同步电机磁力中心找正工艺
电机轴向振动原因——磁力中心不正的判别及调整方法?

电机轴向振动原因——磁力中心不正的判别及调整方法?一、何为电机磁力中心线磁力中心线包含两个方面:磁场气隙均匀性和磁场轴向对称性。
磁场气隙不均主要与定、转子偏心或转子轴弯曲相关。
而磁场轴向对称性是指,在某一位置,气隙磁场的磁力线全部垂直于转轴,而没有轴向分量,这个位置就称为磁力中心线。
如果磁力线有轴向分量,在没有其他限制条件的情况下,电动机的转子就会延轴线窜动。
又在联轴器拉力下反向移动,从而形成轴向的往复运动,当窜动比较厉害的时候转子会撞上外壳,造成电动机损坏。
如果在连轴时没有校正磁力中性线,那电动机和被驱动的机械都会承受一个轴向的力,对设备是有损害的。
对于滚动轴承的电机,很少有磁力中心的铭牌标识,而滑动轴承时必须有标识的,特别是对于落地式轴承座,其铭牌会给出磁力中心位置示意图,为便于测量,常指示轴肩距轴瓦端盖的距离。
但由于装配制造误差,各电机磁力中心线尺寸存在差异,应以现场测试为准。
二、磁力中心的判别及调整方法1、让电动机脱开联轴器空转,其稳定转动时的位置就是磁力中心线位置。
一般厂家都会给出刻度指示。
对于大型电动机,在连轴前必须空转,校正磁力中心线指示,然后再装联轴器。
2、如果电动机空转,轴向可以自由运动的话,你可以看到电动机在启动时会有轴向的窜动,稳定运行后就不再有轴向运动了。
因为电磁力就像弹簧一样,有把转子拉回磁力中心线的作用。
转子在轴向像一个弹簧振子,慢慢就稳定在中心线,不再振动了。
3、按照校准后的磁力中心线,给电动机联上负荷。
例如装上联轴器拖动压缩机,那么在轴向上,转子受到联轴器和压缩机转子的限制,就不再可以自由运动了。
由于安装精度的限制,不可能正好把转子放在中心线上,例如853mm。
那么给出一个误差范围,例如1mm。
在这个误差范围里,由于偏离中心线而引起的电磁力是可以承受的。
4、电机制造厂在电机出厂前,均标定了电机磁力中心线的位置。
一般规定其偏离量不大于1mm,偏移量过大则出现窜动,会损害电机轴瓦。
永磁同步电动机的工作原理

永磁同步电动机的工作原理永磁同步电动机的工作原理1. 原理概述:永磁同步电动机是一种回路磁铁回路、定子线圈或直线磁场和转子由永磁体磁场发生的同步电动机。
它是直流电动机、异步电动机等不同类型电动机中发展较晚的一种较新的电动机,具有制造成本低、调速性能优越(抗载频繁调速)、空载功率低、励磁特性优异、效率高、寿命长等特点,极大地满足了工业电机发展的需求,因此在工业应用中受到了广泛的应用。
2. 工作原理:(1)定子线圈供电:顺应交流电源的频率,定子线圈产生交流电磁场;(2)永磁转子磁极的反应:永磁转子被交流电磁场激发,磁极分别穿越固定磁芯交流电磁场相应时刻分别与定子线圈端点处的磁场力线交叉,从而形成廉价磁,它具有空载转矩、空载功率低的特点;(3)旋转磁场的发生及转子的驱动:转子磁极与定子线圈之间的磁通线交叉,产生旋转磁场,旋转磁场作用于每个磁极的磁力向固定的方向,永磁转子的转动产生了转子向前的转动力,从而驱动转子旋转;(4)转子转速的变化:定子线圈频率和永磁转子电感之间存在一定的滞后关系,而随着频率的变化,转子的转速也会随之变化,从而实现调速的目的。
3. 优点:(1)制造成本低:与异步电动机相比,永磁同步电动机无需安装绕组及励磁电路,制造工艺简单,且可拼装成组合机结构,成本低;(2)调速性能优越:由于永磁转子可以抗变频器的频繁调节,调速变化稳定、性能好,既可实现稳态调速,也可实现快速、平稳的调速;(3)空载功率低:永磁转子可通过绝缘材料以最低成本实现较小的空载功率,从而满足操作要求;(4)励磁特性优越:永磁同步电动机的励磁特性好,可以根据不同的调速要求,设置不同的励磁电压;(5)效率高:永磁电动机的效率高,不受频率的影响,使得在实际的使用过程中能够获得更好的效率;(6)寿命长:由于永磁转子可以抵抗载荷瞬变和磁场空载,有效缓冲定子线圈之间的空载、过压和短路,从而提高了永磁同步电动机的使用寿命。
