满足关系式2日一〔7— 3石〕=4兀那么三=〔用向量%、3表示〕.13.如果且△48.的三边长分别为4、5、6, △ DEF的最短边长为12, 那么△ DEF的周长等于.14.在等腰△A8C中,AB =AC = 4, BC = 6,那么cosB 的值=.15.小杰在楼下点A处看到楼上点B处的小明的仰角是42度,那么点5处的小明看点A处的小杰的俯角等于 ________________________ 度.16.如图,在圆.中,A8是弦,点.是劣弧A3的中点,连接OC, /一^\AB 平分OC,连接.4、OB, 〔 O \那么~108 =度.17.两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于______________________厘米.18.在△力BC中,乙4cB = 90.,点.、上分别在边3C AC/上±, AC = 3AE. 〔CDE= 45.〔如图〕,△ DCE沿直线DE 翻折,翻折后的点.落在△ABC内部的点八直线从尸与边8C相交于点G,如果8G =力以那么.B三、计算题〔本大题共1小题,共10.0分〕四、解做题〔本大题共6小题,共66.0分〕20.抛物线y = / + 6%-3经过点4〔1,0〕,顶点为点M.〔1〕求抛物线的表达式及顶点M的坐标;〔2〕求4.力M的正弦值.21.某小区开展了“行车平安,方便居民〞的活动,对地下车库作了改良.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=l: 2.4, AB 1BC, 为了居民行车平安,现将斜坡的坡角改为13.,即乙1DC = 13.〔此时点8、.在同一直线上〕.A地面/ / /D //// / // C〔1〕求这个车库的高度A8;〔2〕求斜坡改良后的起点D与原起点C的距离〔结果精确到0.1米〕.〔参考数据:sinl3° X 0.225, cosl3° 8 0.974, tanl30 力0.231〕22.如图,在圆.中,弦力8 = 8,点.在圆.上(C与A, 8不重合),连接CA、C从过点.分别作0D_L4C, 0E 1 BC, 垂足分别是点.、E.(1)求线段的长:(2)点.到A5的距离为3,求圆.的半径.23.如图,点.在△力BC的外部,力D//BC,点E在边A8上,力B -力.=BC-4E. (1)求证:Z.BAC= Z^AED;(2)在边AC取一点F,如果〃尸E = 4D,求证:,=翌.24.在平面直角坐标系%Oy(如图)中,抛物线y=./ +以+ 2经过点出4,0)、8(2,2), 与y轴的交点为C(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△4WC的而积:(3)如果这个抛物线的对称轴与直线3c交于点.,点E在线段A&上,且4DOE = 45., 求点E的坐标.25.在矩形A8CO中,AB = 6. AD = 8,点E是边A.上一点,EM JL EC交A5于点点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:Z.ANE = Z.DCEx(2)如图2,当点N在线段M8之间,联结AC,且AC与NE互相垂直,求MN的长:(3)连接AC,如果△力EC与以点E、M、N为顶点所组成的三角形相似,求DE的长.1.【答案】C【解析】 【分析】此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键. 直接利用二次函数的定义分析得出答案. 【解答】解:A 、y = 2x + l,是一次函数,故此选项错误:B. y = (x-l)2-x 2 = -2x+l,是一次函数,故此选项错误: C y=l-x 2,是二次函数,符合题意:.、¥=福,不是二次函数,不合题意. 应选C2 .【答案】A【解析】 【分析】此题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键, 属于根底题. 根据“上加下减,左加右减〞的原那么进行解答即可. 【解答】解:由“左加右减〞的原那么可知,将抛物线y = / + 3向左平移2个单位所得抛物线的 解析式为:y= (% + 2)2 + 3,应选:A.3 .【答案】C【解析】【分析】 依据Rt △48.中,ZC = 90°, BC = 5,可得sim4=+,即可得到4B 的长的表达式.AB此题考查了锐角三角函数的定义的应用,我们把锐角A 的对边〃与斜边.的比叫做乙4的 正弦,记作sinA.【解答】解:中,Z.C = 90°, BC = 5,.. BC 5・•・ sinA =—=—AB AB应选:C.4 .【答案】D【解析】 【分析】此题考查了平面向量的知识,解此题的关键是注意平面向量的 三角形法那么与数形结合思想的应用.由BD = 2CD,求得前的 值,然后结合平而向量的三角形法那么求得标的值. 【解答】解:V BD = 2CD 9答案和解析AD C2・・. BD =-BC.3・丽=法.•.丽=泞.3又AB = a ♦・•・ AD = AB + BD = a + -b.3应选:D.5.【答案】B【解析】【分析】根据平行线分线段成比例定理的逆定理对各选项进行判断.此题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.【解答】解:当A.:DB =AE: EC 时,DEI IBC;当BD: AB = CEz AC 时,DE//BC;当A3:AC = AD: AE时,那么AD:AB =AE: AC,所以0E〃8c.应选:B.6.【答案】B【解析】【分析】根据条件对个选项进行判断即可.此题考查了圆的熟悉,根据条件正确的作出判断是解题的关键.【解答】解:•・•点.在线段A8上〔点.与点A、B不重合〕,过点A、8的圆记作为圆01,••・点.可以在圆.1的内部,故A错误,B正确:•••过点仄C的圆记作为圆02,.•.点A可以在圆.2的外部,故C错误;•••过点.、月的圆记作为圆.3,.•.点5可以在圆.3的外部,故.错误.应选:B.7.【答案】k>2【解析】【分析】此题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,此题属于中等题型.根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:k-2> 0,k > 2,故答案为:k>2.8.【答案】〔0,0〕【解析】【分析】计算自变量为0所对应的函数值可得到抛物线与y轴的交点坐标.此题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.【解答】解:当% = 0时,y = x2 + 2x = 0,所以抛物线y = / + 2%与y轴的交点坐标为(0,0).故答案为(0,0).9.【答案】一2【解析】【分析】此题主要考查了二次函数的最值,正确得出二次函数顶点式是解题关键.直接利用二次函数最值求法得出函数顶点式,进而得出答案.【解答】解:•••二次函数?= / + 4% +.=5 + 2)2—4+.,・•・二次函数图象上的最低点的横坐标为:一2.故答案为:-2.10.【答案】g【解析】【分析】此题主要考查了比例的性质,正确表示出仇〃的值是解题关键.直接利用把“,b 用同一未知数表示,进而计算得出答案.【解答】解:•••3a = 4b(a、方都不等于零),・••设Q=4X,贝ljb = 3x,那么虫=史上=1. b 3x 3故答案为:11.【答案】3(V5-1)【解析】【分析】此题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的"二倍.根据黄金分割的概念得到4P =2空二月B,把力8 = 6cm代入计算即可.2【解答】解:・・,P是线段AB的黄金分割点,AP > BP,而力8 = 6cm,・•・ AP = 6 X = 3(V5 — l)cm.故答案为3(疗一1).12.【答案】2日一石【解析】【分析】考查平面向量,此题是利用方程思想求得向量7的值的,难度不大.根据平面向量的加减法计算法那么和方程解题.【解答】解:2胃一6一3方〕=4b2a —x + 3b — 4h = 02a —x - b = 0x = 2 a - b・故答案是:26—b .13.【答案】45【解析】解:设aDEF的周长别为x,△ A8C的三边长分别为4、5、6,•••△i48c 的周长=4 + 5 + 6 = 15,ABCf DEF,4 15•"12~ ~x'解得,x = 45, 故答案为:45.根据题意求出△ ABC的周长,根据相似三角形的性质列式计算即可.此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.14.【答案】|4【解析】【分析】此题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比.也考查了等腰三角形的性质.作/D J. 8c于.点,根据等腰三角形的性质得到8D=gBC = 3,然后根据余弦的定义求解.【解答】解:如图,作/D_L8C于.点,・.・ AB = AC = 4, BC = 6,・•・ BD = -BC = 3>2/ ■q BD 3{±.Rt △ ABD{\X. cosB = — = T-AB 4故答案为415.【答案】42【解析】〔分析] C ---------------- 刁8根据题意画出图形,然后根据平行线的性质可以求/得点3处的小明看点A处的小杰的俯角的度数,本/题得以解决. /此题考查平行线的性质,解直角三角形的应用-仰/角俯角问题,解答此题的关键是明确题意,利用数 / | 形结合的思想解答, A P 【解答】解:由题意可得,LBAO = 42%・・• BC//AD,・•・ Z.BAO = Z.ABC,・・.UBC = 42.,即点B处的小明看点A处的小杰的俯角等于42度,故答案为:42.16.【答案】120【解析】【分析】连接力c.证实a/oc是等边三角形即可解决问题.此题考查垂径定理,圆心角、弧、弦之间的关系,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:连接AC.AC = BC^...OC 1 AB, Z.AOC = Z.BOC,•MB平分OC,.•・48是线段..的垂直平分线,・** AO = AC 9v OA = OC,OA — O C = AC 9・・・^AOC = 60.,・・・ Z.AOB = 120°.故答案为120.17.【答案】3【解析】【分析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距/两圆半径/?,/•的数量关系间的联系和两圆位置关系求得圆心距即可.