永磁同步电机控制原理
永磁同步电机工作原理及控制策略

U1
VF1
VF3
VF5
H1
译
A
码
H2
电
B
H3
路
VF4
VF6
VF2
C
Y联结三三通电方式旳控制原理图
PMSM和BLDC电机旳工作原理
vab
Vd
0
2
t
van
0
2
3 Vd
1 3 Vd
t
M
Y联结三三通电方式相电压和线电压波形
a)
VF6VF1VF2导通时合成转矩
Tc 2
b) VF1VF2VF3导通是合成转矩
c)三三通电时合成转矩
K e :电动势系数; Ta :电动机产生旳电动转矩平
均(N.m);
KT :转矩系数; R :电动机旳内阻( )。
PMSM和BLDC电机旳工作原理
BLDC电机旳动态特征方程
U U Ea IR
Ta KT I
Ta
TL
GD2 375
dn dt
Ea Ken
TL :电动机负载阻转矩; GD2 :电动机转子飞轮力矩
FOC中需要测量旳量为:定子电流、 转子位置角
PMSM电机旳FOC控制策略
2、FOC特点 以转子磁场定向 系统动态性能好,控制精度高 控制简朴、具有直流电机旳调速性能 运营平稳、转矩脉动很小
PMSM电机旳FOC控制策略
3、FOC控制方式
id 0 控制
定子电流中只有交轴分量,且定子磁动势空间矢量与 永磁体磁场空间矢量正交,电机旳输出转矩与定子电 流成正比。 其性能类似于直流电机,控制系统简朴,转矩性能好, 能够取得很宽旳调速范围,合用于高性能旳数控机床、 机器人等场合。电机运营功率因数低,电机和逆变器 容量不能充分利用。
永磁同步电机控制原理

iq PI
uq
r
id
id PI
ud
iq id
u
d,q
α,β u
d,q
i
i
α,β
SV PWM
驱动模块
逆变器
α,β
ia
ib
a,b,c
d / dt
控制模块
高压直流电输入输出 电机控制器外部低压输入信号 电机控制器内部输入信号 数学计算输出信号 控制程序输出信号 IGBT信号
电机控制器
PMSM
旋转变压器
永磁同步电机控制原理
控制方式
永磁同步电机 (PMSM)
矢量控制 控制方式
直接转矩控制
矢量控制(磁场定向控制)
矢量控制实现的基本原理是测量和控制电机定子电流矢量
根据磁场定向原理分别对电机的励磁电流和转矩电流进行 控制,从而达到控制电机转速和转矩的目的
对电流的空间矢量 进行坐标变换,并 进行控制,所以叫 矢量控制
数据 观测
上位机
RS232
LED 显示
外部 存储器 仿真器
DAC
键盘控制
I/O
PDPINT
SCI
CPU
PWM
产生
SPI
存储器
模块
EMIF
ADC PLL
JTAG
WD/RTI
DSP
QEP
U DC C
故障检 测电路
光
驱
三相
耦
动
逆变
隔
电
电路
离
路
IPM
电流 检测
位置 检测
PMSM
IPM内部集成: 6个IGBT 驱动电路 保护电路
驱动电机总成
软件流程图
永磁同步电机控制原理

永磁同步电机控制原理在现代工业和日常生活中,电机扮演着至关重要的角色。
其中,永磁同步电机因其高效、高功率密度和良好的调速性能等优点,得到了广泛的应用。
要让永磁同步电机稳定、高效地运行,就需要对其进行精确的控制。
接下来,咱们就来详细了解一下永磁同步电机的控制原理。
永磁同步电机的结构相对简单,主要由定子和转子两部分组成。
定子上有三相绕组,通过通入三相交流电产生旋转磁场。
转子则由永磁体组成,其磁场与定子磁场相互作用,从而实现电机的转动。
要实现对永磁同步电机的控制,关键在于对定子电流的控制。
这是因为定子电流的大小、频率和相位直接决定了电机的运行状态。
在控制方法上,常见的有矢量控制和直接转矩控制两种。
矢量控制是一种较为经典且广泛应用的方法。
它的基本思想是将定子电流分解为励磁电流分量和转矩电流分量。
通过分别控制这两个分量,可以实现对电机磁通和转矩的独立控制。
就好像我们在开车时,既要控制油门来决定速度(类似于转矩),又要控制方向盘来决定方向(类似于磁通)。
具体来说,矢量控制需要先进行坐标变换。
将定子的三相电流通过克拉克变换和帕克变换,转换到旋转的dq 坐标系中。
在这个坐标系下,d 轴表示磁通方向,q 轴表示转矩方向。
然后,根据给定的转速和转矩指令,计算出 d 轴和 q 轴电流的参考值。
再通过电流调节器,控制实际的 d 轴和 q 轴电流跟随参考值。
这样就能实现对电机的精确控制。
直接转矩控制则是另一种有效的控制策略。
它直接对电机的转矩和磁通进行控制,不需要复杂的坐标变换。
通过检测电机的定子电压和电流,计算出电机的转矩和磁通,并与给定值进行比较。
然后根据比较结果,选择合适的电压矢量来控制电机的运行。
这种方法响应速度快,但控制精度相对矢量控制略低。
在实际的控制系统中,还需要考虑各种因素的影响。
例如,电机参数的变化、负载的扰动等。
为了提高系统的稳定性和鲁棒性,通常会采用一些先进的控制策略和技术。
比如,采用自适应控制算法,可以根据电机参数的变化实时调整控制参数,以保证控制性能。
永磁同步电机控制原理

