曲率及其计算公式
合集下载
曲率及其计算公式

抛物线顶点处的曲率半径为
r 1 1.25.
K 所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
y
4
2O
y=0.4 x2
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8.
把它们代入曲率公式,得
K | y | 0.8.2
1 2.
(1 y2 )3 2 (1 (1)2 )3 2 2 2
设x , x+ Dx 为(a,b)内两个邻近的点,它们在曲线 yf(x)上的对应点为M,M,并设对应于x的增量Dx ,弧 s 的增 量为Ds,于是
(
(
(
Ds Dx
2
MM Dx
2
|
MM MM
|
2
|
MM |2 (Dx)2
|
MM MM
|
2
(Dx)2 (Dy (Dx)2
)2
(
|
MM MM
2a
抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为
K|2a| .
讨论:
1.直线上任一点的曲率等于什么?
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2.若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
| j(t) (t) j(t) (t) [j2 (t) 2 (t)]3 2
曲线的曲率曲率半径

.
O点处抛物线轨道的曲率半径
y
x0
x 2000
x0
0,
y
x0
1. 2000
得曲率为
k
x x0
1. 2000
曲率半径为 2000 米.
F 70 4002 5600(牛) 571.4(千克), 2000
Q 70(千克力) 571.4(千克力),
641.5(千克力).
即:飞行员对座椅的压力为641.5千克力.
§2-8
曲线的曲率.曲率半径
一、平面曲线的曲率及其计算公式
曲率是描述曲线局部性质(弯曲程度)的量.
1
2
M2 S2 M3
S1
M1
弧段弯曲程度 越大转角越大
S1
M
M
N
S2 N
转角相同弧段越 短弯曲程度越大
y
M0 是基点. MM s ,
C
M.
M M 切线转角为 .
S
. M0 S M
)
定义
o
x
弧段MM的平均曲率为K .
s
曲线C在点M处的曲率 K lim s0 s
在 lim d 存在的条件下,
s0 s ds
K
d .
ds
注意: (1) 直线的曲率处处为零; (2) 圆上各点处的曲率等于半径的倒数, 对于半径为R的圆周 Δ S = RΔθ
1
s R
(3)曲率的倒数称为 曲率半径 = 1/K
1 cos t
sin3 t
2
y
1 4a
1 sin4
t
,
代入公式K
(1
y y2 )3/ 2
1 4a sin
t
曲率及其计算公式

ρ=
1 1 , K= . ρ K
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4
2
O
2
x
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适? 解 砂轮的半径不应大于抛物线顶点处的曲率半径. y′=0.8x ,y′′=0.8, y′|x=0=0,y′′|x=0=0.8. 把它们代入曲率公式,得
C M′ ∆s ∆α α+∆α x
s
我们称 K =
曲率:
∆α 为弧段 MM ′ 的平均曲率. ∆s
我们称 K = lim
∆α 为曲Байду номын сангаасC在点M处的曲率. ∆s →0 ∆s ∆α dα dα lim = K= 在 存在的条件下 . ∆s → 0 ∆ s ds ds
)
∩
平均曲率:
曲率的计算公式:
K= dα . ds
∆y
∆s MM ′ =± ∆x | MM ′ |
( (
∆y | MM ′ | | MM ′ | = lim =y′, 因为 lim =1, 又 lim ∆x →0 ∆x ∆x →0 | MM ′ | M ′→ M | MM ′ | ds 2 因此 =± 1 + y′ . dx ds ds = 1 + y′2 . 由于s=s(x)是单调增加函数,从而 >0, dx dx 于是 ds = 1 + y′2 dx.这就是弧微分公式.
| ϕ ′(t )ψ ′′(t ) − ϕ ′′(t )ψ ′(t ) | K= . 2 2 32 [ϕ ′ (t ) + ψ ′ (t )]
曲率及其计算公式