此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距“,两圆半径R,/•的数量关系间的联系.【解答】解:•••两圆的半径分别为2和5,两圆内切,・・・d = R-r = 5 - 2 = 3 cm,故答案为:3.18.【答案】9【解析】【分析】此题考查了翻折变换,相似三角形的判定和性质,锐角三角函数,熟练运用折叠的性质是此题的关键.设4E = Zc = BG, AC = 3k, (ZwO),可得EC = 2%,由折卷的性质可得EF=EC = 2k, AFED = Z,DEC = 45%根据相似三角形的性质可得芸=笠=g即A C CrC SGC = 3EF = 6k, 那么可求tanB的值.【解答】解:如图,・・・乙DEC = 45°v AC = 3AE・・・i殳力E = k = BG, AC = 3k, 〔k ¥: 0〕・•・ EC = 2k,・••折叠・・. EF = EC = 2k,乙FED =乙DEC = 45°A ZTEC = 90°,且2CB = 90.・・・EF//BCAEF^ACG力E _ EF _ 1AC~GC~3・•・ GC = 3EF = 6k,・•・ BC = BG + GC = 7k.AC 3・•・tanB =——=—BC 7故答案为:;19.【答案】解:2|1一夕加6阴+tanA^2 c W - 2m,T50=2-V3 +V3 + V2=2 + V2.【解析】先代入特殊角三角函数值,再根据实数的运算,可得答案.此题考查了特殊角三角函数值、实数的混合运算:熟记特殊角三角函数值是解题关键.20.【答案】解:(1)由题意,得1 + 6-3 = 0,解这个方程,得,b=2,所以,这个抛物线的表达式是y=/+ 2% - 3,所以y = (x+l)2 — 4,那么顶点M的坐标为(一1, 一4);(2)由(1)得:这个抛物线的对称轴是直线% =-1,设直线% = 1与x轴的交点为点B,那么点8的坐标为(一1,0),且小8/= 90.,在RtUBM中,MB = 4, AB = 2,由勾股定理得:AM2 = MB2 + AB2 = 16 +4 = 20,即月M = 2遍,所以sin乙.4M =—=—. AM S【解析】(1)把A坐标代入抛物线解析式求出〃的值,确定出抛物线表达式,并求出顶点坐标即可:(2)根据(1)确定出抛物线对称轴,求出抛物线与x轴的交点B坐标,根据题意得到三角形AM5为直角三角形,由M8与A8的长,利用勾股定理求出AM的长,再利用锐角三角函数定义求出所求即可.此题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,以及解直角三角形,熟练掌握待定系数法是解此题的关键.21.【答案】解:(1)由题意,得:乙48c = 90.,i = 1: 2.4,在RtMBC中,i = — = —, BC 12设力8 = 5%,那么BC=12»,・•・ AB2 + BC2 = AC2.・•・ AC = 13x,v AC = 13,・•・x = 1,・•・AB = 5,答:这个车库的高度AB为5米:(2)由(1)得:8c = 12,AD在Rt △力8D中,tanZi4DC =—,DB・・・ Z.ADC = 13% AB = 5tJ DB = 力21.645(m),・・・ DC = DB - BC = 21.645 - 12 = 9.645 力9.6(米),答:斜坡改良后的起点.与原起点C的距离为9.6米.【解析】此题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.(1)根据坡度的概念,设力8 = 5x,那么8.= 12x,根据勾股定理列出方程,解方程即可: (2)根据正切的定义列出算式,求出OC.22.【答案】解:(1尸0.经过圆心O, 0DLAC,•** AD = DC,同理:CE = EB,DE是△力8c的中位线,••・ DE = -AB92,: AB = 8,・・・DE= 4.(2)过点.作力8,垂足为点〃,.〞=3,连接.A,AB = 8,・・・AH = 4,在中,AH2 + 0H2 =A02.・・・力0 = 5,即圆.的半径为5.【解析】(1)由0D«LAC知力.=DC,同理得出CE = EB,从而知DE = 土力8,据此可得答案:(2)作.HJL月8于点儿连接04,根据题意得出."=3, AH=4,利用勾股定理可得答案.此题主要考查垂径定理,解题的关键是掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了中位线定理与勾股定理.23.【答案】证实(1),.力D//8C,・•・乙B =乙DAE,AB — AD = BC — AE»AB BC AE ADCBA^h DAE»・•・ LB AC =乙4ED.(2)由(1)得a DAE^A CBAAD DE・•・ Z.D = LC,=一, BC AC ,: Z.AFE = ZD,・•・LAFE =乙C,・・・EF//BC,・: AD//BC,・・・EFI I AD,,: LB AC = ZJ4ED,・・• DE//AC,四边形ADEF是平行四边形,・•・ DE = AF,AD AF •• • -- - •BC AC【解析】(1)欲证实乙&4c = AED,只要证实4 CBAF ZME即可:(2)由△ZMESC8/,可得黄=票,再证实四边形AOEF是平行四边形,推出OE=/F, 即可解决问题:此题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握根本知识,属于中考常考题型.24.【答案】解:(1)将4(4,0), 8(2,2)代入?=./ +及+ 2,得:吃心:能11.,(a = -^解得:?i匕••・抛物线的表达式为y =-^2+|X +2.(2)••・ y =-* + * + 2 = - - 1)2 + 京・•・顶点M的坐标为(1,?当% = 0时,、=一2/ +乙X+ 2 = 2,4 2•・•点.的坐标为(0,2).过点M作M〞dLy轴,垂足为点从如图1所示.=+ AO〕 - OH -\AO - OC _ 3cH ・ MH,1 9 1 1 9= .X〔l + 4〕X--.X4X2--X〔.-2〕Xl,如图2所示.・•・点B的坐标为(2,2),点A的坐标为(4,0),:, BG = 2, G力=2,・・.△BG/是等腰直角三角形,・•• Z.BAO = 45°.同理,可得:/-BOA = 45°.・・•点.的坐标为(2,0),:•BC =2, OC = 2,.•.△OCB是等腰直角三角形,・•• Z.DBO = 45°, BO = 2四,・•・ LBAO =乙DBO.v 乙DOE = 45°,・・•乙DOB +乙BOE = 450.・・•乙BOE + 乙EOA = 45%・•・ LEO A = Z.D08,・•・△ AOE^A BOD,AE _ AO BD - BO・・,抛物线y = 2的对称轴是直线x = 1,・••点.的坐标为〔1,2〕,・•・ BD = 1, .AE _ 4・・ 1 一2五,・•• AE =夜,过点E作EF_L 〞轴,垂足为点F,那么A/EF为等腰直角三角形,・・.EF = AF = 1,・・・点E的坐标为〔3,1〕.【解析】此题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、三角形〔梯形〕的面积、相似三角形的判定与性质以及等腰直角三角形, 解题的关键是:〔1〕根据点的坐标,利用待定系数法求出二次函数表达式;〔2〕利用分割图形求面积法结合三角形、梯形的面积公式,求出的面积;〔3〕通过构造相似三角形,利用相似三角形的性质求出AE的长度.(1)根据点A,8的坐标,利用待定系数法即可求出抛物线的表达式:(2)利用配方法可求出点M的坐标,利用二次函数图象上点的坐标特征可求出点.的坐标,过点M作轴,垂足为点从利用分割图形求面积法可得出的而积: (3)连接过点8作BG_Lx轴,垂足为点G,那么△8G4 △ 0C8是等腰直角三角形, 进而可得出乙B/.= NDB.,由乙D08 + NB0E = 45.,4BOE +4E./= 45°可得出^EOA=^DOB,进而可证出△/OEs^BOD,利用相似三角形的性质结合抛物线的对称轴为直线% = 1可求出AE的长,过点E作EF_Lx轴,垂足为点F,那么a/EF为等腰直角三角形,根据等腰直角三角形的性质可得出AE、EF的长,进而可得出点石的坐标.25.【答案】解:(1)、FE是AM和AN的比例中项AM AE • ——・- •-- ,AE AN・・・ Z.AEM = CANE、・.・乙D = 90°,・・・乙DCE+乙DEC = 90°,v EM IBC,・・・ 2EM + 4DEC = 90.,・•・ Z.AEM =乙DCE,・・・ZLANE =乙DCE;(2)v力C与NE互相垂直,・,LEAC + ZLAEN = 90°,・・,乙BAD = 90°,・・・"NE+ 2EN = 90.,・・・ Z.ANE = LEAC.由〔1〕得乙4NE = ziDCE,・•・乙DCE =乙EAC,・•, tanZ.DCE = tanZ,DAC,DE _ DC・•诟-AD'DC = AB = 6, AD = 8.由〔1〕得乙4EM =乙DCE,・•, tan乙4EM = tanZ.DCE,AM DE •・- •--- ,AE DC・•・AM=-,8AM AE* ・•------ ,AE AN (14)AN =—3(3)・・・小ME = Z,MAE + Z.AEM. ^AEC = ZD + 乙DCE, 又上MAE = =90.,由(1)得乙4EM = 4DCE,・•• Z.AEC =乙NME,当△/EC与以点E、M、N为顶点所组成的三角形相似时①4ENM = 4E>1C,如图2,・•・ Z.ANE = LEAC.由(2)得:DE = |;②乙ENM =4ECA, 如图3过点E作EHJLnC,垂足为点H,由(1)得乙4NE = 4DCE,・•・乙EC A =乙DCE,・・. HE = DE,又tan4ME=^ =而=6,设DE = 3%,那么HE=3x, AH = 4x, AE = Sx9 又力E + DE = AD,・,・ 5% + 3% = 8» 解得x = l,・•・ DE = 3x = 3,综上所述,OE的长分别为:或3.【解析】⑴由比例中项知曾=含据此可证△力ME〞△力EN得乙4EM = 〃NE,再证4力EM =乙DCE可得答案:(2)先证乙4NE = 4E月C,结合乙ANE = ^DCE得乙DCE = ZLEAC,从而知焉=言,据出:求得HE = 8 - ?=乙,由⑴得2EM =乙DCE,据此知竺=竺,求得力M = "由〞=些22'J AE DC8 AE AN求得MN =捺24(3)分乙ENM =乙曰4 c和△ENM =乙EG4两种情况分别求解可得.此题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.。
