物理方法求曲率半径

合集下载

曲率半径的两种求解方法

曲率半径的两种求解方法

曲率半径的两种求解方法作者:汪邦家孙丽来源:《中学物理·高中》2014年第07期高中物理教材中出现了曲率半径,并且在高考中也出现过求曲率半径的试题.那什么是曲线的曲率半径呢?曲率半径如何求解?很多学生都发出这样的疑问.本文将讨论曲率半径的概念及求曲率半径的两种求解方法.1平面曲线的曲率半径工程技术中用曲率来描述曲线的弯曲程度.如图1所示,设曲线C是光滑的(曲线上每一处都有切线,且切线随切点的移动而连续转动).在曲线C上选定一端点M0作为度量弧s的基点.设曲线上点M对应于弧s,在点M处切线的倾角为a,曲线上另外一点M′对应于弧s+Δs,在点M′处切线的倾角为a+Δa,那么,弧段MM′的长度为|Δs|,当动点从M移动到M′时切线转过的角度为|Δa|.用比值|Δa||Δs|来表达弧段MM′的平均弯曲程度,把这比值叫做弧段MM′的平均曲率,并记作=|ΔaΔs|,当Δs→0时,上述平均曲率的极限叫做曲线C在点M处的曲率,记作K,K=|dads|,把ρ=1K=|dsda|称为曲线C在点M的曲率半径.设曲线的直角坐标方程为y=f(x),则ρ=1K=(1+y′2)3/2|y″|.设曲线的参数方程为x=φ(t),,则ρ=1K=[]-1.1抛物线上的曲率半径例1(2011年安徽高考题)现将一物体与水平面成a角的方向以速度v0抛出,如图2所示.则在轨迹最高点P处的曲率半径是多少?方法1数学公式法解斜抛运动参数方程x=φ(t)=v0cosa•t,-12gt2,可得φ′(t)=v0cosa,φ″(t)=0(1)--g(2)把(1)、(2)两式代入ρ=1K=[]-得ρ=[v20cos2a+(v0sina-gt)2]3/2v0gcosa(3)运动到轨迹最高点历时t=v0sinag(4)把(4)代入(3),得ρ=v20cos2ag.方法2物理方法一般的曲线运动可以分为很多小段,每小段都可以看作圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替.而曲线上某点的曲率半径,就是在曲线上包含该点在内的一段弧,当这段弧极小时,可以把把它看作是某个圆的弧,则此圆的半径就是曲线在该点的曲率半径,如图3.这样在分析质点经过曲线上某点的运动时,就可以采用圆周运动的分析方法来处理了.如图3中,当质点运动到A点对应的曲率半径为ρ,速度为vA,向心加速度为an,由向心加速度公式可得an=v2Aρ.解物体在在其轨迹的最高点P处只有水平速度,其水平速度为v0cosa,最高点法向加速度an=g=v0cosa)2ρ,所以曲率半径ρ=v20cos2ag.例2将一小球以v0=10 m/s的初速度从楼顶水平抛出,小球下落t=3 s时位于轨迹曲线上的P点,求曲线在P位置的曲率半径和此时小球的法向加速度.方法1数学公式法平抛运动参数方程x=φ(t)=v0t,得φ′(t)=v0,φ″(t)=0(1)把(1)、(2)两式代入ρ=[]-得ρ=(v20+g2t2)3/2v0g(3)把v0=10 m/s,t=3 s代入(3)式,得ρ=80 m.此时小球瞬时速度v=v20+(gt)2=20 m/s,所以an=v2ρ=5 m/s2.方法2物理方法如图4所示,下落3 s时,竖直速度vy=gt=103 m/s.此时瞬时速度v=v20+(gt)2=20 m/s,设其方向与水平方向夹角为θ,则tanθ=vyv0=3,得θ=60°.把重力加速度g沿该点法向和切向分解,法向分加速度an=gcos60°=5 m/s2.由an=v2ρ得ρ=v2an=2025 m=80 m.1.2椭圆上的曲率半径例3质点沿轨道方程为x2a2+y2b2=1的椭圆从A点开始做逆时针运动,如图5所示.