三点求曲率半径

三点求曲率半径

三点求曲率半径

设三点(x1,y1)(x2,y2) (x3,y3),求曲率半径

三点一园,三条边分别为

221221)()(y y x x a -+-=

231231)()(y y x x b -+-=

223223)()(y y x x c -+-=

由余弦定理

bc

a c

b A 2cos 2

22-+= 由正弦定理

R A

a 2sin = 曲率半径

22222)2(12cos 12sin 2bc a c b a A a A a R -+-=-==

))((4)(422222222222222a c b a c b c b abc a c b c b abc

R -+-+-=-+-= 422222242222224224a

c a b a c a c c b b a c b b c b abc

R -+++--+--= 444222222222c

b a

c a b a c b abc

R ---++= 或者 )(2))((2()

(4222222222222a c b bc a c b bc abc a c b c b abc

R -++-+-=-+-= )))(()(-(2222a c b c b a abc

R -+-= ))()()((c b a a c b c b a c b a abc

R ++-++--+=

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

icem surf曲线的调整和分析

曲线的调整和分析 ---------------------------------作者或(背后的小刀) 使用Create – Raw Data – Express, Smooth可以由原始数据轮廓线生成一条曲线。原始数据轮廓线,曲线,和曲线的控制多边形会同时显示在屏幕中。在这一节中,我们要学习以下内容: ?冻结当前工作状态 ?打开曲线曲率分析工具 ?调整曲线控制点使曲线逼近原始数据。通过曲率变化观察曲线形状的变化. ?删除原始数据轮廓线 为了更具体熟悉这些工具,我们应该设定不同的参数观察它们的运行结果。 暂时保存当前的工作环境 1. 点击工具条按钮“FREEZE ” 2. YES确认。 你可以继续工作。但是在激活FREEZE功能之前的操作是无法撤消的,在其之后的操作可以被撤消。这就防止了撤消时,全部工作内容被清除的危险!!! 暂时保存的工作环境会在下一次激活FREEZE时被覆盖,就是说只能返回最后一次被保存的内容。,临时保存功能只在当前工作环境中起作用,不能取代数据库的永久保存保存(File – Save)功能。 曲线的曲率分析 1. 点击工具条中----诊断(Diagnos)按钮 2. 在分析(Diagnoses)对话框中点击曲率(Curvature). 3. 在弹出的曲率对话框中设定缩放比例(Scaling)为50。 4. 点击Curve.按钮 5. 窗口下面的状态条中会显示选取曲线段/边缘(Pick Segments/Edges.)选取欲分析其 曲率的曲线。 选择几何元素 此时相应的选择对话框被自动激活。这个选择对话框和UG中的选择功能差不多。 几何元素的选择方式有如下几种

完整word版,各种曲率半径(通信与广电)

通信电缆的分类及特点 双屏蔽数字同轴电缆的技术要求:电缆安装敷设温度为-5—50度,储存和工作温度为-30—70度。电缆安装与运行的最小弯曲半径为电缆最大外径的7.5倍。 机房设备安装的工艺要求 电缆布放:电缆转弯应均匀圆滑,转弯的曲率半径应大于电缆直径的5倍 光缆布放:槽道内光纤应顺直、不扭绞,拐弯处曲率半径应不小于光缆直径的20倍 天馈线系统安装要求 移动基站馈线系统和室外光缆:馈线拐弯应圆滑均匀,弯曲半径应大于或等于馈线外径的20倍,软馈线的弯曲半径应大于或等于其外径的10倍 卫星地球站馈线系统:同轴电缆馈线转弯的曲率半径应不小于电缆直径的12倍,LDF4-50欧姆的同轴电缆转弯的曲率半径应不小于125mm 电源施工技术馈电母线安装和电源线信号线布放:铠装电力电缆的弯曲半径不得小于外径的12倍,塑包线和胶皮电缆不得小于其外径的6倍 线路工程通用施工技术 电缆曲率半径必须大于共外径的15倍 直埋线路施工技术 直埋光(电)缆敷设安装及保护:光缆在各类管材中穿放时,管材内径应不小于光缆外径的1.5倍 综合布线工程施工技术 电缆布放中的注意事项:应避免电缆过度弯曲,安装后的电缆弯曲半径不得低于电缆直径的8倍;对典型的六类电缆,弯曲半径应大于50mm。