上海市虹口区2019-2020学年中考数学一模考试卷含解析

上海市虹口区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F,若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .∠EBD D .2∠ABF2.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是( ) A .圆锥 B .圆柱 C .球 D .正方体3.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是64.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .5.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<6.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A .0.3B .0.4C .0.5D .0.67.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个8.cos45°的值是()A.12B.32C.22D.19.下列大学的校徽图案是轴对称图形的是()A.B.C.D.10.如图所示的几何体的主视图是( )A.B.C.D.11.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-4 12.下列图形中,不是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.观察下列等式:第1个等式:a1=111(1) 1323=⨯-⨯;第2个等式:a 2=1111()35235=⨯-⨯; 第3个等式:a 3=1111()57257=⨯-⨯; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____;(2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为_____. 14.若a ,b 互为相反数,则a 2﹣b 2=_____.15.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为9m ,那么这栋建筑物的高度为_____m .16.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____. 18.已知关于X 的一元二次方程()2m 2x 2x 10-++=有实数根,则m 的取值范围是____________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F.(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF ∠的余切值. 20.(6分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC 绕点O 逆时针旋转90°得到△DEF ,画出△DEF ;(2)以O 为位似中心,将△ABC 放大为原来的2倍,在网格内画出放大后的△A 1B 1C 1,若P(x ,y)为△ABC 中的任意一点,这次变换后的对应点P 1的坐标为 .21.(6分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?22.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.23.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?24.(10分)阅读下面材料,并解答问题.材料:将分式42231x xx--+-+拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x ,上述等式均成立,∴113a ab -=⎧⎨+=⎩,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.25.(10分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案) 26.(12分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.27.(12分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.2.C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 3.D【解析】【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.4.C【解析】试题分析:观察可得,只有选项C 的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.5.C【解析】【分析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的;B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的.故选:C .【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.6.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1.故选C.【点睛】本题考查了频数与频率,频率=频数数据总和.7.D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=,∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值. 【详解】cos45°=2 2.故选:C.【点睛】本题考查特殊角的三角函数值.9.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.C【解析】【分析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.11.D【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .12.A【解析】【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形.故选A .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1111()9112911=⨯-⨯ 49 【解析】【分析】(1)观察等式可得()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭ 然后根据此规律就可解决问题; (2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)12311111111111(1)()()2323525722121n a a a a n n ⎛⎫+++⋯+=⨯-+⨯-+⨯-+⋯+- ⎪-+⎝⎭ 1149(1)22199n =-=+, 解得:n=49. 故答案为:11119112911⎛⎫=⨯- ⎪⨯⎝⎭49.属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键. 14.1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.15.1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,2=19x,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.16.1【解析】【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF ,根据题意得:AC ∥BD ,∴△ACP ∽△BDP ,∴DP :CP=BD :AC=1:3,∴DP :DF=1:1,∴DP=PF=CF=BF ,在Rt △PBF 中,tan ∠BPF==1,∵∠APD=∠BPF ,∴tan ∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.17.120°【解析】【分析】设扇形的半径为r ,圆心角为n°.利用扇形面积公式求出r ,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r ,圆心角为n°. 由题意:1816··233r ππ=, ∴r =4, ∴24163603n ππ= ∴n =120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18.m≤3且m≠2【解析】试题解析:∵一元二次方程()22210m x x -++=有实数根 ∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)25 cot CDF∠=.【解析】【分析】(1)矩形的性质得到AD BC AD BC=,∥,得到AD AE DAF AEB∠∠=,=,根据AAS定理证明ABE DFAV V≌;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:(1)证明:Q四边形ABCD是矩形,AD BC AD BC∴=,∥,AD AE DAF AEB∴∠∠=,=,在ABE△和DFAV中,DAF AEBAFD EBAAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE DFA∴V V≌,AF BE∴=;(2)ABE DFAQV V≌,AD AE DAF AEB∴∠∠=,=,设CE k=,21BE ECQ:=:,2BE k∴=,3AD AE k∴==,225AB AE BE k∴=-=,9090ADF CDF ADF DAF∠+∠︒∠+∠︒Q=,=,CDF DAE∴∠∠=,CDF AEB∴∠∠=,25cot cot55BECDF AEBAB k∴∠=∠===.本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.20.(1)见解析;(2)见解析,(﹣2x,﹣2y).