永磁电机原理及数学模型

合集下载

永磁电机的工作原理

永磁电机的工作原理

永磁电机的工作原理永磁同步电机的种类繁多,按照定子绕组感应电动势的波形的不同,可以分为正弦波永磁同步电机(PMSM)和梯形波永磁同步电机。

机床设备组成中触摸屏维修结构上,使用的正弦波永磁同步电机定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在转子上的安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式和内埋式。

一、电机控制方式目前,三相同步电机现在主要有两种控制方式,一种是他控式(又称为频率开环控制);另一种是自控式(又称为频率闭环控制)。

他控式方式主要是通过独立控N#l-部电源频率的方式来调节转子的转速不需要知道转子的位置信息,常常采用恒压频比的开环控制方案。

自控式永磁同步电机也是通过改变外部电源的频率来调节转子的转速,与他控式不同,外部电源频率的改变是和转子的位置信息是有联系关系的,转子转速越高,定子通电频率就越高,转子的转速是通过改变定子绕组外加电压(或电流)频率的大小来调节的。

因为自控式同步电机不存在他控式同步电机的失步和振荡问题,并且永磁同步电机永磁体做转子也不存在电刷和换向器,降低了转子的体积和质量,进步了系统的响应速度和调速范围,且具有直流电念头的机能,所以本文采用了自控式交流永磁同步电机。

当把三相对称电源加到三相对称绕组上后,天然会产生同步速的旋转的定子磁场,同步电机转子的转速是与外部电源频率保持严格的同步,且与负载大小不要紧。

二、永磁电机的原理系统采用的是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、控制电路、三相交流永磁电机和位置传感器构成。

50HZ的市电经整流后,由三相逆变器给电机的三相绕组供电,三相对称电流合成的旋转磁场与转子永久磁钢所产生的磁场相互作用产生转矩,拖动转子同步旋转,通过位置传感器实时读取转子磁钢位置,变换成电信号控制逆变器功率器件开关,调节电流频率和相位,使定子和转子磁势保持不乱的位置关系,才能产生恒定的转矩,定子绕组中的电流大小是由负载决定的。

永磁同步直线电机数学模型

永磁同步直线电机数学模型

永磁同步直线电机数学模型永磁同步直线电机是一种应用于直线运动控制系统的新型电机。

它具有高效率、高精度、高刚度和快速响应的特点,广泛应用于工业自动化、高速列车、机床、印刷、数控机床、半导体设备等领域。

永磁同步直线电机的数学模型是描述其运动规律的数学表达式。

通过建立数学模型,可以分析和预测电机的性能,并设计出最优的控制策略。

永磁同步直线电机的数学模型主要包括动态模型和静态模型两部分。

动态模型描述了电机的运动状态和响应特性。

它基于牛顿第二定律和电机动态方程建立,考虑了电机的负载惯性、摩擦力和电磁力等因素。

动态模型可以用于分析电机的加速度、速度和位置等动态性能。

静态模型描述了电机的静态特性。

它基于电机的静态平衡方程建立,考虑了电机的电磁力、重力和摩擦力等因素。

静态模型可以用于分析电机的静态力学性能,如电机的负载能力和刚度等。

在建立永磁同步直线电机的数学模型时,需要考虑电机的结构参数、电磁参数和控制参数等因素。

结构参数包括电机的长度、宽度和高度等几何尺寸,电磁参数包括电机的磁极数、电流和磁链等参数,控制参数包括电机的控制电流和控制电压等参数。

根据实际应用需求,可以对模型进行简化或者增加更多的参数,以提高模型的准确性和适用性。

通过数学模型,可以对永磁同步直线电机的性能进行分析和优化。

例如,可以通过模型预测电机的响应时间、稳态误差和精度等指标,在设计过程中选择合适的结构参数和控制参数,以实现最佳性能。

此外,还可以通过模型分析电机的负载能力和刚度,评估电机在不同工况下的可靠性和稳定性。

永磁同步直线电机的数学模型是分析和设计电机的重要工具。

通过建立准确的数学模型,可以深入理解电机的运动规律和特性,为电机的应用和控制提供有效的指导。

同时,也可以通过模型优化电机的性能,提高电机的效率和精度,满足不同领域和应用的需求。

永磁同步电机的数学模型与矢量控制原理

永磁同步电机的数学模型与矢量控制原理

永磁同步电机的数学模型及矢量控制原理WAA磁同步电机的转F上水盛体的安装方式的不同,则电机的制造丄适用场所、运行•性能、控制方法也郁有所五同。

根据氷磁体在转子上的位貰不同,永磁同步电机可分为小叫(i)表骷式永磁同应电机t Surface-mounted PMSM.简称SPMSM A. SPM)* Jt转f结构如下图所示。