气流敷设光缆技术 硅芯管道的敷设:直线段硅芯管道的路由要顺直,沟坎处应平缓过渡,转角处的弯曲半径,50/42mm、46/38塑料管的弯曲半径应大于550mm;40/30mm塑料管的弯曲半径应大于500mm。 广播电视发射工程技术 敷设低压电力电缆:10mm2以上的电缆弯曲时,其最小曲率半径为电缆外径的10倍。广播电视建筑声学施工技术 扩声、会议系统安装工程布放线要求:光缆布放时最小弯曲半径应为光缆外径的15倍,施工时应不小于20倍。

proe 曲面曲率

分析曲面曲率 模块概述 使用曲面特征设计产品时,曲面间的过渡扮演着重要的角色。曲面边的曲率连续性条件确定这些过渡的平滑程度。 在本模块中,您将学习如何分析曲面的曲率以及如何使用基于双向曲率的图形和着色曲率图形来确定曲面是否具有曲率连续性。此外,您将学习曲率连续曲面的创建方法。 目标 成功完成此模块后,您即可知道如何: ?分析曲面理论。 ?定义曲率和曲率连续性。 ?分析曲线的曲率。 ?分析曲面的曲率。 ?使用截面分析曲率。 ?使用法线分析曲率。 ?使用曲面的着色曲率。 ?使用着色截面曲率。 ?创建曲率连续曲面。

曲面分析理论 您可使用专用工具分析曲面模型,例如连续性、扭曲以及视觉特性。 ?其目标是为了创建高质量的曲面。 ?分析曲面的原因: o预期的平滑度和连续性 o预期的曲率 o无扭曲或扭结 o适合于制造过程 ?常用分析选项: o快速 o已保存 o特征 查看着色曲率

“保存的分析”对话框 剖面分析 曲面分析理论 Pro/ENGINEER 提供了许多不同的工具,以满足不同的建模要求。您可根据自己的目标使用特定工具分析曲面模型,例如连续性、扭曲以及视觉特性。

分析曲面的原因 创建曲面时,目标是创建具有高质量的曲面。请考虑以下分析曲面的原因: ?创建具有预期平滑度和连续性的曲面。可使用分析工具检验相切和曲率连续性。 ?创建具有预期曲率的曲面。可检查是否存在不需要的高曲率区域,这些区域表示曲面有问题。例如,曲面中的扭结会使曲率显示为突然增大,借助Pro/ENGINEER 的分析工具可轻松找出此类扭结。 ?创建无扭曲的曲面。扭结或小曲面片是曲面模型中常见的问题。在创建实体零件或创建制造序列时,它们可能在添加厚度时引起一些问题。 ?创建适合于制造过程的曲面。许多操作(例如创建加工序列) 都会将曲面侧考虑在内。曲面模型中的面组应具有相应的正法向侧。 常用分析选项 使用Pro/ENGINEER 的模型分析工具时有三个选项可用: ?快速(Quick) - 允许计算测量而不保存分析或在模型树中创建特征。关闭对话框后此分析消失。 ?已保存(Saved) - 允许保存测量以备今后使用。关闭对话框后此分析保留。可以为分析指定一个唯一名称,以使以后它对您有意义。 可通过单击“分析”(Analysis) > “保存的分析”(Saved Analysis)来启用、禁用或编辑保存的分析的显示。已保存分析更新为模型几何更改。“保存的分析”对话框如左下图所示。 ?特征(Feature) - 允许将分析作为一种特征保存在模型树中。该分析更新为模型几何更改。 定义曲率 曲面的曲率定义为与1/R 成正比,其中R 为曲面在指定位置的半径。

曲率半径

曲率半径 曲线的曲率。平面曲线的曲率就是是针对曲 线上某个点的切线方向角对弧长的转动率,通过 微分来定义,表明曲线偏离直线的程度。 K=lim|Δα/Δs| Δs趋向于0的时候,定义 k就是曲率。 曲率的倒数就是曲率半径。 曲率半径主要是用来描述曲线上某处曲线 弯曲变化的程度特殊的如:一个圆上任一圆弧的 曲率半径恰好等于圆的半径 ,也许可以这样理 解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径吧,个人理解 比如说 曲率/曲率半径应用题 一飞机沿抛物线路径y=(x^2)/10000(y轴铅直向上,单位为m)作俯冲飞行,在 坐标原点O处飞机的速度为v=200m/s。飞行员体重G=70kg。求飞机俯冲至最 低点即原点O处时座椅对飞行员的反力。 解: y=x^2/10000 y'=1/2x/10000=x/5000 y"=1/5000 要求飞机俯冲至原点O处座椅对飞行员的反力,令x=0,则: y'=0 y"=1/5000 代入曲率半径公式ρ=1/k=[(1+y'^2)^(3/2)]/∣y"∣=5000米 所以飞行员所受的向心力F=mv^2/ρ=70*200^2/5000=560牛 得飞机俯冲至原点O处座椅对飞行员的反力 R=F+mg=560+70*9.8=1246N 地方平均曲率半径 R=C/(V*V)=6399698.90178/(1+0.006738525*(COSA)*(COSA)),A为当地的平均纬度。 法截弧曲率半径 地球椭球体表面上某点的法截弧在该点的曲率半径。 法截弧曲率半径 地球椭球体表面上某点的法截弧在该点的曲率半径。