空心轴永磁直驱同步牵引电机组装工艺

空心轴永磁直驱同步牵引电机组装工艺发布时间:2022-08-24T01:59:11.797Z 来源:《新型城镇化》2022年17期作者:初永为刘海东郭明慧[导读] 永磁直接驱动式同步牵引电动机的转子内部嵌有永久磁铁,磁力很大,对定子等磁性物质具有很大的吸附性,从而使转子因磁力而不能装进定子;同时,定?转子容易发生互相吸引?碰撞,从而导致绝缘损坏,从而缩短电动机的绝缘寿命,从而给电动机的安全带来危险?因此,定?转子合装是决定永磁同步电动机能否顺利装配的重要因素?中车永济电机有限公司山西省永济市 044502摘要:电机的制造工艺根据电机本身的用途?功率?结构?原理等不同而大相径庭。
其定子结构及制造方法也不同,决定了其制造和组装工艺也形式多样。
在微型电机制造领域,不少电机生产厂家的电机制造和组装工艺还在使用20世纪的生产工艺和技术设备,定子制造还停留在手工组装,即人员用手逐个在简单治具上组装,效率不仅低下,品质还无法保证。
本文分析了永磁直驱同步牵引电机组装工艺,提出了最佳的组装方案?关键词:永磁直驱同步牵引电机空心轴电机装配永磁直接驱动式同步牵引电动机的转子内部嵌有永久磁铁,磁力很大,对定子等磁性物质具有很大的吸附性,从而使转子因磁力而不能装进定子;同时,定?转子容易发生互相吸引?碰撞,从而导致绝缘损坏,从而缩短电动机的绝缘寿命,从而给电动机的安全带来危险?因此,定?转子合装是决定永磁同步电动机能否顺利装配的重要因素?1组装工艺要点1.1定?转子合装方式永磁同步驱动电动机的转子主要由永磁体?转子铁芯?中空转轴等部件构成,而中空转轴没有中心孔,也没有参照物?如果电机定?转子合装为水平安装,容易造成定?转子相互吸引?刮伤定子绕组,造成安全隐患?若电机为垂直安装,则通过导杆?导套?定中心基座等工具之间的精确配合,使定?转子合装时具有很好的导引作用,实现电机定?转子合装的精准定位,确保电机定?转子的合装质量?1.2空心轴的定位基准虽然空心轴占用的空间体积比较大,但是在确保转轴机械性能前提下,空心轴可以有效降低转子重量,因此永磁直驱同步牵引电机的转轴选用空心轴形式?空心轴和实心轴的组装工艺差异如下:(1)一般电机转轴有端面的中心孔和各外圆台阶可用于定位?⑵空心轴没有中心孔和可借鉴的基准面,外圆台阶受装配面空间限制,需要使用工装来完成工艺基准?设计基准和测量基准的统一,以此来确保空心轴的定心精度并确保空心轴定位时不损伤轴头?1.3装配精度要求永磁同步驱动电动机的重量在911公斤左右,采用圆柱形轴承,对电机的关键部件精度和组装精度有较高的要求?为保证电机定?转子合装时不会对端部线圈和轴承造成损坏,本机型的生产工艺为:定?转子合装为垂直装配?采用适当的加工基准,设计出一套模具,并利用模具的精密配合,使其定?转子合装,以确保无定位端轴承的压装质量?图2 为该型号永磁同步牵引电机定?转子合装工装示意图?2.1定位端轴承装配和基准定位端轴承装配是以中心线为基准的?首先,将基准由空心轴中心线转换至空心轴的内径边缘处?然后,将空心轴内径边缘处的基准,转换至定位端空心轴内径定心座板上?再将可旋转吊环安装在定心座板上,最后,使用可旋转吊环对转子进行吊装?2.2组装过程根据工装设计,非定位端挡圈?轴承外盖和外油封需在定?转子合装完后进行装配?定子装配过程是:将轴承冷压压入非定位端端盖轴承室一将非定位端端盖安装至定子上?转子装配过程是:将轴承冷压压入定位端端盖轴承室一定位端端盖与转子装配?定?转子合装过程是:安装定心底座至支架上一将定子吊转至支架上一定子定位端端面安装导向杆一将导向管安装在转子非定位端空心轴端面一将定心座板安装至转子定位端空心轴端面—将可旋转吊环安装至定心座板一完成定?转子合装?图3 该型号电机定位端端盖实物图2.3非定位端轴承的精密装配与基准的转换在导向管加导向杆的双重导向和各工装的配合下,通过各止口间高精度的精密配合公差来实现定位,完成非定位端轴承内?外圈同时压装的超高精度的装配?定?