【解析】【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到△DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A1B1C1,根据△A1B1C1结合位似的性质即可得P1的坐标.【详解】(1)如图所示,△DEF即为所求;(2)如图所示,△A1B1C1即为所求,这次变换后的对应点P1的坐标为(﹣2x,﹣2y),故答案为(﹣2x,﹣2y).【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形.在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧.21.(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】【分析】(1)设降价后乙种水果的售价是x元,30元可购买乙种水果的斤数是30x,原来购买乙种水果斤数是30x1,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.解:(1)设降价后乙种水果的售价是x 元,根据题意可得:3030 1.51x x =⨯+, 解得:x =2,经检验x =2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y 斤,根据题意可得:2(500﹣y )+1.5y≤900,解得:y≥200,答:至少购进乙种水果200斤.【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键22.(1)60°;(2)见解析;(3)对应的M 点坐标分别为:M 1(2,﹣、M 2(﹣2,﹣、M 3(﹣2,)、M 4(2,.【解析】【分析】(1)由于∠OAC=60°,易证得△OAC 是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC ,因此OA=AC=AP ,即OP 边上的中线等于OP 的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC 与⊙O 的位置关系.(3)此题应考虑多种情况,若△MAO 、△OAC 的面积相等,那么它们的高必相等,因此有四个符合条件的M 点,即:C 点以及C 点关于x 轴、y 轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC ,∠OAC=60°,∴△OAC 是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA ,已知PA=OA ,即OA=PA=AC ;∴AC=12OP ,因此△OCP 是直角三角形,且∠OCP=90°, 而OC 是⊙O 的半径,故PC 与⊙O 的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3;劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3;优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3;优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3、M2(﹣2,﹣3)、M3(﹣2,3)、M4(2,3.【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.23.(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B 种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y 元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y 随x 的增大而减小,∴当x=10时,y 有最大值,此时,30-x=20,y 的最大值为510000元,答:种植A 种生姜10亩,种植B 种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A 种生姜的产量+B 种生姜的产量,列方程或函数关系式.24. (1) =x 2+7+211x -+ (2) 见解析 【解析】【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可; (2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b ,可得168a ab -=-⎧⎨+=⎩ , 解得:a=7,b=1, 则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.25.(1)这种篮球的标价为每个50元;(2)见解析【解析】【分析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x个,在A 超市可买篮球42003000.9x+个,根据在B 商场比在A 商场多买5个列方程进行求解即可; (2)分情况,单独在A 超市买100个、单独在B 超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x 元, 依题意,得4200420030050.80.9x x+-=, 解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A 超市一次买100个,则需要费用:100×50×0.9-300=4200元, 在A 超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元, 单独在B 超市购买:100×50×0.8=4000元, 在A 、B 两个超市共买100个,根据A 超市的方案可知在A 超市一次购买:20000.950⨯=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B 超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元, 综上可知最少费用的购买方案:在A 超市分两次购买,每次购买45个篮球,费用共为3450元;在B 超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.26.576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B 组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg 至53kg 的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B 组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.27.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.。
2019届上海市闵行区中考一模数学试卷【含答案及解析】

2019届上海市闵行区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三总分得分一、选择题1. 在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A. B. C. D.2. 在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,下列四个三角比正确的是()A.sinA= B.cosA= C.tanA= D.cotA=3. 将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣3)2﹣1 B.y=2(x+3)2﹣1C.y=2x2+4 D.y=2x2﹣44. 已知,那么下列判断错误的是()A. B. C.∥ D.≠5. 一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣(x﹣2.5)2+3.5.已知篮圈中心到地面的距离 3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为()A.1米 B.2米 C.4米 D.5米的平分线交边AC于E,6. 如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BECC.△BAC∽△BDA D.△BDF∽△BAE二、填空题7. 已知:3a=2b,那么= .8. 计算:= .9. 如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是 cm.10. 二次函数的图象的顶点坐标是.11. 已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是.12. 已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是.13. 已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= .14. 已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为米(精确到0.1米)15. 如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果,CD=6,那么AE= .16. 如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是.17. 2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD 18. 如图,已知△ABC翻折,点B落在点B1处,如果B1D⊥AC,那么BD= .三、解答题19. 已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.20. 如图,在△ABC中,点D,E分别是边AB,AC的中点,设=,=.(1)填空:向量= .(用向量,的式子表示).(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).21. 如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.(1)如果,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.22. 