高斯投影长度变形 圆柱面与椭球面相切于中央子午线上,其长度不变形,其他任意处的投影长度均变化。

曲率

曲率: . 1 ;0.) 1(lim M s M M :.,13202a K a K y y ds d s K M M s K tg y dx y ds s =='+''==??='?'???= =''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α ααα α 定积分的近似计算: ???----+++++++++-≈ ++++-≈ +++-≈ b a n n n b a n n b a n y y y y y y y y n a b x f y y y y n a b x f y y y n a b x f )](4)(2)[(3)(])(2 1 [)()()(1312420110110 抛物线法:梯形法:矩形法: 定积分应用相关公式: ??--==?=?=b a b a dt t f a b dx x f a b y k r m m k F A p F s F W )(1)(1 ,2 2 2 1均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:

。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+?=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++?? ? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用

CATIA中曲面外形分析

曲面外形分析 CATIA 提供了丰富的曲面外形分析功能对曲面进行分析,包括反射线,高亮分析、面上曲率分析、斑马线分析等功能。本文将对上述各项分析功能进行介绍。 1 反射线 反射线(Reflection Line),通过建立一组平行的直线,用这组直线模拟霓虹灯,将光线照射到曲面上,形成一系列的反射线,由此分析曲面的形状。 首先需要选择要进行分析的曲面。接着在【Shape Analysis(外形分析)】工具栏中选择【反射线】功能,弹出【Reflection Lines】对话框。在对话框中,Neons栏目可以设置反射线的密度及数量。在输入栏中设定反射线的数量, 在输入栏中设定反射线的间距。单击对话框中的按钮,可以将指南针移动到曲面上方。如图1所示。 图1 在Eye栏目中列出了反射线的入射角度。屏幕视角,以屏幕垂直的方向将光线投射到曲面上,旋转曲面,可以观察到反射线的变化,如图2所示是两个不同视角的反射线。

图2 指南针方向,以指南针的方向作为入射光线的方向,调整指南针的方向,可以改变反射线,如图3所示。 图3 在反射直线上单击右键,弹出如图4所示的菜单,选择Keep this reflection line 可以将当前所选择的直线在曲面上的所有反射线保留成为曲线,如图5所示。选择Keep all reflection lines可以将所有反射线保留。

图4 图5 2 拐点曲线 拐点曲线(Inflection line),可以江曲面上曲率为0的点连接成曲线。拐点曲线两侧的曲率方向相反。在【Shape modification(外形修改)】工具栏中选择 拐点曲线功能,弹出如图6所示的对话框。首先需要选择要进行分析的曲面,曲面显示的拐点曲线,如图6所示。

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

XTRACT截面弯矩曲率分析教程

XTRACT截面弯矩曲率分析教程 Project: 钢筋混凝土柱:300mm×300mm; 纵向钢筋:8根直径22mm,屈服强度fy:500MPa,弹模Es:206000MPa,硬化系数b:0.01; 箍筋:直径6mm,间距100mm 混凝土:C20,抗压强度fc:20.0MPa,其他材料参数在软件中设置;覆盖层厚度:20mm。Step One:截面设计部分 New Project: 根据需要自行定义,本例New Project Title:MomentCurvatureColumn,然后选择“Forward”进入下一步。 Define Section Name:这里定义为:Column300(300表示柱子截面高度); Start From:选择“Template(模板)”,也可以自定义,根据自行需要选择; Select Units:本例单位制“N-mm”; Select Material Type:如果选择“Template”,该项不可更改。 接下来,选择“BeginXTRACT”进入下一步“截面设计模板”。

Section Design Template: 在Cross Section:Section Information设置如下。 在“Confinement Properties:”第一项表示箍筋直径,第二项表示箍筋间距。 然后,“Next”设置截面几何信息。 Section Width:截面高度,本例300mm; Section Height:截面高度,本例300mm; Cover Thickness:覆盖层厚度,本例为20mm,此处需注意,覆盖层厚度为纵筋外表面到边缘的距离; Number of Longi..:纵筋数量8; Longitudinal Bar Size:纵筋直径22mm; “下一步”

(整理)函数的凸性曲线的曲率.