转子合装后,由于最后安装的是非定位端轴承,因此必须进行基准转换,即从非定位端定心底座转换至定心底座的导筒上,最后将基准转换至导向管?通过定位端定心座板和吊环的配合,完成永磁直驱同步牵引电机转子的吊装?即完成基准从定位端向非定位端定心的转移和统一?3工装设计和制造3.1定位端工装选材导向管选用无缝不锈钢钢管,相对尼龙材质,一方面能减轻重量,另一方面,大幅降低了工装成本?导向管尾部设计一个角度为5°,长度为30mm的倒角,以便导向管与底座上的定心导筒完美配合,从而顺利完成定、转子合装?3.2定位端工装结构定位端定心座板与空心轴为过渡配合,可旋转吊环进行吊装,紧固螺栓用以锁定定位端工装?定位端工装结构如图4所示?图4 转子定位端工装结构示意图3.3非定位端工装选材转子非定位端工装结构如图5所示?非定位端轴承定心导筒选用圆钢20材质(其钢强度低,韧性?塑性和焊接性好),在定心导筒中部设计了一个大于其两端直径的圆槽(图6);定心底座选用45钢,定心底座与非定位端端盖止口定位处,采用高精度公差配合,以确保定心底座与非定位端端盖止口完成精准定位?图5 转子非定位端工装结构示意图图6 定心底座局部放大图3.4非定位端工装的作用(1)定心底座与非定位端端盖止口面为间隙配合,目的是为了留有弹性余量,以抵消电机在非定位端轴承压装过程中的干扰力?(2)定心底座导筒中间位置孔径略大于导筒两端,目的是为了在定?转子合装过程中,导向管下落至导筒时,避免出现偏心现象?4结语对永磁直驱同步牵引电机组装工艺进行探讨,在原有永磁同步牵引电机的组装工艺上,增加了5项关键工艺控制点,分别是:(1)装配方式采用立式装配;(2)公差带的精准选择;(3)基准的恰当转换;(4)装配方案的专用选定;(5)电机外型庞大下工装的巧妙设计?以上措施大幅提高了电机一次装配成功的合格率?参考文献:[1]尹若义.HX_N5型机车牵引电机齿端轴承温升报警故障分析与处理[J].铁道机车与动车,2020(10):37-40.[2]汪安灿,廖新明.微型电机定子自动组装工艺的研究与设计[J].机电工程技术,2020,49(08):174-176.[3]夏炜,廖新明,揭新平.微型电机自动齿轮组装工艺的研究与设计[J].机电工程技术,2020,49(08):184-186.[4]吴锡礼. M风扇电机工厂基于价值流的精益生产改善[D].华南理工大学,2020.DOI:10.27151/ki.ghnlu.2020.002602.[5]李永,李钢强.某型全自动起重机在核电厂电机组装中的应用研究[J].中国设备工程,2019(18):139-141.。
永磁耦合器找正方法-概述说明以及解释

永磁耦合器找正方法-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对永磁耦合器的基本定义和工作原理进行介绍。
可以起到引入读者对该主题的认识和了解的作用。
示例:永磁耦合器是一种常用的磁耦合器,其基本原理是通过永磁体在两个磁力的作用下实现动力传递。
与传统的机械耦合方式相比,永磁耦合器具有无接触传递、无摩擦、无磨损的特点。
它通过利用永磁体之间的磁力相互吸引或排斥的作用,实现了高效的动力传递。
在许多工业领域中,永磁耦合器被广泛应用于带有恶劣工作环境、高转矩传递、高效率要求的场景中。
永磁耦合器的设计和应用具有重要的工程意义。
如何准确找正永磁耦合器的工作状态是其中关键的问题之一。
即使在生产制造过程中,由于工艺、装配等因素,永磁耦合器的磁极位置可能会产生偏差,导致性能下降或无法正常工作。
因此,本文以探讨永磁耦合器找正方法为主题,旨在帮助读者了解永磁耦合器的设计原理,掌握正确的找正方法,以提高永磁耦合器的工作效率和可靠性。
1.2文章结构1.2 文章结构本文将按照以下结构来探讨永磁耦合器找正方法的问题。
首先,在引言部分将概述永磁耦合器的基本原理和作用,并介绍本文的目的。
通过对问题的整体把握,读者将能够更好地理解后续的正文内容。
接着,正文部分将包括三个要点。
其中,第一个要点将重点讨论永磁耦合器找正方法的理论基础和背景知识。