SPM电机转子上的永磁体位于转子铁芯的表面,通常呈瓦片形, 为电机提供径向磁通。

另外,因外包钢膜上的感生涡流损耗,遣成较大的铁损,而且气隙较大•导致其效率较低。

但磁阻转矩较小.若对其进行合理的控制可获得较好的低速运转特性。

(ii)内埋式永磁同步电机(Interior PMSM,简称1PMSM或IPM),此类电机转子上的永磁体位于转了内部,通常呈条状。

由丁此种转子具仃不对称的磴路給构,所以它比SPMSM 分磁阳转矩,从而大大提离了电机的功率密度F实现屈磁控制。

同时,由于永磁休在转子铁芯内部,所以这类电机有更加坚固的转子結构,适合运转于高速场IPM 的定子电感随转『鎚极位西非线性变化.所以1PM的捽制性能随;匸子电流换柑相移影响口SPM与IPM的转于结构如图2.1所示。

本文上嘤研究SPMSM的数学模型及其矢豐控制方法。

水磁体铁芯<a> SPM转子结构<b) IPM转予结构图2.【永毬同歩电机转子蒂构2.2永磁同步电机的数学模型木节苜先建立PMSM的数学模型,这也是后续研究PMSM矢丘控制算法的屣础"接卜來分别对三相静止坐标系、两和邯止坐标系和两相旋转堰标系F的PMSM 的数学模型进行描述。

严格的说,永磁同步电机是一个存在非线性磁化特性和饱和效应的电磁装留,它的 动态方程式一个高阶微分方程,很难对它进行粘确求解,所以必须对它进行一定程度的 简化,将它化成一个二阶微分方程组。

为了突出主婆何题,先忽略次要因素,作如下假 设叫(1) 忽略谐波效应,设定子三相绕组完全对称且在空间中互差120°电角度,所 产生理想正弦磁动势;(2) 忽略永磁体的非线件饱和因素,认为各相绕纽的阴值、电感都是恒定的,FI Ro = R 、= R< = &丄(! = — = Lc ;(3) 不计电机的磁滞损耗和涡流损耗等: (4) 不考电频率和温度变化对电机参数的场响: (5) 转子上没有阻尼绕组,永磁体没有阻尼作用。

永磁同步电机的数学模型与矢量控制原理

永磁同步电机的数学模型与矢量控制原理

永磁同步电机的数学模型及矢量控制原理WAA磁同步电机的转F上水盛体的安装方式的不同,则电机的制造丄适用场所、运行•性能、控制方法也郁有所五同。

根据氷磁体在转子上的位貰不同,永磁同步电机可分为小叫(i)表骷式永磁同应电机t Surface-mounted PMSM.简称SPMSM A. SPM)* Jt转f结构如下图所示。

SPM电机转子上的永磁体位于转子铁芯的表面,通常呈瓦片形, 为电机提供径向磁通。

另外,因外包钢膜上的感生涡流损耗,遣成较大的铁损,而且气隙较大•导致其效率较低。

但磁阻转矩较小.若对其进行合理的控制可获得较好的低速运转特性。

(ii)内埋式永磁同步电机(Interior PMSM,简称1PMSM或IPM),此类电机转子上的永磁体位于转了内部,通常呈条状。

由丁此种转子具仃不对称的磴路給构,所以它比SPMSM 分磁阳转矩,从而大大提离了电机的功率密度F实现屈磁控制。

同时,由于永磁休在转子铁芯内部,所以这类电机有更加坚固的转子結构,适合运转于高速场IPM 的定子电感随转『鎚极位西非线性变化.所以1PM的捽制性能随;匸子电流换柑相移影响口SPM与IPM的转于结构如图2.1所示。