求A、B两点的曲率半径.方法1数学公式法解椭圆的参数方程为x=φ(θ)=acosθ,可得φ′(θ)=-asinθ,φ″(θ)=-acosθ(1)-bsinθ(2)把(1)、(2)两式代入ρ=[]-得ρ=[a2sin2θ+b2cos2θ]3/2ab(3)A点θ=0,代入(3)式得ρA=b2a(4)B点θ=90°,代入(3)式得ρB=a2b(5)方法2物理方法解如图6所示,半径为b的圆柱面被两平面相截,其中一个平面与圆柱面轴线垂直,第二个平面与第一个平面交角为θ,且满足cosθ=ba.两平面的交线与圆柱面相切,如图所示.由图5可知,第一个平面与圆柱面的交线是一个半径为b的圆,第二个平面与圆柱面的交线是一半长轴为b,半短轴为a的椭圆.如图6所示建立直角坐标系,坐标原点在圆心O处,y轴过两个平面交线与圆柱面的切点C.x轴与圆的交点A、y轴与圆的另一个交点B,沿z轴方向在第二个平面上的射影正好是椭圆上的A′、B′.设一质点在半径为b的圆周上做速率为v的匀速圆周运动,则此质点沿z轴方向在第二个平面上的运动将沿椭圆轨道运动.这个射影的运动就是此处选择的运动,在此运动下求椭圆轨道点A′、点B′的曲率半径易知,A点的速度v,法向加速度v2b.A点的射影A′的速度和法向加速度分别为vA′=vcosθ=abv,(aA′)n=(aA)n=v2b.由这两式得A′处的椭圆曲率半径ρA′=v2A′(aA′)n=a2b.同理,由点B的速度v和法向加速度v2b,得B点的射影B′点的速度和法向加速度vB′=v,(aB′)n=(aB)ncosθ=av2b2,由这两式得B′处的椭圆曲率半径ρB′=v2B′(aB′)n=b2a.2立体曲线的曲率半径螺旋线的曲率半径例5已知等距螺旋线在垂直z轴方向的截面圆半径为R,螺距为h,如图7所示.一质点沿此螺旋线做匀速率运动,在垂直z轴方向的投影转过一周所用的时间为T.求该质点在做等距螺旋线运动时螺旋轨迹的曲率半径.方法1数学公式法此题属于立体曲线的曲率半径求解问题,上面给出的平面曲线的曲率半径求解公式在此已经不适用.对于一个以参数化形式给出的空间曲线x=φ(t),,z=ψ(t).其曲率半径计算公式为ρ=(x′2+y′2+z′2)3/2(z″y′-y″z′)2+(x″z′-z″x′)2+(y″x′-x″y′)2.解设此质点沿z轴方向的速率为v∥,螺旋线运动方程为x=φ(θ)=Rcosθ,z=ψ(θ)=v∥θ2πT,得x′=φ′(θ)=-Rsinθ,x″=φ″(θ)=-Rcosθ(1)-Rsinθ(2)z′=ψ′(θ)=v∥t2π,z″=ψ″(θ)=0(3)把(1)、(2)、(3)式代入ρ=[x′2+y′2+z′2]3/2(z″y′-y″z′)2+(x″z′-z″x′)2+(y″x′-x″y′)2,得ρ=4π2R2+v2∥T24π2R(4)质点沿z轴方向做匀速直线运动,v∥T=h(5)把(5)式代入(4)式得ρ=4π2R2+h24π2R.方法2物理方法解质点在垂直轴方向做匀速圆周运动的分速度为v⊥=2πRT(1)沿z轴方向匀速直线运动速度为v∥=hT(2)设质点沿螺旋线运动速度v,则v2=v2⊥+v2∥(3)把(1)、(2)代入(3)得v2=4π2R2+h2T2(4)质点运动的加速度a=ΔvΔt=Δ(v⊥+v∥)Δt=Δv⊥Δt=0,这里Δv∥Δt=0,可知加速度与质点做半径为R的圆周运动的加速度相同,即a=an=(2πT)2R=4π2RT2(5)把(4)、(5)代入ρ=v2a得ρ=4π2R2+h24π2R.从数学和物理两种角度出发都可以求解曲率半径,充分体现了数学工具在处理物理问题中的重要地位,体现了数学和物理在处理同一问题时的和谐统一美.。