我们将介绍相关的模型和算法,以及它们在实际应用中的限制和局限性。
通过对这些内容的深入分析,读者将能够更好地理解永磁耦合器找正方法的原理和优缺点。
在第二个要点中,我们将详细介绍目前常用的永磁耦合器找正方法。
我们将探讨各种方法的原理、步骤和适用范围,并对它们的优劣进行比较和评估。
通过对这些方法的分析和比较,读者将能够更好地选择适合自己应用场景的找正方法,并了解如何正确使用它们。
最后,在第三个要点中,我们将总结前文所述,并对永磁耦合器找正方法的未来发展进行展望。
我们将探讨可能的改进和创新方向,以及可能面临的挑战和难题。
电机找正工法

电机找正工法近几年宝冶的市场迅猛发展,检修分公司也不例外。
目前,已在包括沙钢、湘钢、宁钢、邯钢、日钢、南通、鄂钢、上海益昌、特钢等10多个钢铁厂成立了检修大队或者项目部。
检修市场的不断发展壮大,而员工的技能培训工作却跟不上市场扩张的节奏。
在检修施工现场体现为员工的技术素质低,劳动效率低,甚至因为施工方法的不妥或者不当,而严重影响到施工工期。
电机找正方法落后或凭感觉施工是目前班组普遍的现象,经过多年的实践和探索,编制一种较为简单、易懂的电机找正工法。
一、特点通俗、易懂、可操作性强,大大提高了工作效率,减轻了劳动强度。
二、适用范围适用于设备检修和设备安装后的电机找正,特别适用于大型电机的找正。
三、工艺原理1、相似三角形2、杠杆原理四、工艺流程的操作要点(1)工艺流程(以设备检修为例)(2)操作要求基本要求:A、1、施工人员对百分表的基本原理有所了解,能正确使用百分表,对测量的数据会做记录,数据分析后对设备和电机间的相互空间位置有概念。
2、测量前后,所有的地脚螺栓必须紧固到位,避免数据失真。
3、接手间的端面间隙,根据图纸要求或根据调整前的原始数据须得到保证,避免过大或过小。
4、找正允许值。
B、为提高效率,一般采用二块百分表同时测量,百分表A测量径向偏差a,在180度方向的百分表B测量端面偏差s,为减小联轴加工时产生的圆跳动及平面跳动,尽量让两边的联轴节向着相同的方向一起旋转。
(如一侧无法转动,则百分表磁性表座架设于能转动侧的半联轴节上)先测得百分表A和B在0度到180度两个方向的a1与s3(一般设置为先归零),然后将两半联轴节依次旋转到90度,180度,270度,360度(0度)四个位置,分别测出a2、a3、s1、a4、s2,将测出的数值记在记录图中,如下图所示:百分表架设示意图数据记录图特别注意:百分表旋转360度后,百分表测量指针归零,测得的数值应符合下列条件:a1+a3=a2+a4,s1+s3=s2+s4比较径向a和端面s在对称方向上的偏差,若径向偏差(a1-a3)/2和(a2-a4)/2小于端面偏差s1-s3和s2-s4同时小于规定的技术要求,则示为合格,否则要进行调查分析。
永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法

永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示:图1因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示:图2如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。
在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U 相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。
在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。
当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:图3对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,a 相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。