如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.23. 如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且.(1)求证:AB∥CD;,求证:.(2)如果AD2=DG?DE24. 如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.25. 如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海初中数学一模-2019年- 填选合集2019年上海市宝山区中考数学一模试卷 (3)2019年上海市崇明区中考数学一模试卷 (5)2019年上海市黄浦区中考数学一模试卷 (7)2019年上海市奉贤区中考数学一模试卷 (11)2019年上海市虹口区中考数学一模试卷 (13)2019年上海市虹口区中考数学一模试卷 (16)2019年上海市嘉定区中考数学一模试卷 (19)2019年上海市金山区中考数学一模试卷 (21)2019年上海市静安区中考数学一模试卷 (24)2019年上海市闵行区中考数学一模试卷 (26)2019年上海市浦东新区中考数学一模试卷 (28)2019年上海市普陀区中考数学一模试卷 (31)2019年上海市青浦区中考数学一模试卷 (34)2019年上海市松江区中考数学一模试卷 (37)2019年上海市徐汇区中考数学一模试卷 (39)2019年上海市杨浦区中考数学一模试卷 (43)2019年上海市长宁区中考数学一模试卷 (45)2019年上海市宝山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)(2019•宝山区一模)如图,已知AB ∥CD ∥EF ,BD :DF =1:2,那么下列结论正确的是( )A .AC :AE =1:3B .CE :EA =1:3C .CD :EF =1:2 D .AB :CD =1:22.(4分)(2019•宝山区一模)下列命题中,正确的是( )A .两个直角三角形一定相似B .两个矩形一定相似C .两个等边三角形一定相似D .两个菱形一定相似3.(4分)(2019•宝山区一模)已知二次函数y =ax 2﹣1的图象经过点(1,﹣2),那么a 的值为( )A .a =﹣2B .a =2C .a =1D .a =﹣1 4.(4分)(2019•宝山区一模)如图,直角坐标平面内有一点P (2,4),那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12C .√55D .√55.(4分)(2019•宝山区一模)设m ,n 为实数,那么下列结论中错误的是( )A .m (n a →)=(mn )a →B .(m +n )a →=m a →+n a →C .m (a →+b →)=m a →+m b →D .若m a →=0→,那么a →=0→ 6.(4分)(2019•宝山区一模)若⊙A 的半径为5,圆心A 的坐标是(1,2),点P 的坐标是(5,2),那么点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不能确定二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2019•宝山区一模)抛物线y =x 2﹣1的顶点坐标是 .8.(4分)(2019•宝山区一模)将二次函数y =2x 2的图象向右平移3个单位,所得图象的对称轴为 .9.(4分)(2019•宝山区一模)请写出一个开口向下且过点(0,2)的抛物线解析式: .10.(4分)(2019•宝山区一模)若2|a →|=3,那么3|a →|= .11.(4分)(2019•宝山区一模)甲、乙两地的实际距离为500千米,甲、乙两地在地图上的距离为10cm ,那么图上4.5cm 的两地之间的实际距离为 千米.12.(4分)(2019•长宁区一模)如果两个相似三角形的周长的比等于1:4,那么它们的面积的比等于 .13.(4分)(2019•宝山区一模)Rt △ABC 中,∠C =90°,AB =2AC ,那么sin B = .14.(4分)(2019•宝山区一模)直角三角形的重心到直角顶点的距离为4cm ,那么该直角三角形的斜边长为 .15.(4分)(2019•宝山区一模)如图,四边形ABCD 中,AB ∥DC ,点E 在CB 延长线上,∠ABD =∠CEA ,若3AE =2BD ,BE =1,那么DC = .16.(4分)(2019•宝山区一模)⊙O 的直径AB =6,C 在AB 延长线上,BC =2,若⊙C 与⊙O 有公共点,那么⊙C 的半径r 的取值范围是 .17.(4分)(2019•宝山区一模)我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于 .18.(4分)(2019•宝山区一模)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P为AC 上一点,将△BCP 沿直线BP 翻折,点C 落在C ′处,连接AC ′,若AC ′∥BC ,那么CP 的长为 .2019年上海市崇明区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2019•崇明区一模)若2x =3y ,则x y 的值为( ) A .23 B .32 C .53 D .252.(4分)(2019•崇明区一模)在Rt △ABC 中,如果∠C =90°,那么AC BC 表示∠A 的( ) A .正弦 B .正切 C .余弦 D .余切3.(4分)(2019•崇明区一模)已知二次函数y =ax 2+bx 的图象如图所示,那么a 、b 的符号为( )A .a >0,b >0B .a <0,b >0C .a >0,b <0D .a <0,b <04.(4分)(2019•崇明区一模)如图,如果∠BAD =∠CAE ,那么添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A .∠B =∠D B .∠C =∠AED C .AB AD =DE BC D .AB AD =AC AE5.(4分)(2019•崇明区一模)已知向量a →和b →都是单位向量,那么下列等式成立的是( )A .a →=b →B .a →+b →=2C .a →−b →=0D .|a →|=|b →| 6.(4分)(2019•崇明区一模)如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r >1,那么这两个圆的位置关系不可能是( )A .内含B .内切C .外离D .相交二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.(4分)(2019•崇明区一模)化简:32a →−(a →−32b →)= .8.(4分)(2019•崇明区一模)已知线段b 是线段a 、c 的比例中项,且a =1,c =4,那么b = .9.(4分)(2019•崇明区一模)在以O 为坐标原点的直角坐标平面内有一点A (4,3),如果AO 与y 轴正半轴的夹角为α,那么cos α= .10.(4分)(2019•崇明区一模)如果一个正六边形的半径为2,那么这个正六边形的周长为 .11.(4分)(2019•崇明区一模)如果两个相似三角形的周长比为4:9,那么它们的面积比是 .12.(4分)(2019•崇明区一模)已知线段AB 的长为10cm ,点C 是线段AB 的黄金分割点,且AC >BC ,则AC = cm .(结果保留根号)13.(4分)(2019•崇明区一模)已知抛物线y =(x ﹣1)2﹣4,那么这条抛物线的顶点坐标为 .14.(4分)(2019•崇明区一模)已知二次函数y =﹣x 2﹣2,那么它的图象在对称轴的 部分是下降的(填“左侧”或“右侧”).15.(4分)(2019•崇明区一模)已知△ABC 中,∠ACB =90°,AC =6,BC =8,G 为△ABC的重心,那么CG = .16.(4分)(2019•崇明区一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC =6,△ABC 的高AH =3,则正方形DEFG 的边长为 .17.(4分)(2019•崇明区一模)已知Rt △ABC 中,∠ACB =90°,AB =10,AC =8.如果以点C 为圆心的圆与斜边AB 有唯一的公共点,那么⊙C 的半径R 的取值范围为 .18.(4分)(2019•崇明区一模)如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD 中,点M 在CD 边上,连结AM 、BM ,∠AMB =90°,则点M 为直角点.若点E 、F 分别为矩形ABCD 边AB 、CD 上的直角点,且AB =5,BC =√6,则线段EF 的长为 .2019年上海市黄浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2019•黄浦区一模)如果两个相似三角形对应边的比为4:5,那么它们对应中线的比是( )A .2:√5B .2:5C .4:5D .16:252.(4分)(2019•黄浦区一模)已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A的值为( )A .34B .43C .35D .453.(4分)(2019•黄浦区一模)在平面直角坐标系中,如果把抛物线y =﹣2x 2向上平移1个单位,那么得到的抛物线的表达式是( )A .y =﹣2(x +1)2B .y =﹣2(x ﹣1)2C .y =﹣2x 2+1D .y =﹣2x 2﹣1 4.(4分)(2019•黄浦区一模)已知a →、b →、c →都是非零向量.下列条件中,不能判定a →∥b →的是( )A .|a →|=|b →|B .a →=3b →C .a →∥c →,b →∥c →D .a →=2c →,b →=−2c →5.(4分)(2019•黄浦区一模)已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是( )A .18米B .4.5米C .9√3米D .9√5米. 6.(4分)(2019•黄浦区一模)如图,已知点E 、F 分别是△ABC 的边AB 、AC 上的点,且EF ∥BC ,点D 是BC 边上的点,AD 与EF 交于点H ,则下列结论中,错误的是( )A .AE AB =AH AD B .AE AB =EH HFC .AE AB =EF BCD .AE AB =HF CD二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•黄浦区一模)如果线段a =4厘米,c =9厘米,那么线段a 、c 的比例中项b = 厘米.8.