物理方法求曲率半径

物理方法求曲率半径

用物理方法求常见曲线的曲率半径求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如江苏理综14题涉及到曲率半径,高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看高考安徽理综17题:一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。

则在其轨迹最高点P 处得曲率半径是( )A .g v 20B .g v α220sinC .gv α220cosD .ααsin cos 220g v[解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力.由rv m F 2=向得: ρα20)cos (v m mg =则有:gv αρ220cos = 本题正确答案为C上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 221gt y = ②联立①②式得222x v g y =图1x yO 图2v 0令202v g a =,则2ax y = 研究抛物线的顶点,从向心力出发,有: ρ2mv mg =则有a g v 2120==ρ,即抛物线2ax y =顶点的曲率半径为a21=ρ 二、求椭圆顶点的的曲率半径理论力学可以证明:飞行物在有心力场中运动,如果总机械能E <0则其轨迹必为椭圆,且引力源在其椭圆的一个焦点上.太阳系中,行星绕太阳运动的轨道是椭圆,太阳位于轨道的一个焦点上.多数人造卫星绕地球的轨道也是椭圆,地球位于卫星轨道的一个焦点上.如图3,质量为m 卫星绕质量为M 地球做椭圆运动,轨迹椭圆方程为:12222=+b y a x 地球位于椭圆左焦点上. 设椭圆顶点A 、A ′距离左焦点的距离为r ,易知:c a r A -= ,c a r A +=',设卫星在椭圆顶点A 、A ′处的速度v , 则对地球和卫星系统而言,机械能守恒同时角动量守恒.卫星在椭圆顶点A 、A ′处均满足以下两个方程:E rMm G mv =-221 ①mvr L = ②联立①②得关于r 的二次方程:0222=-+mEL r E Mm G r ③ 可以肯定方程③的两根就是A r 和'A r ,由韦达定理知:EGMma r r A A -==+2' 则: aGMmE 2-= ④ 卫星位于顶点A121ρv m = ⑤把c a r A -=带入方程①: E ca Mm G mv =--2121 ⑥联立方程④⑤⑥得: ab 21==ρ ⑦由对称性可知, 椭圆顶点A ′的曲率半径也是ab 21=ρ.卫星位于顶点B 时:万有引力可分为向心力θτcos 2aMmGF =和切向力θsin 2a MmGF n =. 由向心力公式得: 2222cos ρθv m aMmG = ⑧由几何关系易知: ab=θcos ⑨ 由方程①得: a GMm a Mm G mv 22122-=- ⑩ 联立⑧⑨⑩得: ba 22=ρ ○11 由对称性可知,椭圆顶点B ′的曲率半径也是ba 22=ρ.所以椭圆12222=+b y a x 长半轴上的两顶点曲率半径为a b 21==ρ,短半轴上两曲率半径为ba 22=ρ三、求双曲线顶点的曲率半径理论力学可以证明:飞行物在有心力场中运动,如果总机械能E >0则其轨迹必为双曲线的一支,且引力源在其双曲线的一个焦点上.实际上某些彗星的轨迹就是双曲线的一支(此时的有心力为万有引力),另外散射实验中,α粒子在库仑场中的运动轨迹也是双曲线的一支(此时的有心力为库仑斥力).假设某彗星m 进入太阳系中,彗星m 和太阳M 系统总能量E>0. 则彗星轨道为双曲线的一支,太阳在双曲线的一个焦点上,双曲线标准方程为12222=-b y ax ,如图4所示.彗星m 闯入太阳系,可认为是从无穷远出发,∞→r 时,引力势能为0,系统总机械能为E 就是天体的动能,则有2021mv E =研究彗星从无穷远到达双曲线顶点的过程,由机械能守恒定律得:ac GMm mv mv --=2202121 ○12 由角动量守恒定律得:)(0a c mv b mv -⋅=⋅ ○13 彗星到达双曲线顶点时有:22)(a c GMmmv -=ρ○14 联立方程○12○13○14得: ab 2=ρ ○15 由对称性可知双曲线12222=-b y ax 两个顶点的曲率半径均为a b 2=ρ.。