精品文档 第7章 函数的凸性·曲线的曲率 ①凸函数 函数的“凸性”概念最初来自曲线的弯曲方向。 例如,曲线3 x y =(图1)在Oy 轴左边是向下弯曲的(称为上凸)而在Oy 轴右边是向上弯曲的(称为下凸)。虽然说“弯曲方向” 或“凸性”这些名称是几何上的术语,但经过抽象后的凸函数 理论在其它数学分支中也是很有用的。 从图2中看出,向上弯曲(下凸)的曲线上任何两点的连线(AB 的中点C 在弧AB 的上方;而从图3中看出,向下弯曲(上凸)的曲线上任何两点的连线(弦)AB 的中点C 在弧AB 的下方。 【注1】在国内早期的一些教科书(包括翻译前苏联的一些教科书)中,都把下凸函数称为“凹函数”,而把上凸函数称为“凸函数”。这里的称呼与新近一些教科书或论文中的称呼是一致的。请读者注意到这些区别。 【注2】还请读者注意,通常说“函数()f x 在区间(,)a b 内是下(上)凸函数”,若对于(,)a b 内任意两点1x 和2x 12()x x ≠与任意(0,1)t ∈,都满足琴生(Jesen)不等式 []1212() (1)()(1)()f t x t x t f x t f x >+-<+- 它等价于不等式 () 11221122()()()f t x t x t f x t f x >+<+ (其中1t 和2t 为正数且121t t +=) 显然,不等式(※)是琴生不等式的特殊情形。不过,对于连续函数来说,不等式(※)与琴生不等式是等价的。因此,我们就用简单的不等式(※)定义函数的凸性。关于连续函数情形下两者等价性的证明,有兴趣的读者 图2 O x 1 (x 1+x 2 )/2 x 2 图3

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

曲面曲率计算方法的比较与分析

. 研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号: 201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量

和曲率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。 本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K 1、K 2,

曲率 曲率半径

曲率 曲率半径 高中时期,做万有引力题时偶尔会出现非常规题,也就是行星的运动不是标准圆,而是椭圆。对于椭圆,万有引力公式是不能随便用,原因R 不是我们所理解的r ,而是曲率半径。当时以我们的知识更本无法求出R 。问老师吧,得到的结果不是,这不在高考考查的范围内,不用深究;就是,这些题的关键就是求曲率半径,而曲率半径我们根本没有学,讲了你也听不懂,不要在这上面浪费时间了。 人就是这样,越是得不到的东西越是想得到。那时我是多么想做出来证明自己的实力啊,可是就是没有人教,只剩下苦恼,郁闷。 现在已经知道了什么是曲率,怎么求曲率半径。下面仅作简述,希望拍砖! 曲率 设曲线C;y=f(x)具有连续导数。曲线C 是光滑的,点M,N 在曲线C 上,当动点M 从移动到N 时,切线转过的角度为|α?|,弧段的长度为|s ?|。用比值s ??α | |,即单位弧度上的切线转过的角度大小来表示弧段平均弯曲程度,称为弧段的平均曲率,并记为,即 || s k ??=α 当S ?趋近于0时,平均曲率的极限就是曲线C 在M 点的曲率,记作,即||0s s Lim k ???→??= α 关于曲率的求解过程就不再详细解出,只给出结果) 1(2.^| |2 3 ,,y y K += (注意:分子上是Y 的二阶导数,分母是Y 的一阶导数) 曲率半径 设曲线在点处的曲率为K (K,><0).过点M 处的曲线的法线MN ,在曲线凹的一侧取点C ,使|MC|= K 1 =R.以为圆心,为半径作圆,这个圆叫做曲线在点处的曲率圆,C 就是圆心,R 就是曲率半径。 椭圆1| 2 ^2 ^2 ^2 ^=+b Y a X 或者是双曲线1| 2^2 ^2 ^2 ^=-b Y a X 曲率半径表达式一致, b a x b y a R 4 ^4 ^2 3)(2^4^2^4^+= ;抛物线py x 22 =,P Y R 2 2 3)1(2^+= (如果对称轴在Y 轴 上,只须将x 换成y 即可)。R 的等式中的x ,y 均是要求点的坐标