永磁同步电机控制原理位置控制是指将电机转子的位置控制在给定的位置上,常用的方法有传统的电流环控制和矢量控制。
传统的电流环控制是通过控制电机的电流来实现位置控制。
首先,测量电机的转子位置,通常使用光电编码器或霍尔传感器。
然后,通过闭环控制系统计算得到合适的电流指令。
最后,将电流指令发送到电机驱动器,控制电机的电流。
该方法的优点是简单且稳定,但低效。
矢量控制是一种较为先进的方法,可以实现更高的转速和更高的效率。
矢量控制通过直接控制电机的转子位置和转矩来实现位置控制。
矢量控制的原理是将电机的转子电流和磁场定向地控制在给定的位置上。
为了实现矢量控制,需要测量电机的转子位置和转速,并通过采样和滤波等技术对其进行处理。
然后,通过矢量控制算法计算得到合适的电流指令,并将其发送到电机驱动器。
电机驱动器会根据电流指令调整电机的相电流,从而控制电机的转子位置和转矩。
除了位置控制,永磁同步电机的控制还包括转速控制和转矩控制。
转速控制是指将电机的转速控制在给定的范围内。
常用的方法有开环控制和闭环控制。
开环控制是指根据电机驱动信号的占空比和频率来控制电机转速。
通过改变驱动信号的占空比和频率可以改变电机的转速。
该方法简单易实现,但不稳定且精度较低。
闭环控制是指在电机的转子位置和速度反馈信号的基础上,通过PID控制器或其他控制算法,计算得到合适的电压指令,并将其发送到电机驱动器。
电机驱动器会根据电压指令调整电机的相电压,从而控制电机的转速。
转矩控制是指将电机的输出转矩控制在给定的范围内。
常用的方法有矢量控制和直接转矩控制。
矢量控制是指在电机的转子位置、速度和转矩反馈信号的基础上,通过矢量控制算法计算得到合适的电流指令,并将其发送到电机驱动器。
电机驱动器会根据电流指令调整电机的相电流,从而控制电机的转矩。
直接转矩控制是指通过测量电机输出转矩并在闭环控制系统中计算得到合适的电流指令,并将其发送到电机驱动器。
电机驱动器会根据电流指令调整电机的相电流,从而控制电机的转矩。
永磁同步电机控制原理

������������������ Φ������ [Φ������ ] = [������������������ Φ������ ������������������ 定子绕组对称分布
������������������ ������������������ ������������������
������������������ ������������ ψ������������ ������������������ ] [������������ ] + [ψ������������ ] ������������������ ������������ ψ������������
������������������ = ������������ + ������������ cos(2������) ������������������ = ������������ + ������������ cos(2(������ − 2������/3)) ������������������ = ������������ + ������������ cos(2(������ + 2������/3)) ������������ 为三相绕组自感平均值 ������������ 为三相绕组自感二次谐波幅值 ������为转子电角度 电角度������ = ������������������ ������为极对数 ������������ 为机械角度 定子绕组互感 ������ ������������������ = ������������������ = −������������ − ������������ cos (2 (������������ + )) 6 ������������������ = ������������������ = −������������ − ������������ cos (2 (������������ + ������������������ = ������������������ = −������������ − ������������ cos (2(������������ + ������ − 2������/3)) 6 ������ + 2������/3)) 6
永磁同步电机控制系统结构原理