物理中曲率半径计算公式

物理中曲率半径计算公式

物理中曲率半径计算公式
物理中曲率半径是描述曲线在某一点处曲率大小的物理量。

曲率半径R的计算公式可以根据不同情况而有所不同。

一般来说,曲率半径R可以通过以下几种常见的情况来计算:
1. 平面曲线的曲率半径计算公式:
对于平面曲线,其曲率半径R可以通过公式R = (1 + (dy/dx)^2)^(3/2) / |d^2y/dx^2|来计算,其中dy/dx表示曲线的斜率,d^2y/dx^2表示曲线的二阶导数。

2. 空间曲线的曲率半径计算公式:
对于空间曲线,其曲率半径R可以通过公式R = |(1 + (dy/dx)^2)^(3/2) / (d^2y/dx^2)|来计算,其中dy/dx表示曲线在空间中的斜率,d^2y/dx^2表示曲线的二阶导数。

3. 曲线在极坐标系下的曲率半径计算公式:
如果曲线的方程是用极坐标表示的,那么曲率半径R可以通
过公式R = |(r^2 + (dr/dθ)^2)^(3/2) / |r^2 + 2(dr/dθ)^2 r(d^2r/dθ^2)|来计算,其中r表示极径,dr/dθ表示极坐标下的斜率,d^2r/dθ^2表示极坐标下的二阶导数。

以上是常见情况下曲率半径的计算公式,不同情况下可能会有一些特殊的计算方法,但总的来说,曲率半径的计算公式可以根据曲线的性质和表示方式来进行选择和应用。

希望这些信息能够帮助到你。

大学物理实验光学用牛顿环干涉测透镜曲率半径

大学物理实验光学用牛顿环干涉测透镜曲率半径

实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。

2、通过实验加深对等厚干涉原理的理解。

(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。

框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。

调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。

(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。

如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。

设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。

但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。

这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。

为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。

物理曲率半径计算公式

物理曲率半径计算公式

物理曲率半径计算公式1. 圆的曲率半径。

- 对于圆,其曲率半径就是圆的半径r。

这是最简单的情况,因为圆上任意一点的弯曲程度是相同的,其曲率k = (1)/(r),所以曲率半径R=r。

2. 一般曲线在某点的曲率半径。

- 定义法。

- 设曲线y = f(x),曲线在点(x,y)处的曲率k=(| y''|)/((1 + y'^2))^{(3)/(2)},则曲率半径R=(1)/(k)=frac{(1 + y'^2)^(3)/(2)}{| y''|}。

- 例如,对于函数y = x^2,先求一阶导数y'=2x,二阶导数y'' = 2。

- 在点(1,1)处,y'_x = 1=2,根据公式R=frac{(1+(2)^2)^(3)/(2)}{|2|}=((1 + 4)^frac{3)/(2)}{2}=(5^frac{3)/(2)}{2}=(5√(5))/(2)。

- 参数方程表示的曲线的曲率半径。

- 若曲线的参数方程为x = x(t),y=y(t),则曲率k=(| x'ty''t -x''ty't|)/(((x't)^2)+(y't)^{2)^(3)/(2)}。