(4分)(2019•黄浦区一模)如果向量c →与单位向量e →方向相反,且长度为2,那么向量c →=(用单位向量e →表示).9.(4分)(2019•黄浦区一模)在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为 .10.(4分)(2019•黄浦区一模)已知两个三角形相似,如果其中一个三角形的两个内角分别是45°、60°,那么另外一个三角形的最大内角是 °.11.(4分)(2019•黄浦区一模)抛物线y =x 2﹣4x +8的顶点坐标是 .12.(4分)(2019•黄浦区一模)如果点A (﹣1,m )、B(12,n)是抛物线y =﹣(x ﹣1)2+3上的两个点,那么m 和n 的大小关系是m n (填“>”或“<”或“=”).13.(4分)(2019•黄浦区一模)如图,已知AE 与CF 相交于点B ,∠C =∠E =90°,AC =4,BC =3,BE =2,则BF = .14.(4分)(2019•黄浦区一模)如图,平行四边形ABCD 中,点E 是BC 边上的点,BE :EC =1:2,AE 与BD 交于点O ,如果BE →=a →,BA →=b →,那么AO →= (用向量a →、b →表示).15.(4分)(2019•黄浦区一模)如图,在梯形ABCD 中,点E 、F 分别是腰AB 、CD 上的点,AD ∥EF ∥BC ,如果AD :EF :BC =5:6:9,那么AE EB = .16.(4分)(2019•黄浦区一模)在等腰△ABC 中,AB =AC ,如果cos C =14,那么tan A = .17.(4分)(2019•黄浦区一模)已知抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,AB =4,点C 是抛物线上一点,如果线段AC 被y 轴平分,那么点C 的坐标为 .18.(4分)(2019•黄浦区一模)如图,在矩形ABCD 中,点E 是边AD 上的点,EF ⊥BE ,交边CD 于点F ,联结CE 、BF ,如果tan ∠ABE =34,那么CE :BF = .2019年上海市奉贤区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)(2019•奉贤区一模)已知线段a 、b ,如果a :b =5:2,那么下列各式中一定正确的是( ) A .a +b =7B .5a =2bC .a+b b=72D .a+5b+2=12.(4分)(2019•奉贤区一模)关于二次函数y =12(x +1)2的图象,下列说法正确的是( )A .开口向下B .经过原点C .对称轴右侧的部分是下降的D .顶点坐标是(﹣1,0)3.(4分)(2019•奉贤区一模)如图,在直角坐标平面内,射线OA 与x 轴正半轴的夹角为α,如果OA =√10,tan α=3,那么点A 的坐标是( )A .(1,3)B .(3,1)C .(1,√10)D .(3,√10)4.(4分)(2019•奉贤区一模)对于非零向量a →、b →,如果2|a →|=3|b →|,且它们的方向相同,那么用向量a →表示向量b →正确的是( )A .b →=32a →B .b →=23a →C .b →=−32a →D .b →=−23a →5.(4分)(2019•奉贤区一模)某同学在利用描点法画二次函数y =ax 2+bx +c (a =0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( ) A .{x =0y =−3B .{x =2y =−1C .{x =3y =0D .{x =4y =36.(4分)(2019•奉贤区一模)已知⊙A 的半径AB 长是5,点C 在AB 上,且AC =3,如果⊙C 与⊙A 有公共点,那么⊙C 的半径长r 的取值范围是( ) A .r ≥2B .r ≤8C .2<r <8D .2≤r ≤8二、填空题(本大题共12题,每题4分,满分48分)7.(4分)(2019•奉贤区一模)计算:3a →+2(a →−12b →)= .8.(4分)(2019•奉贤区一模)计算:sin30°tan60°= .9.(4分)(2019•奉贤区一模)如果函数y =(m ﹣1)x 2+x (m 是常数)是二次函数,那么m 的取值范围是 .10.(4分)(2019•奉贤区一模)如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是 .(只需写一个即可)11.(4分)(2019•奉贤区一模)如果将抛物线y =﹣2x 2向右平移3个单位,那么所得到的新抛物线的对称轴是直线 .12.(4分)(2019•奉贤区一模)如图,AD 与BC 相交于点O ,如果AO DO=13,那么当BO CO的值是 时,AB ∥CD .13.(4分)(2019•奉贤区一模)如图,已知AB是⊙O的弦,C是AB̂的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.14.(4分)(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.15.(4分)(2019•奉贤区一模)如果正n边形的内角是它中心角的两倍,那么边数n的值是.16.(4分)(2019•奉贤区一模)如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.17.(4分)(2019•奉贤区一模)我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是.18.(4分)(2019•奉贤区一模)如图,在△ABC中,AB=AC=5,sin C=35,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE ∥BC,那么BF的长是.2019年上海市虹口区中考数学一模试卷一、选择题1.(4分)(2019•虹口区一模)抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.(4分)(2019•虹口区一模)如果抛物线y =(a +2)x 2开口向下,那么a 的取值范围为( ) A .a >2B .a <2C .a >﹣2D .a <﹣23.(4分)(2019•虹口区一模)如图,在Rt △ABC 中,∠C =90°,如果AC =5,AB =13,那么cos A 的值为( )A .513B .1213C .125D .5124.(4分)(2019•虹口区一模)如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5 米B .5√3米C .2√5 米D .4√5米5.(4分)(2019•虹口区一模)如果向量a →与单位向量e →的方向相反,且长度为3,那么用向量e →表示向量a →为( ) A .a →=3e →B .a →=−3e →C .e →=3a →D .e →=−3a →6.(4分)(2019•虹口区一模)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,点E 在AD 上,如果∠ABE =∠C ,AE =2ED ,那么△ABE 与△ADC 的周长比为( )A .1:2B .2:3C .1:4D .4:9二、填空题7.(4分)(2019•虹口区一模)如果a b=23,那么a+b a的值为 .8.(4分)(2019•虹口区一模)计算:2a →−(3b →−a →)=9.(4分)(2019•虹口区一模)如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.(4分)(2019•虹口区一模)如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.(4分)(2019•虹口区一模)如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.(4分)(2019•虹口区一模)如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.(4分)(2019•虹口区一模)在Rt△ABC中,∠C=90°,如果sin A=23,BC=4,那么AB=.14.(4分)(2019•虹口区一模)如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC =6,CE=9,AF=10,那么DF的长为.15.(4分)(2019•虹口区一模)如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.(4分)(2019•虹口区一模)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.(4分)(2019•虹口区一模)定义:如果△ABC内有一点P,满足∠P AC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果P A=2,那么PC=.18.(4分)(2019•虹口区一模)如图,正方形ABCD的边长为4,点O为对角线AC、BD 的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.2019年上海市虹口区中考数学一模试卷一、选择题1.(4分)(2019•虹口区一模)抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.(4分)(2019•虹口区一模)如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2B.a<2C.a>﹣2D.a<﹣23.(4分)(2019•虹口区一模)如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.513B.1213C.125D.5124.(4分)(2019•虹口区一模)如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5 米B .5√3米C .2√5 米D .4√5米5.(4分)(2019•虹口区一模)如果向量a →与单位向量e →的方向相反,且长度为3,那么用向量e →表示向量a →为( ) A .a →=3e →B .a →=−3e →C .e →=3a →D .e →=−3a →6.