本文上嘤研究SPMSM的数学模型及其矢豐控制方法。

水磁体铁芯<a> SPM转子结构<b) IPM转予结构图2.【永毬同歩电机转子蒂构2.2永磁同步电机的数学模型木节苜先建立PMSM的数学模型,这也是后续研究PMSM矢丘控制算法的屣础"接卜來分别对三相静止坐标系、两和邯止坐标系和两相旋转堰标系F的PMSM 的数学模型进行描述。

严格的说,永磁同步电机是一个存在非线性磁化特性和饱和效应的电磁装留,它的 动态方程式一个高阶微分方程,很难对它进行粘确求解,所以必须对它进行一定程度的 简化,将它化成一个二阶微分方程组。

为了突出主婆何题,先忽略次要因素,作如下假 设叫(1) 忽略谐波效应,设定子三相绕组完全对称且在空间中互差120°电角度,所 产生理想正弦磁动势;(2) 忽略永磁体的非线件饱和因素,认为各相绕纽的阴值、电感都是恒定的,FI Ro = R 、= R< = &丄(! = — = Lc ;(3) 不计电机的磁滞损耗和涡流损耗等: (4) 不考电频率和温度变化对电机参数的场响: (5) 转子上没有阻尼绕组,永磁体没有阻尼作用。

永磁无刷直流电机的数学模型

永磁无刷直流电机的数学模型

永磁⽆刷直流电机的数学模型 ⽆刷直流电机绕组中产⽣的感应电动势与电机转速匝数成正⽐,电枢绕组串联公式为 其中,E为⽆刷直流电机电枢感应线电动势(V);p为电机的极对数;α为极弧系数;W为电枢绕组每相串联的匝数;φ为每极磁通(Wb);n为转速(r/min)。

在反电动势E和极对数p已经确定的情况下,为使电机具有较⼤的调速范围,就须限制电枢绕组的匝数W。

因此,磁悬浮飞轮电机绕组电感和电阻都⾮常⼩,使得电机在运⾏过程中,相电流可能存在不连续状态。

假定电机定⼦三相完全对称,空间上互差120°电⾓度;三相绕组电阻、电感参数完全相同;转⼦永磁体产⽣的⽓隙磁场为⽅波,三相绕组反电动势为梯形波;忽略定⼦绕组电枢反应的影响;电机⽓隙磁导均匀,磁路不饱和,不计涡流损耗;电枢绕组间互感忽略。

公式中,Va、Vb、Vc和Vn分别为三相端电压和中点电压(V),R和E为三相电枢绕组电阻(Ω)和电感(H),Ea、Eb和Ec为三相反电动势(V),ia、ib.和ic为三相绕组电流(A)。

可将⽆刷直流电机每相绕组等效为电阻、电感和反电动势串联。

⽆刷直流电机绕组采⽤三相星形结构,数学模型⽅程如式(2-2)所⽰: 在电机运⾏过程中,电磁转矩的表达式为 电机的机械运动⽅程为 式中,Te和TL分别为电磁转矩和负载转矩(Nm);J为转⼦的转动惯量(kg·2m);f为阻尼系数(N·m·s)。