- 曲率半径R = (1)/(k)=frac{((x't)^2+(y't)^2)^(3)/(2)}{| x'ty''t - x''ty't|}。

- 极坐标方程表示的曲线的曲率半径。

- 对于极坐标方程r = r(θ),x=r(θ)cosθ,y = r(θ)sinθ。

- 先求出x'=r'(θ)cosθ - r(θ)sinθ,y'=r'(θ)sinθ+r(θ)cosθ,再求二阶导数x''=(r''(θ)cosθ - 2r'(θ)sinθ - r(θ)cosθ),y''=(r''(θ)sinθ+2r'(θ)cosθ - r(θ)sinθ)。

用物理方法求解曲率半径

用物理方法求解曲率半径
用动力学方法求解曲率半径
本专题说明:物体运动轨迹曲率半径的求解是物理竞赛中的一个基本问题,本专题主要是练习掌握运用物 理原理和方法求解曲率半径,要求学会灵活构造物理过程、合理运用物理原理,归纳总结出最一般的物理 求解方法,并熟练掌握。 1、设长为 L 的杆 AB 靠在竖直的墙 y 轴和地面 x 轴上,P 点将杆分成长度分别为 a 和 b 的两段。设杆的 A 端沿地面以速度 v 匀速运动, 某时刻杆两端的坐标分别为 A( x0 ,0) ,B(0, y 0 ) , P 点的坐标为 P( x, y) , 求: (1)P 点的运动轨迹; (2)P 点的曲率半径。

2
5、在场强为 B 的水平匀强磁场中,一质量为 m 、电荷量为 q 带正电荷的小球在 O 点静止释放,小球的运 动曲线如图所示。已知重力加速度为 g ,求 (1)此曲线的轨迹方程; (2)此曲线上任一点的的曲率半径,并指出最低点的曲率半径。
6、一长为 L 的匀质重绳(柔软) ,两端挂在天花板上,绳的最低点与天花板间的距离为 H,求最低点的曲 率半径。
2、在水平地面上置有一质量为 M 的滑块。滑块内有一圆形空心光滑通道半径为 b ,开始时质量为 m 的小 球置于轨道的最高点,若有微小扰动,小球开始在光滑通道内运动,求: (1) 小球的运动轨迹; (2)运动轨迹在任一点的曲率半径。
3、轮滚线问题:轮子在直线轨道上做纯滚动,轮子边缘运动轨迹曲线称为滚轮线。设轮子半径为 R,轮子 边缘 P 对应的滚轮如图所示,试求 (1)P 点的轨迹曲线方程; (2)此滚轮线上任意一点的曲率半径 ( ) ,以及在最高点曲率半径 1 和最低点曲率半径 2 。
H
A
பைடு நூலகம்
B
7、理论力学可以证明:质点在有心力场中运动,如果总机械能 E 0 则其轨迹必为双曲线的一支,且引力 源在其双曲线的一个焦点上。假设某慧星进入太阳系中,慧星和太阳的质量分别为 m 、 M 且系统总能量

求曲率半径

求曲率半径

求曲率半径
曲率半径是描述曲线曲率程度的一个参数,它广泛应用于物理、
工程、数学等领域,具有非常重要的意义。

在实际应用中,根据不同
情况求取曲率半径存在多种方法,下面我们就来逐一讲解。

第一种方法:利用公式
假设已知曲线方程为y=f(x),则曲率半径的公式为:
r=[(1+(y')^2)^(3/2)]/|y''|
其中,y‘表示y对x的一阶导数,y''表示y对x的二阶导数。

因此,我们可以通过求出y,y’和y’’,带入公式中求解出当前位
置的曲率半径。

第二种方法:利用切线和法线
在坐标系中,曲线上任一点处所在的切线与曲线垂直的法线可以
将该点周围形成的微小弧线分成一定的弧长和弦长,根据弧长和弦长
的比例关系可以求出该点位置的曲率半径。