永磁同步电机控制系统结构原理
永磁同步电机控制系统由以下几个主要部分组成:
1.传感器:用于测量电机的运行参数,如转速、电流、电压等。
常用的传感器
包括转速传感器、电流传感器、电压传感器等。
2.控制器:根据传感器测量的数据,计算出电机的控制信号。
控制器的类型有
很多,常用的控制器包括矢量控制器、直接转矩控制器等。
3.执行器:将控制器的控制信号转换为电机能够接受的形式。
常用的执行器包
括逆变器、电机等。
永磁同步电机控制系统的结构原理如下:
●传感器测量电机的运行参数。
●控制器根据传感器测量的数据,计算出电机的控制信号。
●执行器将控制器的控制信号转换为电机能够接受的形式。
●电机根据执行器输出的控制信号进行运行。
永磁同步电机控制系统可以实现电机的速度、转矩、位置等参数的控制。
控制系统的性能将直接影响电机的运行性能和效率。
永磁同步电机控制系统的控制策略有很多,常用的控制策略包括:
●矢量控制:将电机的转子坐标系转换为定子坐标系,并在定子坐标系下进行
控制。
矢量控制具有良好的控制性能,可以实现电机的快速、精准控制。
●直接转矩控制:直接对电机的转矩进行控制。
直接转矩控制具有较高的控制
速度,可以实现电机的快速响应。
永磁同步电机 原理

永磁同步电机原理
永磁同步电机是一种利用永磁体和电磁体相互作用,实现转子与旋转磁场同步运动的电机。
它的原理基于磁场相互作用和电磁感应的原理。
具体原理如下:
1. 永磁体产生磁场:永磁同步电机的转子上装有永磁体,永磁体产生固定的磁场。
这个磁场可以是永久磁铁,或者由由稀土磁体、钕磁铁硼等现代高能量高矩磁体生成。
2. 定子产生旋转磁场:在永磁同步电机的定子上通以三相交流电源,通过三相绕组在定子上产生旋转磁场。
这个旋转磁场的频率和大小由电源提供的电压和频率决定。
3. 磁场相互作用:由于转子上的永磁体产生的磁场与定子上产生的旋转磁场相互作用,产生了转矩。
这个转矩使得转子跟随旋转磁场同步运动。
4. 反馈控制:为了使永磁同步电机能够准确地跟随外部旋转磁场的变化,通常需要使用反馈控制系统,如位置传感器或编码器来实时检测转子位置和速度,并根据反馈信号调整电流和磁场。
总之,永磁同步电机的原理是利用永磁体和旋转磁场的相互作用,实现了转子与旋转磁场同步运动。
这种电机具有高效率、高功率密度和高控制性能等优点,在许多应用领域得到了广泛的应用。
永磁同步电机的原理和结构