应用
通过空间曲率计算公式,可以了 解空间曲线在某一点的弯曲程度 ,对于分析三维几何图形、优化 航天器轨道等方面具有重要意义
。
曲率计算公式的应用
工程设计
在工程设计中,曲率计算公式常 用于分析曲线形状的合理性,如 道路设计、桥梁工程等。
物理研究
在物理研究中,曲率计算公式可 用于描述粒子运动的轨迹、电磁 场的分布等。
解释
该公式表示平面曲线在某一点的曲率,其中y''表示该点处曲线的二阶导数,y'表示该点 处曲线的导数。
应用
通过曲率计算公式,可以了解平面曲线在某一点的弯曲程度,对于分析几何图形、优化 道路设计等方面具有重要意义。
空间曲线的曲率计算公式
曲率计算公式
对于空间曲线,曲率K由下式给 出:K = |(3*[(x''*y''*z'' +
相对曲率
相对曲率是描述曲线或曲面在某一点的方向性弯曲程度的量,它等于该点的主曲率与次曲率的比值。相对曲率在 几何学和物理学中有重要的应用,例如在分析力学和电磁学等领域中,相对曲率可以帮助我们更好地理解和描述 物体的行为。
曲率在物理学中的应用
光学
在光学中,曲率是描述光学元件(如 透镜和反射镜)的弯曲程度的量。透 镜的曲率决定了光线通过透镜的折射 方向和聚焦点,反射镜的曲率决定了 反射光的方向。
曲率等于曲线在该点的切线的 斜率的倒数,即曲率 = 1/斜率 。
当曲率为正时,表示曲线在该 点向外凸出;当曲率为负时, 表示曲线在该点向内凹进。
曲率在几何学中的重要性
曲率是几何学中重要的概念之一,它在曲线和曲面理论中扮演着重要的角 色。
曲率在曲线和曲面分析、微分几何等领域中有着广泛的应用,如曲线拟合 、曲面重建等。
曲率公式是什么

曲率公式是什么
在数学上,曲率是表明曲线在某一点的弯曲程度的数值,曲率的公式可以表示为:K=|dα/ds|。
曲率
曲线的曲率是曲线上一点的切线方向角对弧长的旋转率,由微分定义,表示曲线偏离直线的程度。
数学上表示曲线在某一点的弯曲程度的数值。
曲率越大,曲线的曲率越大。
曲率的倒数就是曲率半径。
曲率的定义
曲率的计算公式
什么是曲率半径
曲率的倒数就是曲率半径,即R=1/K。
平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
对于曲线,它等于最接近该点处曲线的圆弧的半径。
对于表面,曲率半径是最适合正常截面或其组合的圆的半径。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。
所以说,曲率半径越大曲率越小,反之亦然。
曲率及其计算公式

2
2
2 2 MM | MM | MM ( Dx ) ( Dy ) 2 | MM | ( Dx ) 2 | MM | (Dx)
(
2
2
2
2 MM Dy 1 | MM | Dx
| y | 2 1 2 K . 2 32 2 32 2 (1 y ) (1 (1) ) 2
| y | K 2bxc 上哪一点处的曲率最大? 例2 抛物线yax (1 y 2 ) 3 2
解 由yax2bxc,得 y2axb ,y2a , 代入曲率公式,得
| y | 2 1 2 K . 0.8. 2 3 2 2 32 2 (1 y ) (1 (1) ) 2
抛物线顶点处的曲率半径为
1 r 1.25. K
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过 2.50单位长.
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
C M Ds Da a+Da x
s
)
平均曲率:
曲率的计算公式:
K da . ds
2
从而,有
| y | K . 2 32 (1 y )
| y | K 例1 计算等双曲线x y 1在点(1,1)处的曲率. (1 y 2 ) 3 2
解
1 由y ,得 x
x 因此,y|x11,y|x12.
y
1
2
,y
2 x
2
2 2 MM | MM | MM ( Dx ) ( Dy ) 2 | MM | ( Dx ) 2 | MM | (Dx)
(
2
2
2
2 MM Dy 1 | MM | Dx
| y | 2 1 2 K . 2 32 2 32 2 (1 y ) (1 (1) ) 2
| y | K 2bxc 上哪一点处的曲率最大? 例2 抛物线yax (1 y 2 ) 3 2
解 由yax2bxc,得 y2axb ,y2a , 代入曲率公式,得
| y | 2 1 2 K . 0.8. 2 3 2 2 32 2 (1 y ) (1 (1) ) 2
抛物线顶点处的曲率半径为
1 r 1.25. K
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过 2.50单位长.
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
C M Ds Da a+Da x
s
)
平均曲率:
曲率的计算公式:
K da . ds
2
从而,有
| y | K . 2 32 (1 y )
| y | K 例1 计算等双曲线x y 1在点(1,1)处的曲率. (1 y 2 ) 3 2
解
1 由y ,得 x
x 因此,y|x11,y|x12.
y
1
2
,y
2 x
曲率及其曲率半径的计算