具体而言,在特定位置处,我们可以利用切线和法线测量相应的弦长和弧长,然后将二者相除就
可以求得曲率半径。

第三种方法:利用圆拟合法
对于比较光滑的曲线,我们可以将其近似认为是一段圆弧,从而
利用圆拟合法求解曲率半径。

具体而言,设曲线上两点之间的距离为s,两点间的夹角为θ,则曲率半径可以表示为:
r=s/2sinθ
这个公式的推导过程比较复杂,但是我们可以直接使用数学软件
进行计算,实现较为方便。

总之,对于求解曲率半径的问题,我们可以根据实际情况采取不
同的方法进行计算。

无论采用何种方法,我们都需要清楚地了解曲率
半径的概念及其实际应用价值,才能更好地应用它并解决问题。

曲率半径的计算公式物理

曲率半径的计算公式物理

曲率半径的计算公式物理物理术语“曲率半径”一般指表面或曲线的曲率,也即表面或曲线的“弯曲程度”。

曲率半径可以用来计算散乱现象,如穿透表面的光线,因此,曲率半径的计算物理公式是应用物理学中不可缺少的知识点。

首先,我们需要了解表面的曲率可以用泰勒-利昂-拉格朗日特殊曲率公式(TLLR)表示:K = K1 + K2其中K1表示曲线的一阶导数,K2表示曲线的二阶导数。

根据公式,我们可以知道,曲线曲率半径r可以表示为:r =1/K 。

为方便计算,通常将上式写成:r =1/K1+K2由此可见,曲率半径计算公式物理中一般需要求解表面和曲线的曲率,因此,在计算曲率半径时,需要首先求解曲线的一阶导数和二阶导数来计算曲率K,然后再求解曲率半径r。

当然,出于实际应用的考虑,曲率半径计算公式物理还可以用梯形公式求解:r=1/K=1/[dy/dx]^2公式中的dy/dx表示曲线的斜率,即曲线的一阶导数,曲线的二阶导数K可以用斜率的二次导数表示:K=d^2y/dx^2由此,曲率半径r也可以由一阶导数和二阶导数计算出来:r=1/[d^2y/dx^2]由此可见,曲率半径计算公式物理可以用泰勒-利昂-拉格朗日特殊曲率公式、梯形公式和一阶导数和二阶导数来求解,对于更复杂的应用,可以使用几何分析等其他方法来求解曲率半径。

本文分析了曲率半径计算公式物理的基础知识,首先介绍了泰勒-利昂-拉格朗日特殊曲率公式、梯形公式以及一阶导数和二阶导数,然后详细阐述了如何用这些公式求解曲率半径,最后提出了对于更复杂问题可以使用几何分析等方法。

从上文可以看出,曲率半径的计算公式物理是应用物理学中不可缺少的知识点,在日常生活中可以用来计算光线传播、传热通量等等现象,从而更好的理解物理学的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用物理方法求常见曲线的曲率半径
王吉旭 滑县第一高级中学 456400
求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如2008年江苏理综14题涉及到曲率半径,2011年高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看2011高考安徽理综17题:
一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。