永磁同步电机的原理和结构一、原理1.斯托克斯定律:电机的磁场遵循斯托克斯定律,即磁场的旋度等于电流的流入速率。
电机的磁场随转子位置的变化而发生改变。
2.磁场力矩:永磁同步电机的转子上有多个永磁块构成的磁极,当电机的定子线圈通以电流时,产生的磁场与转子的磁场相互作用,形成力矩。
3.控制策略:为了使电机能够正常运行,需要通过控制器对电机进行控制。
例如,可以通过调节电流的大小和方向来调整磁场力矩,从而实现电机的正常运行。
二、结构1.定子:定子是电机的固定部分,由电磁铁圈组成。
电磁铁圈的线圈上通以交流电,产生的磁场与转子的磁场相互作用,形成力矩。
2.转子:转子是电机的旋转部分,通常由铁芯和永磁体组成。
铁芯提供机械强度和磁通闭合路径,永磁体则产生稳定的磁场。
转子的磁场与定子的磁场相互作用,形成力矩。
3.永磁体:永磁体是电机的励磁源,通常由稀土永磁材料制成。
永磁体能够持续产生磁场,并且磁场强度较高,使得电机具有较高的功率密度和效率。
4.传感器:传感器位于电机的定子和转子之间,用于检测电机的状态和位置。
传感器可以测量定子和转子的角度、速度和位置等参数,通过传输给控制器,实现对电机的精确控制。
5.控制器:控制器是电机的智能控制核心,通过接收传感器的反馈信号,以及根据预定的控制策略,控制定子线圈的电流,调整磁场力矩的大小和方向,实现电机的正常运行。
综上所述,永磁同步电机的原理是通过电磁感应定律和电动机转矩方程实现电动机的工作,其结构主要由定子、转子、永磁体、传感器和控制器等组成。
通过控制器的精确控制,可以实现电机的高效率和高性能运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黎永华 05.11
一 控制方式 二 SVPWM产生原理 三 转子初始化定位
一 控制方式
它控式
由其它装置带动电机转动
自控式
由自身控制电机转动。永磁同步电机同步就是 指电流频率和转速是同步的,自控式就是控制电 流频率来实现控制转速。通常采取矢量控制
矢量控制原理图
坐标变换图
SVGEN_DQ模块。在此模块中,首先 通过计算参考电压矢量在A_B_C定子坐标系下 的投影Ua、Ub、Uc,然后投影值与0比较,确 定扇区。
第二步:计算两个相邻基本空间电压矢量的导通 时间
确定扇区后,就能够确定相邻两个基本空间电
压矢量 U X 和 U X 60 , 以0扇区,U 0和 U60
为基本空间矢量为例说明,如下图所示。
d
N O
is
q
e 90
S
A
c dq坐标系旋转后
磁定位法即是给定子通e 90o 的电流矢量,从而使a轴、d轴、
轴重合,实现转子的初始化定位。
2.基于磁定位原理的摄动定位
磁定位法可以精确实现转子的初始定位,但可能造成转子较大幅度的 转动,这在有些机械设备上是不容许的。
基于磁定位原理的摄动定位方法:给定子通以 id 0 iq is 方向为e
电压空间矢量六边形矢量图
由上图可以算出
SVPWM的软件实现 SVPWM产生的软件流程方框图
第一步:根据 U和U 确定电压空间矢量的相位 置,即其所在的扇区。
模块输入d_q坐标系中d轴电压坐标系中, 轴电压分量U和 轴电压分量U,输入
3.通过电感饱和特性实现定位
永磁同步电机在各个方向上磁路的饱和程度是不一样的,各个方向的 磁导率是不一样的,磁场存在非线性。因此对应于转子的不同方向, 定子铁心的等效电感值还是有些差别。
因此我们给电机施加不同方向的相同幅值的一系列相同时间的电压脉 冲,脉冲结束时的定子电流合成矢量值的大小会不同,与定子电流合 成矢量的方向有关,得到的电流最大的方向就是转子磁极N极的方向。 因为当定子磁动势合成矢量与转子磁极N极一致时,磁路最饱和,磁 导率最小对应的电感值最小,电流上升最快,定子绕组中顺磁方向的 电流要比逆磁方向的绝对值大,当所施加的电压方向和转子N极一致 时,定子绕组中的电流合成矢量值最大,故通过这种方法可以检测转 子的初始位置,检测的次数越多位置越精确。
iq
is
id e
0
当给电机定子通如图所示的is电流矢量时 id is cos(e )
iq
is
sin(e
)
电磁转矩方程为:Te 1.5 pis sin(e )
于是通过转子的转动方向可以得出转子的初始位置信息
1.磁定位法原理
q
d
is
N
A
S
a 转子在任意初始位置
N O
e
S
A
b 给定子通is电流矢量后
(1)磁定位法即强制启动使转子转到一个已 知位置; (2)静止时通过特定的算法估算转子位置。
永磁同步电机转矩方程
Te 1.5 p[iq (Ld Lq )idiq ]
对于表面式PMSM, L Lq d
于是电磁转矩方程为: 。Te 1.5 piq Te 0 ,电机逆时针转动;当Te 0 ,电机顺时针转动; Te 0 ,电机不转,
第三步:计算三个比较器的占空比
根据各相位置,分配三个比较器的占空比,如下表所 示。
最后,将taon、tbon、tcon送入DSP的比较寄 存器,由DSP的硬件电路输出六路PWM脉冲给电 机驱动板驱动电机运转。
一 控制方式 二 SVPWM产生原理 三 转子初始化定位
三 转子初始化定位
转子初始位置信息是电动机正常起动运行的前提, 也是控制算法正确实施的必要条件。若转子初始 位置检测失误,会严重影响到以后对转子位置的 计算,以致无法正确完成关于电机控制的其他一 系列算法,将造成电机运转的紊乱并使之无法进 入正常的运转状态。通常采取的方法有:
第一步,可以确定在一个15度范围内
第二步
第三步
的电流矢量,电动机在上述电流矢量的作用之下开始旋转,通过编码 器脉冲信号可得到电机的转动方向,一旦检测到编码器脉冲数有变化, 便立即封锁PWM输出,转子的位置改变很小,而根据电机转向和给 定的电流矢量就可以大致确定电机转子的位置。接着改变电流矢量方 向 ,使e 给定的电流矢量更接近电机转子的磁极,再检测电机的转 向,通过转向来实现对转子初始位置的定位。
abc三相定子电流,经过claeke变换为 坐标系,在经过park变换为dq坐标
Clarke变换与逆变换 Park变换与逆变换
一 控制方式 二 SVPWM产生原理 三 转子初始化定位
二 SVPWM产生原理
SVPWM是通过三相交流逆变桥的6个开关的不同 导通模式产生不同的电压基本矢量,通过矢量合 成,来合成任意矢量(在实际允许范围内),通 过导通时间的不同大小,来确定矢量的大小,这 也就是SVPWM调制的原理。
检测转子初始位置(即 )步骤如下:
3
3 1
d
2 is 1
3.5 d
3
N
4
4
N
e
0
S
2 S
5
7
q
6
q
3 3.5 3.7d54
N
第一步 确定一个45°范围
S
q
第二步 摄动定位过程
100°的定位摄动过程
分别给定子施加了2.5、2.25、2.125、2.1875、2.21875这几个角度 值的电流矢量