【微分几何】自由曲面的高斯曲率计算方法分析

学校 自由曲面的高斯曲率 计算方法 专业:数学与应用数学 学生姓名: 班级: 完成时间:2020年8月26日

在曲面造型中,曲面在一点附近的形状与在该点曲面的主曲率的乘积即高斯曲率有关,该点与附近点的高斯曲率比较可以反映出该点附近的形状变化。故可以用高斯曲率来表达该点的形状信息,对该点附近的形状质量进行评判。但这一方法中如何计算曲面的高斯曲率成为一个难题。 要求出自由曲面上一点的高斯曲率,可以根据以往的定义求解,这种方法需要求曲面的偏导,计算过程比较复杂,而且算法与曲面的表示方法有关,即Bezier 曲面的高斯曲率与NURBS 曲面的高斯曲率是不相同的。因此针对不同的曲面表示形式,需要编制不同的程序来实现。对NURBS 曲面的各阶偏导是各不相同的,也需要各阶编不同的程序来实现。本文提出一种不经过求偏导的方法求曲面点的高斯曲率,这种方法对各种曲面的高斯曲率计算都是统一的,与NURBS 曲面的阶数无关,适用于各种表达方式的曲面。 1、计算原理 如图1所示,设N 表示曲面S 在一点P 上的单位法矢,切S 且经 过N 的平面与曲面相交成一条曲线,同样,不经过N 但经过P 点的 平面与曲面同样也可以相交成一条曲线。 让每一个法平面与一个方向及单位切矢t 对应,即在曲线P 点,一

个法曲面曲率k n 对应一个位置。这个法曲面曲率随着切的平面绕N 的 旋转而变化。k n 存在最大和最小值,即为P 点的主曲率。令21,k k 代表 主曲率,21t t ,代表各自对应的切线方向。设?为任意曲率切线方向t 与1t 的夹角。Leonhard Euler 得出如下关系式: ??2221sin cos k k k n += (1) 令以主曲率对应切线方向21t t ,为坐标系,则任意曲率切线方向t 对应的法曲面曲率在该坐标系的坐标为: 2/12 /1)(sin ,)(cos n n k y k x ??±=±= 由欧拉公式则有: 12221±=+y k x k (2) 这一公式定义了曲面在P 点的杜潘标线。 如果主曲率同号,那么法曲面曲率在任一方向同号,P 点处曲面整体在切平面的一侧,在这种情况下(1),(2)式表示一个椭圆。如果主曲率不同号,P 点是凸出或凹陷点,在这种情况下(1),(2)式表示一个双曲线。 如果以上坐标轴不是主曲率方向对应的切线方向,则有如下的杜潘标线方程: 1222±=++By Cxy Ax (3) 当知道任一点的杜潘标线则知道了主曲率的大小和方向。计算在某一方向的法曲率,代入( 3)式,然后旋转一个角度,计算杜潘标线。