则在其轨迹最高点P 处得曲率半径是( )
A .g v 20
B .g v α220sin
C .g
v α220cos
D .α
αsin cos 220g v
[解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力.
由r
v m F 2
=向得: ρα20)cos (v m mg =
则有:g
v α
ρ22
0cos = 本题正确答案为C
上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径
物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 2
2
1gt y = ②
联立①②式得2
2
2x v g y =
图1
x y
O 图2
v 0
令20
2v g a =
,则2ax y = 研究抛物线的顶点,从向心力出发,有: ρ
2
mv mg =
则有a g v 2120==ρ,即抛物线2
ax y =顶点的曲率半径为
a
21=ρ 二、求椭圆顶点的的曲率半径
理论力学可以证明:飞行物在有心力场中运动,如果总机械能E <0则其轨迹必
为椭圆,且引力源在其椭圆的一个焦点上.太阳系中,行星绕太阳运动的轨道是椭圆,太阳位于轨道的一个焦点上.多数人造卫星绕地球的轨道也是椭圆,地球位于卫星轨道的一个焦点上.
如图3,质量为m 卫星绕质量为M 地球做椭圆运动,轨迹椭圆方程为:
12
2
22=+b y a x 地球位于椭圆左焦点上. 设椭圆顶点A 、A ′距离左焦点的距离为
r ,易知:c a r A -= ,c a r A +=',设卫
星在椭圆顶点A 、A ′处的速度v , 则对地球和卫星系统而言,机械能守恒同时角动量守恒.卫星在椭圆顶点A 、A ′处均满足以下两个方程:
E r
Mm G mv =-2
21 ①
mvr L = ②
联立①②得关于r 的二次方程:022
2
=-+mE
L r E Mm G r ③ 可以肯定方程③的两根就是A r 和'A r ,由韦达定理知:E
GMm
a r r A A -
==+2' 则: a
GMm
E 2-
= ④ 卫星位于顶点A 时,由向心力公式:12
12
)
(ρv m c a Mm
G =- ⑤
把c a r A -=带入方程①: E c a Mm G mv =--2
121 ⑥
联立方程④⑤⑥得: a
b 2
1==ρ ⑦
由对称性可知, 椭圆顶点A ′的曲率半径也是a
b 2
1=ρ.
卫星位于顶点B 时:万有引力可分为向心力θτcos 2a
Mm
G
F =和切向力θsin 2a
Mm
G
F n =. 由向心力公式得: 2222cos ρθv m a
Mm
G = ⑧
由几何关系易知: a
b
=
θcos ⑨ 由方程①得: a GMm a Mm G mv 2212
2-
=- ⑩ 联立⑧⑨⑩得: b
a 2
2=ρ ○
11 由对称性可知,椭圆顶点B ′的曲率半径也是b
a 2
2=ρ.
所以椭圆12222=+b y a x 长半轴上的两顶点曲率半径为a b 2
1==ρ,短半轴上两曲率
半径为b
a 2
2=ρ
三、求双曲线顶点的曲率半径
理论力学可以证明:飞行物在有心力场中运动,如果总机械能E >0则其轨迹必为双曲线的一支,且引力源在其双曲线的一个焦点上.实际上某些彗星的轨迹就是
双曲线的一支(此时的有心力为万有引力),另外散射实验中,α粒子在库仑场中的运动轨迹也是双曲线的一支(此时的有心力为库仑斥力).
假设某彗星m 进入太阳系中,彗星m 和太阳M 系统总能量E>0. 则彗星轨道为
双曲线的一支,太阳在双曲线的一个焦点上,双曲线标准方程为122
2
2=-b y a
x ,
如图4所示.
彗星m 闯入太阳系,可认为是从无穷远出发,
∞→r 时,引力势能为0,系统总机械能为E 就是
天体的动能,则有2
021mv E =
研究彗星从无穷远到达双曲线顶点的过程,
由机械能守恒定律得:a
c GMm mv mv --
=22
02121 ○
12 由角动量守恒定律得:
)(0a c mv b mv -⋅=⋅ ○13 彗星到达双曲线顶点时有:
2
2
)
(a c GMm
mv -=
ρ
○14 联立方程○12○13○14得: a
b 2
=ρ ○
15 由对称性可知双曲线1222
2=-b y a
x 两个顶点的曲率半径均为a b 2
=ρ.
前面我们分别研究了抛物线、椭圆、双曲线等曲线的曲率半径,此外,旋
轮线等曲线的曲率也可用类似的办法求出. 事实上,物理学的发展与数学联系紧密,数学的发展推动了物理学的发展,同时某些时候物理学的发展也促进数学的发展,典型的例子如17世纪科学家对关于最速降线的讨论引发了变分法的创立. 很多物理学家本身就是数学家,例如阿基米德、牛顿、高斯等.. 用物理方法解决数学问题既体现了物理思维的深刻性,又拓宽了解决数学问题的思路,更体现了数学与物理的和谐统一.。

相关文档
最新文档