(4分)(2019•虹口区一模)如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,点E 在AD 上,如果∠ABE =∠C ,AE =2ED ,那么△ABE 与△ADC 的周长比为( )A .1:2B .2:3C .1:4D .4:9二、填空题7.(4分)(2019•虹口区一模)如果a b=23,那么a+b a的值为 .8.(4分)(2019•虹口区一模)计算:2a →−(3b →−a →)=9.(4分)(2019•虹口区一模)如果抛物线y =ax 2+2经过点(1,0),那么a 的值为 . 10.(4分)(2019•虹口区一模)如果抛物线y =(m ﹣1)x 2有最低点,那么m 的取值范围为 .11.(4分)(2019•虹口区一模)如果抛物线y =(x ﹣m )2+m +1的对称轴是直线x =1,那么它的顶点坐标为 .12.(4分)(2019•虹口区一模)如果点A (﹣5,y 1)与点B (﹣2,y 2)都在抛物线y =(x +1)2+1上,那么y 1 y 2(填“>”、“<”或“=”)13.(4分)(2019•虹口区一模)在Rt△ABC中,∠C=90°,如果sin A=23,BC=4,那么AB=.14.(4分)(2019•虹口区一模)如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC =6,CE=9,AF=10,那么DF的长为.15.(4分)(2019•虹口区一模)如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.(4分)(2019•虹口区一模)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.(4分)(2019•虹口区一模)定义:如果△ABC内有一点P,满足∠P AC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果P A=2,那么PC=.18.(4分)(2019•虹口区一模)如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为 .2019年上海市嘉定区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.(4分)(2019•嘉定区一模)下列函数中,是二次函数的是( ) A .y =2x +1 B .y =(x ﹣1)2﹣x 2C .y =1﹣x 2D .y =1x 22.(4分)(2019•嘉定区一模)已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( ) A .y =(x +2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+53.(4分)(2019•嘉定区一模)已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( ) A .5sin AB .5cos AC .5sinAD .5cosA4.(4分)(2019•嘉定区一模)如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,AB →=a →,BC →=b →,那么AD →等于( )A .AD →=a →+b →B .AD →=23a →+23b →C .AD →=a →−23b →D .AD →=a →+23b →5.(4分)(2019•嘉定区一模)如果点D 、E 分别在△ABC 中的边AB 和AC 上,那么不能判定DE ∥BC 的比例式是( ) A .AD :DB =AE :EC B .DE :BC =AD :AB C .BD :AB =CE :ACD .AB :AC =AD :AE6.(4分)(2019•嘉定区一模)已知点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为圆O 1,过点B 、C 的圆记作为圆O 2,过点C 、A 的圆记作为圆O 3,则下列说法中正确的是( ) A .圆O 1可以经过点C B .点C 可以在圆O 1的内部 C .点A 可以在圆O 2的内部D .点B 可以在圆O 3的内部二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.(4分)(2019•嘉定区一模)如果抛物线y =(k ﹣2)x 2+k 的开口向上,那么k 的取值范围是 .8.(4分)(2019•嘉定区一模)抛物线y =x 2+2x 与y 轴的交点坐标是 .9.(4分)(2019•嘉定区一模)二次函数y =x 2+4x +a 图象上的最低点的横坐标为 . 10.(4分)(2019•嘉定区一模)如果3a =4b (a 、b 都不等于零),那么a+b b= .11.(4分)(2019•嘉定区一模)已知P 是线段AB 的黄金分割点,AB =6cm ,AP >BP ,那么AP = cm .12.(4分)(2019•嘉定区一模)如果向量a →、b →、x →满足关系式2a →−(x →−3b →)=4b →,那么x →= (用向量a →、b →表示).13.(4分)(2019•嘉定区一模)如果△ABC ∽△DEF ,且△ABC 的三边长分别为4、5、6,△DEF 的最短边长为12,那么△DEF 的周长等于 .14.(4分)(2019•嘉定区一模)在等腰△ABC 中,AB =AC =4,BC =6,那么cos B 的值= .15.(4分)(2019•嘉定区一模)小杰在楼下点A 处看到楼上点B 处的小明的仰角是42度,那么点B 处的小明看点A 处的小杰的俯角等于 度.16.(4分)(2019•嘉定区一模)如图,在圆O中,AB是弦,点C是劣弧AB的中点,连接OC,AB平分OC,连接OA、OB,那么∠AOB=度.17.(4分)(2019•嘉定区一模)已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于厘米.18.(4分)(2019•嘉定区一模)在△ABC中,∠ACB=90°,点D、E分别在边BC、AC上,AC=3AE,∠CDE=45°(如图),△DCE沿直线DE翻折,翻折后的点C落在△ABC内部的点F,直线AF与边BC相交于点G,如果BG=AE,那么tan B=.2019年上海市金山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)(2019•金山区一模)下列函数是二次函数的是()A.y=x B.y=1x C.y=x﹣2+x2D.y=1x22.(4分)(2019•金山区一模)在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACAB B.BCABC.ACBCD.BCAC3.(4分)(2019•金山区一模)如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于()A.4B.9C.12D.164.(4分)(2019•金山区一模)已知e →是一个单位向量,a →、b →是非零向量,那么下列等式正确的是( ) A .|a →|e →=a →B .|e →|b →=b →C .1|a →|a →=e →D .1|a →|a →=1|b →|b →5.(4分)(2019•金山区一模)已知抛物线y =ax 2+bx +c (a ≠0)如图所示,那么a 、b 、c 的取值范围是( )A .a <0、b >0、c >0B .a <0、b <0、c >0C .a <0、b >0、c <0D .a <0、b <0、c <06.(4分)(2019•金山区一模)如图,在Rt △ABC 中,∠C =90°,BC =2,∠B =60°,⊙A 的半径为3,那么下列说法正确的是( )A .点B 、点C 都在⊙A 内 B .点C 在⊙A 内,点B 在⊙A 外 C .点B 在⊙A 内,点C 在⊙A 外D .点B 、点C 都在⊙A 外二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.(4分)(2019•金山区一模)已知二次函数f (x )=x 2﹣3x +1,那么f (2)= . 8.(4分)(2019•金山区一模)已知抛物线y =12x 2− 1,那么抛物线在y 轴右侧部分是 (填“上升的”或“下降的”).9.(4分)(2019•金山区一模)已知xy=52,那么x+y y = .10.(4分)(2019•金山区一模)已知α是锐角,sin α=12,那么cos α= . 11.(4分)(2019•金山区一模)一个正n 边形的中心角等于18°,那么n = .12.(4分)(2019•金山区一模)已知点P 是线段AB 的黄金分割点,且AP >BP ,AB =4,那么AP = .13.(4分)(2019•金山区一模)如图,为了测量铁塔AB 的高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB = 米.14.(4分)(2019•金山区一模)已知⊙O 1、⊙O 2的半径分别为2和5,圆心距为d ,若⊙O 1与⊙O 2相交,那么d 的取值范围是 .15.(4分)(2019•金山区一模)如图,已知O 为△ABC 内一点,点D 、E 分别在边AB 、AC 上,且AD AB=25,DE ∥BC ,设OB →=b →、OC →=c →,那么DE →= (用b →、c →表示).16.(4分)(2019•金山区一模)如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结P A 、PB ,若∠APB =60°,AP =6,那么⊙O 2的半径等于 .17.(4分)(2019•金山区一模)如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB =AC =5,cos ∠C =45,那么GE = .18.(4分)(2019•金山区一模)如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6.在边AB 上取一点O ,使BO =BC ,以点O 为旋转中心,把△ABC 逆时针旋转90°,得到△A ′B ′C ′(点A 、B 、C 的对应点分别是点A ′、B ′、C ′),那么△ABC 与△A ′B ′C ′的重叠部分的面积是2019年上海市静安区中考数学一模试卷一、选择题(本大题共6题,每题4分)1.(4分)(2019•静安区一模)化简(﹣x 3)2的结果是( ) A .﹣x 6B .﹣x 5C .x 6D .x 52.(4分)(2019•静安区一模)下列抛物线中,顶点坐标为(2,1)的是( ) A .y =(x +2)2+1B .y =(x ﹣2)2+1C .y =(x +2)2﹣1D .y =(x ﹣2)2﹣13.