| 2a | | y | K . 2 32 [1 (2ax b) 2 ]3 2 (1 y ) b b 要使K 最大,只须2axb0, 即 x 对应的点为 .而 x 2a 2a 抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为
K|2a| .
讨论: 1.直线上任一点的曲率等于什么? 提示:设直线方程为y=ax+b,则y =a, y = 0.于是 | y | K 0. 2 3 2 (1 y ) x j (t ) 2.若曲线由参数方程 给出,那么曲率如何计算? y (t ) 提示:
有如下关系:
1 1 r , K . r K
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4 2
O
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8. 把它们代入曲率公式,得
y M0 O
C M Ds Da a+Da x
s
a
M
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
)
平均曲率:
曲率的计算公式:
二、曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径
曲率圆曲率半径
一、弧微分
有向弧段 M0 M 的值 s(简称为弧s) : s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的
K|2a| .
讨论: 1.直线上任一点的曲率等于什么? 提示:设直线方程为y=ax+b,则y =a, y = 0.于是 | y | K 0. 2 3 2 (1 y ) x j (t ) 2.若曲线由参数方程 给出,那么曲率如何计算? y (t ) 提示:
有如下关系:
1 1 r , K . r K
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4 2
O
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8. 把它们代入曲率公式,得
y M0 O
C M Ds Da a+Da x
s
a
M
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
)
平均曲率:
曲率的计算公式:
二、曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径
曲率圆曲率半径
一、弧微分
有向弧段 M0 M 的值 s(简称为弧s) : s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的
曲率及其曲率半径的计算讲解