也就是说相对于初级(定子)绕组而言,次级(转子)磁体坐标系的d轴在空载定向时有会左移90度电角度,与FOC 控制下q轴的原有位置重合,这样就实现了转子空载定向时a轴(U 轴)或α轴与d轴间的对齐关系。
三表找正

4.将百分表触头触及调整端半联轴器轮毂外圆面和端面, 检查小指针所指数据不要太大,一般设置刻度为5左右; 同时也为了出现负偏差。 5.将基准转子按旋转方向转动;在整个找正过程中两联轴 器必须按同一方向旋转。
Page
6
图1
Page
7
Page
8
二、有效数据的测量
测量时,为了分析计算方便 ,常把三个百分表读数调整 至 “0”位,且百分表内小表指针指向整毫米处(此位置设 置为原始位),然后两半联轴器按压缩机工作转向手动匀 速盘动运转 (可以避免两半联轴器本身的误差影响对中 找正精度),避免回转。每转 90°读一次各表中数据 ,把 数据按要求填到记录图2 中相对应的位置中。由图知:1# 表读数显示径向偏差,2#、3# 表读数显示轴向偏差(单 位:0.01㎜)。 当百 分表回到原始位时,检查径向百分表 指针是否回到“0”位。
Page 14
计算与调整
根据 刚性联轴器找正一般要求:径向对中找正允许偏差 0.05㎜,轴向对中找正允许偏差 0.03 ㎜从公式(2)计算 中看出,此状态对中已经超出允许偏差。两个轴的相对位 置必须进行调整,这种情况属于轴两半联轴器既不同心也 不平行 。一般情况下,以压缩机或泵做为固定基准,所 以通过找正电机机轴,使其两半联轴器符合对中找正要求。
三表找正课件
--------主讲人:马井坡
三表找正的目的
为保障生产装置中大型压缩机组长周期运行,在检修过程 中,现在一般会广泛采用“三表找正法”, 来消除找正 时的轴串,确保找正数据的准确。
Page
2
三表找正原理
三表找正原理是在二表找正原理基础上建立的,它适用于 转轴在测量过程中有轴向串动的情况,对转轴在测量中不 发生串动的情况也适用,可以说,它适用于所有转轴同轴 度的检测。
大型机组联轴器的三表法对中找正

标示执行。
调整驱动电机联轴器端面与压缩机联轴器端面找正间隙,两端面找正间隙量为联轴器调整垫片厚度(20mm),确定电机端面与压缩机端面间隙时,必须先将电机转子磁力中心位置固定好。
2 联轴器对中找正2.1 找正程序将专用找正工具固定在压缩机主轴侧联轴器上、再将一个径向C表、两个轴向表A表与B表装在表架上,表架在全负荷下检查校正合格(图2),保证表针所测的轴向与径向面光洁度,径向测点的轴向面应与主轴轴心保持平行,对中找正前,将百分表调零,沿轴向拨动主轴使百分表在轴向串动,径向表值不得有变化,否则将导致径向百分表得数的偏差。
图2 全负荷下检查校正合格的表架径向百分表(C表)垂直指在电机联轴器轴向面上,百分表转在上面0°时,表针调整为零,将电机联轴器旋转180°,观测表针变化。
轴向双表(A/B表)垂直指在驱动电机联轴器径向面上,当轴向两表与联轴器表面垂直时,将上下表两同时调整为零,将电机联轴器同步旋转180°,观测表针变化。
找正时轻轻盘动压缩机主轴联轴器,通过一同时横穿两半联轴器螺栓孔的短圆柱棒去带动电机联轴器,每旋转一个90°,记录出径向和轴向表数据,根据正负数据进行机组对中偏差调整。
2.2 偏差值计算方法百分表上下相减为垂直差,左右相减为水平差,所减差值确定为对中偏差值。
如图3所示,径向C表顺时针每90°读取数据分别为C1、C2、C3、C4,轴向A/B表顺时针每90°读取数据分别为A1、A2、A3、A4/B1、B2、B3、B4,径向/轴向偏差(角偏差)值计算方法:径向偏差:垂直偏差=C1-C3/C3-C1;0 引言联轴器在安装时必须精确地找正、对中,否则设备运行过程中将会在联轴器上引起很大的应力,将严重地影响轴、轴承和轴上其他相关零部件的正常工作,甚至引起整台机器设备和基础的振动或损坏等。
因此,机组、泵和驱动机联轴器的对中找正是安装和检修过程中很重要的工作环节之一。