(4分)(2019•静安区一模)在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于( ) A .3sin αB .3cos αC .3sinαD .3cosα4.(4分)(2019•静安区一模)点P 把线段AB 分割成AP 和PB 两段,如果AP 是PB 和AB 的比例中项,那么下列式子成立的是( ) A .PB AP=√5+12B .APPB=√5−12C .PB AB=√5−12D .APAB=√5−125.(4分)(2019•静安区一模)如图,点D 、E 分别在△ABC 的边AB 、AC 上,且DE 与BC 不平行.下列条件中,能判定△ADE 与△ACB 相似的是( )A .AD AC=AE ABB .AD AE=AB ACC .DE BC=AE ABD .DE BC=AD AC6.(4分)(2019•静安区一模)下列说法不正确的是( ) A .设e →为单位向量,那么|e →|=1B .已知a →、b →、c →都是非零向量,如果a →=2c →,b →=−4c →,那么a →∥b →C .四边形ABCD 中,如果满足AB ∥CD ,|AD →|=|BC →|,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 二、填空题(本大题共12题,每题4分)7.(4分)(2004•长春)不等式2x ﹣1>0的解是 . 8.(4分)(2019•静安区一模)方程1x−1=x 2x−1的根是 .9.(4分)(2019•静安区一模)已知x y=25,那么x+y y的值是 .10.(4分)(2019•静安区一模)△ABC ∽△A 1B 1C 1,其中点A ,B ,C 分别与点A 1,B 1,C 1对应,如果AB :A 1B 1=2:3,AC =6,那么A 1C 1= .11.(4分)(2019•静安区一模)如图,在点A 处测得点B 处的仰角是 .(用“∠1,∠2,∠3或∠4”表示)12.(4分)(2019•静安区一模)如图,当小明沿坡度i =1:√3的坡面由A 到B 行走了6米时,他实际上升的高度BC = 米.13.(4分)(2019•静安区一模)抛物线y =ax 2+(a ﹣1)(a ≠0)经过原点,那么该抛物线在对称轴左侧的部分是 的.(填“上升”或“下降”)14.(4分)(2019•静安区一模)如图4,AD ∥BC ,AC 、BD 相交于点O ,且S △AOD :S △BOC=1:4.设AD →=a →,DC →=b →,那么向量AO →= .(用向量a →、b →表示)15.(4分)(2019•静安区一模)在中△ABC ,∠C =90°,AC =8,BC =6,G 是重心,那么G 到斜边AB 中点的距离是 .16.(4分)(2019•静安区一模)抛物线y =ax 2(a ≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y =x 2沿直线y =x 向上平移,平移距离为√2时,那么它的“同簇抛物线”的表达式是 .17.(4分)(2019•静安区一模)如图,梯形ABCD 中,AB ∥CD ,BE ∥AD ,且BE 交CD 于点E ,∠AEB =∠C .如果AB =3,CD =8,那么AD 的长是 .18.(4分)(2019•静安区一模)如图,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,连接AE .如果tan ∠DFC =23,那么BD AE的值是 .2019年上海市闵行区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2019•闵行区一模)在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,下列等式中不成立的是( ) A .tan B =baB .cos B =acC .sin A =acD .cot A =ab2.(4分)(2019•闵行区一模)如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( ) A .北偏东30°B .北偏西30°C .北偏东60°D .北偏西60°3.(4分)(2019•闵行区一模)将二次函数y =2(x ﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为( ) A .y =2(x ﹣2)2﹣4 B .y =2(x ﹣1)2+3 C .y =2(x ﹣1)2﹣3D .y =2x 2﹣34.(4分)(2019•闵行区一模)已知二次函数y =ax 2+bx +c 的图象如图所示,那么根据图象,下列判断中不正确的是( )A .a <0B .b >0C .c >0D .abc >05.(4分)(2019•闵行区一模)已知:点C 在线段AB 上,且AC =2BC ,那么下列等式正确的是( )A .AC →+2BC →=43AB →B .AC →−2BC →=0→C .|AC →+BC →|=|BC →|D .|AC →−BC →|=|BC →|6.(4分)(2019•闵行区一模)已知在△ABC 中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE ∥BC ,DF ∥AC ,那么下列比例式中,正确的是( ) A .AE EC=CF FBB .AE EC=DE BCC .DF AC=DE BCD .ECAC=FC BC二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•闵行区一模)已知:x :y =2:5,那么(x +y ):y = .8.(4分)(2019•闵行区一模)化简:−32a →+b →+12(a →−32b →)= .9.(4分)(2019•闵行区一模)抛物线y =x 2+3x +2与y 轴的交点坐标是 . 10.(4分)(2019•闵行区一模)已知二次函数y =−12x 2−3,如果x >0,那么函数值y 随着自变量x 的增大而 (填“增大”或“减小”).11.(4分)(2019•闵行区一模)已知线段AB =4厘米,点P 是线段AB 的黄金分割点(AP >BP ),那么线段AP = 厘米.(结果保留根号)12.(4分)(2019•闵行区一模)在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC .如果AD AB=35,DE =6,那么BC = .13.(4分)(2011•晋江市)如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为 .14.(4分)(2019•闵行区一模)在Rt △ABC 中,∠C =90°,AB =2√10,tan A =13,那么BC = .15.(4分)(2019•闵行区一模)某超市自动扶梯的坡比为1:2.4.一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为 米. 16.(4分)(2019•闵行区一模)在△ABC 和△DEF 中,AB DE=BC EF.要使△ABC ∽△DEF ,还需要添加一个条件,那么这个条件可以是 (只需填写一个正确的答案). 17.(4分)(2019•闵行区一模)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =4√2,点D 、E 分别在边AB 上,且AD =2,∠DCE =45°,那么DE = .18.(4分)(2019•闵行区一模)如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,连接AE .如果AE ∥CD ,那么BE = .2019年上海市浦东新区中考数学一模试卷一、选择题(本大题共6题,每题4分)1.(4分)(2019•浦东新区一模)已知在Rt△ABC中,∠C=90°,AC=8,BC=15,那么下列等式正确的是()A.sin A=817B.cos A=815C.tan A=817D.cot A=8152.(4分)(2019•浦东新区一模)已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(2√5+2)cm B.(2√5−2)cm C.(√5+1)cm D.(√5−1)cm 3.(4分)(2019•浦东新区一模)已知二次函数y=﹣(x+3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)4.(4分)(2019•浦东新区一模)如果将抛物线y=x2+4x+1平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位5.(4分)(2019•浦东新区一模)如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.mcotα−cotβ千米B.mcotβ−cotα千米C.mtanα−tanβ千米D.mtanβ−tanα千米6.(4分)(2019•浦东新区一模)在△ABC 与△DEF 中,下列四个命题是真命题的个数共有( )①如果∠A =∠D ,AB DE =BC EF ,那么△ABC 与△DEF 相似; ②如果∠A =∠D ,AB DF=ACDE,那么△ABC 与△DEF 相似; ③如果∠A =∠D =90°,AC AB =DF DE ,那么△ABC 与△DEF 相似;④如果∠A =∠D =90°,ACDF=BC EF,那么△ABC 与△DEF 相似;A .1个B .2个C .3个D .4个二、填空题(本大题共12题,每题4分)7.(4分)(2019•浦东新区一模)已知2x =5y ,那么x x+2y= .8.(4分)(2019•浦东新区一模)如果y =(k ﹣3)x 2+k (x ﹣3)是二次函数,那么k 需满足的条件是 .9.(4分)(2019•浦东新区一模)如图,已知直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,且l 1∥l 2∥l 3,AB =6,BC =4,DF =15,那么线段DE 的长等于 .10.(4分)(2019•浦东新区一模)如果△ABC ∽△DEF ,且△ABC 的面积为2cm 2,△DEF 的面积为8cm 2,那么△ABC 与△DEF 相似比为 .11.(4分)(2019•浦东新区一模)已知向量a →与单位向量e →的方向相反,|a →|=4,那么向量a →用单位向量e →表示为 .12.(4分)(2019•浦东新区一模)已知某斜面的坡度为1:√3,那么这个斜面的坡角等于 度.。