于是
da
y
1 y2
dx.又知 ds
1 y2 dx.
从而,有
| y | K (1 y2 )3 2
.
例1
计算等双曲线x y 1在点(1,1)处的曲率.
K
| y | (1 y2 )3 2
解 由y 1 ,得
x
1 y x 2
,y
2 x3
.
因此,y|x11,y|x12.
1 2.
(1 y2 )3 2 (1 (1)2 )3 2 2 2
抛物线顶点处的曲率半径为
r 1 1.25.
K 所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2.若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
|
j(t) (t) j(t) [j2 (t) 2 (t)]3
(t)
Ds0 Ds
在 lim Da da 存在的条件下K da .
Ds0a .
ds 设曲线的直角坐标方程是yf(x),且f(x)具有二阶导数.
因为tan a y ,所以
sec 2a da y, da y y ,
dx
dx 1 tan2 a 1 y2
M1
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数.
y
y
M0 s>0
M
O x0
x
M s<0 M0
xO x
A
x0
x
2
下面来求s(x)的导数及微分.
设x , x+ Dx 为(a,b)内两个邻近的点,它们在曲线 yf(x)上的对应点为M,M,并设对应于x的增量Dx ,弧 s 的增 量为Ds,于是
(
(
((
D D
s x
2
MM Dx
2 |
MM 2| MM|
解 由yax2bxc,得 y2axb ,y2a ,
代入曲率公式,得 K ( 1 | y y 2 | ) 3 2 [1(2a| 2xa|b)2]32
要使K 最大,只须2axb0, 即 x b . 而 x b 对应的点为 2 a 2 a
抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为 K|2a| .
于是 d 1 y y 2 d x . 又 知 d s 1 y 2 d x 从而,有
| y | K
( 1 y 2 ) 3 2
A
7
例1
计算等双曲线x y 1在点(1,1)处的曲率.
K | y | ( 1 y 2 ) 3 2
解 由y 1 ,得
x
y 1 , y 2 .
§3.9 曲 率
一、弧微分
有向弧段的值、弧微分公式
二、曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径
曲率圆曲率半径
A
1
一、弧微分
(
有向弧段M0 M 的值 s(简称为弧s) :
s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的
正向一致时s>0,相反时s<0.
显然,弧 s 是 x 的函数:ss(x),而且s(x)是x的单调增加函
Dr
曲线在M点的曲率半径 | D M | 1 K
y=f(x)
M
O
x
r r 曲线在M点的曲率圆
曲线在M点的曲率中心
曲线在点M处的曲率K(K 0)与曲线在点M处的曲率半径 r
有如下关系:
1 , K 1 .
K A 11
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4
2O
2
x
A
12
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8.
r 把它们代入曲率公式,得 K |y | 0.8.2 1 2 . ( 1 y 2 ) 3 2( 1 ( 1 ) 2 ) 3 2 2 2 抛物线顶点处的曲率半径为
A
5
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧
为Ds ,切线的转角为Da .
C y
M
M0
s
Ds M
Da
a
a+Da
平均曲率:
O
x
)
我 们 称 K D a为 弧 段 M M 的 平 均 曲 率 . D s 曲率:
a 我 们 称 K liD m 为 曲 线 C 在 点 M 处 的 曲 率 . D s 0 D s
MM|2 (Dx)2
|M MM M|2(Dx)(2Dx)(2Dy)2
|
M MM M|21D Dyx2
(
Ds Dx
|M MM M|21D Dyx2
y M0
M
Ds M
Dy
Dx
A O x0
x x+Dx x 3
((
(
Ds Dx
|M MM M|21D Dyx2
因为 lim | MM | lim | MM | 1,又 limDyy,
A
9
讨论:
1.直线上任一点的曲率等于什么?
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K(1| yy2|)32 0.
2.若曲线由参数方程
x
y
j (t) (t)
给出,那么曲率如何计算?
提示:
K|j[(jt) 2(t()t ) j2((tt)) 3]2(t)| .
A
10
y
r 三、曲率圆与曲率半径
Dx0 | MM | MM | MM |
Dx0Dx
因此
ds
dx
1y2 .
由于ss(x)是单调增加函数,从而
ds dx
>0,
ds
1y2
.
dx
于是 ds 1y2 dx.这就是弧微分公式.
A
4
二、曲率及其计算公式
观察曲线的弯曲线程度与切线的关系:
M1
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
x 2 x 3
因此,y|x11,y|x12.
曲线x y 1在点(1,1)处的曲率为
K |y | 2 1 2 . ( 1 y 2 ) 3 2( 1 ( 1 ) 2 ) 3 2 2 2
A
8
例2 抛物线yax2bxc 上哪一点处的曲率最大?K ( 1 | y y 2 | ) 3 2
1 1 . 2 5 . K
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单在 的 条 件 下 K da .
D s 0D s ds
ds
A
6
曲率的计算公式:
K da .
ds 设曲线的直角坐标方程是yf(x),且f(x)具有二阶导数.
因为tan a y ,所以
a a a s e c 2 d y , d y y ,
a. a d d 1 t 2 1 y x a 2 x