曲率法速度分析

利用曲率测量和叠加能量进行偏移速度分析 Lanlan Yan*, Larry R. Lines and Don C. Lawton, Fold and Fault Research Project, Department of Geology and Geophysics, University of Calgary 摘要 在常规地震处理中是利用基于水平层状反射层假设的NMO方程进行速度分析。在偏移速度分析流程中,“深度聚焦”和“笑弧与皱眉”是迭代与解释性叠前深度偏移中估计层速度的两个主要标准。在本文,我们提出了一种用于偏移速度分析的解析方程,它由倾角校正剩余正常时差(NMO)、曲率测量值和叠加能量组成。通过综合Al-Yahya的剩余NMO方程、Lee 的剩余NMO方程和深度再拉伸方程求得倾角校正剩余NMO方程。利用这一倾角校正剩余NMO 方程,通过搜索一个范围的值(慢度比),直至得到与曲率匹配有最大相似(或叠加能量),就能精确地估计出层速度。业已证实,对0—30°的倾角地层进行偏移速度分析时,我们所提出的方法比传统的剩余NMO方程法更有效、更稳健。 引言 众所周知,速度的精度对叠前偏移的影响很大。量化偏移速度分析中速度误差的难度使得叠前深度偏移,尤其是山麓地区复杂构造的成像变得更富有挑战性。因此,可以很好地理解为什么成像的首要目标是确定能使反射层定位在其正确的横向和垂向位置上的层速度场。 偏移后共成像道集(CIG)、共深度点道集(CDP)或共反射点道集(CRP)中的剩余NMO 是由速度误差引起的。作为叠前深度偏移一部分,可以利用剩余时差分析来量化速度误差并对速度模型进行修改。Al-Yahya(1989)通过迭代剖面偏移讨论了剩余速度分析。他通过估计剩余时差的曲率来测量速度误差。Lee和Zhang(1992)综合了Al-Yahya的剩余NMO方程,提出了另一个剩余NMO方程和深度再拉伸方程。Lee和Zhang的方法考虑了倾角对剩余时差的影响。然而,。Lee和Zhang的方法受小倾角和小偏移(相对于偏移深度)的限制。 本文,我们综合了Al-Yahya、Lee和Zhang的方法,推导出一个用于偏移速度分析的解析方程。该方法包括:建立倾角校正剩余NMO方程,测量一组曲率(或慢度比)并计算其相似性(或叠加能量),直至求得与偏移后数据体中CIG的剩余时差相匹配的值。试验结果证实,在估计0—30°倾角地层的层速度时,本方法是有效和稳健的。与Lee和Zhang (1992)所作的假设不同,我们的方法对最小偏移距和最小倾角没有限制。 剩余时差偏移速度分析理论 可靠的叠前深度偏移需要一个精确的速度模型输入。不精确的速度模型估计将在深度偏移CIG上引起时差假象(或剩余时差),诸如“笑弧与皱眉”(Zhu等,1998)。Al-Yahya(1989)非常适合于水平反射层,因为其方程中的时差曲线在CMP位置上是对称的,在CRP或CDP 位置上也是如此。然而,地下反射层并不总是水平的。在某些复杂构造地区,诸如加拿大的山麓地区,浅层碎屑岩和碳酸盐岩地区基本上是陡倾地层。因此,构建一个适用于任何产状反射层的剩余时差方程具有重大的意义。 图1是水平反射界面的共反射点排列。从中可见,共反射点(CRP)与共中心点(CMP)相距水平距离a0,其大小取决于倾角θ和反射界面深度z。在直射线、小倾角和小偏移距(相对于深度)的假设前提下,Lee和Zhang(1992)推导出了另一个剩余NMO和深度再拉伸方程,用于处理偏移速度分析中的倾角效应问题(非水平反射层问题)。 通过综合Al-Yahya(1989)、Lee和Zhang(1992)的方程,我们推导出一个倾角校正

函数的凸性曲线的曲率

第7章 函数的凸性·曲线的曲率 ①凸函数 函数的“凸性”概念最初来自曲线的弯曲方向。 例如,曲线3 x y =(图1)在Oy 轴左边是向下弯曲的(称为上凸) 而在Oy 轴右边是向上弯曲的(称为下凸)。虽然说“弯曲方向” 或“凸性”这些名称是几何上的术语,但经过抽象后的凸函数 理论在其它数学分支中也是很有用的。 从图2中看出,向上弯曲(下凸)的曲线上任何两点的连线(AB 的中点C 在弧AB 的上方;而从图3中看出,向下弯曲(上凸)的曲线上任何两点的连线(弦)AB 的中点C 在弧AB 的下方。 【注1】在国内早期的一些教科书(包括翻译前苏联的一些教科书)中,都把下凸函数称为“凹函数”,而把上凸函数称为“凸函数”。这里的称呼与新近一些教科书或论文中的称呼是一致的。请读者注意到这些区别。 【注2】还请读者注意,通常说“函数()f x 在区间(,)a b 内是下(上)凸函数”,若对于(,)a b 内任意两点1x 和2x 12()x x ≠与任意(0,1)t ∈,都满足琴生(Jesen)不等式 []1212() (1)()(1)()f t x t x t f x t f x >+-<+- 它等价于不等式 () 11221122()()()f t x t x t f x t f x >+<+ (其中1t 和2t 为正数且121t t +=) 显然,不等式(※)是琴生不等式的特殊情形。不过,对于连续函数来说,不等式(※)与琴生不等式是等价的。因此,我们就用简单的不等式(※)定义函数的凸性。关于连续函数情形下两者等价性的证明,有兴趣的读者可去看本网站上的专题选讲。 【注3】若函数 )(x f 在区间),(b a 内可微分,则从下图4看出,下凸(上凸)函数的图形上,每一点处 图2 O x 1 (x 1+x 2 )/2 x 2 图3 112

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

相关文档
最新文档