电机设计反电动势为梯形波,其平顶宽度为120°电⾓度,梯形波的幅值与电机的转速成正⽐。

其中,反电动势系数乃e由以下公式计算为 电机转⼦每运⾏60°电⾓度进⾏⼀次换相,因此在每个电⾓度周期中,三相绕组反电动势有6个状态。

电机运⾏过程中瞬态功耗的公式为 其中,Ω为电机⾓速度,P为功耗。

永磁⽆刷直流电机的控制可分为三相半控、三相全控两种。

三相半控电路的特点简单,-个可控硅控制⼀相的通断,每个绕组只通电1/3的时间,另外2/3时间处于断开状态,没有得到充分的利⽤。

永磁同步电机基于扩展反电动势的复矢量模型

永磁同步电机基于扩展反电动势的复矢量模型

永磁同步电机是一种应用非常广泛的电动机,具有体积小、效率高、功率密度大等优点,在各种工业领域中得到了广泛的应用。

永磁同步电机的性能很大程度上取决于其模型的准确性和有效性。

本文将主要介绍永磁同步电机的复矢量模型,特别是基于扩展反电动势的复矢量模型。

复矢量模型是电机研究中常用的数学工具,它能够很好地描述电机的动态特性和稳态特性,对于电机的控制和参数设计具有重要意义。

1. 永磁同步电机的基本原理永磁同步电机是一种采用稀土永磁材料作为励磁源的同步电机,其基本结构包括定子、转子和永磁体。

永磁同步电机具有没有励磁损耗、转子结构简单等优点,因此在工业应用中得到了广泛的应用。

2. 永磁同步电机的数学模型为了对永磁同步电机进行控制和参数设计,需要建立其数学模型。

永磁同步电机的数学模型通常包括定子坐标系和转子坐标系两种,其中转子坐标系的模型更为常用。

永磁同步电机的数学模型主要包括电动势方程、电磁转矩方程、定子电压方程和转子电流方程等。

3. 复矢量模型复矢量模型是一种在电机研究中广泛应用的数学模型,它能够很好地描述电机的动态特性和稳态特性。

复矢量模型通过使用复数表示电机的各种电气量,将电机的动态特性和稳态特性统一起来,方便进行分析和计算。

4. 基于扩展反电动势的复矢量模型扩展反电动势是永磁同步电机中一个重要的物理现象,它是指在电机的磁场存在变化时,会产生一个类似于反电动势的作用。

在永磁同步电机的复矢量模型中,扩展反电动势起着重要的作用,能够更准确地描述电机的动态特性和稳态特性。

5. 应用实例通过对永磁同步电机基于扩展反电动势的复矢量模型进行建模和仿真分析,可以更加准确地预测电机的性能,并能够为电机的控制和参数设计提供参考。

在实际工程应用中,基于扩展反电动势的复矢量模型能够更好地指导电机的设计和控制,提高电机的性能和效率。

永磁同步电机是一种应用广泛的电机,其复矢量模型在电机的控制和参数设计中起着关键作用。

基于扩展反电动势的复矢量模型能够更准确地描述电机的动态特性和稳态特性,为电机的设计和控制提供了有力的支持。

永磁同步电机的模型和方法ppt课件

永磁同步电机的模型和方法ppt课件
标系上表示出来。将α 、 β 、o坐标放在定子上, α 轴与A相轴
线重合, β轴超前α 轴90度,在α 、 β 、o坐标系中的电压电流,
可以直接从A 、B、C三相坐标系中的电压电流通过简单的线性
变换可以得到。一个旋转矢量从A 、B、C三相定子坐标系变换
到α 、 β 、o坐标系成为3/2变换,有
• 经过变换后得到α 、 β 、o坐标系的电压方
围。
• 力矩平衡方程式为:
• − =



+
• 从上述分析可以看出在d 、q、0坐标系下的
数学模型简单的多,方便控制
• 根据电机的数学模型,可以将永磁同步电
机简化为如图所示的d,q轴模型。永磁同
步电机的转矩方程表示发电机的电磁转矩
可以通过控制定子电流的d,q轴分量进行
控制。
程为:
• α 、 β 、o坐标系的磁链方程为:
• 其中:Ld、Lq分别是同步电机直轴交轴电感;
为永磁极产生的与定子绕组交链的磁链
在α 、 β 、o坐标系中,经过线性变换使A 、
B、C三相坐标系中的电机数学模型方程得到一定
简化。针对内永磁同步电机,因为转子的直、交
轴的不对称而具有凸极效应,因此在α 、 β 、o
永磁同步发电机控制策略
• 永磁同步发电机常用的矢量控制策略有:
(1)isd=0 控制;
• (2)最大转矩电流比控制:
• (3)单位功率因数控制;
• (4)最小损耗控制等。
• 每种控制策略都有其优缺点,于是针对永
磁同步电机不同控制目标下的矢量控制策
略进行比较分析。
• 2.1 id=0电流控制
• id=0的控制称为磁场定向控制,这种控制

永磁同步电机基础知识

永磁同步电机基础知识

(一) PMSM 的数学模型交流电机是一个非线性、强耦合的多变量系统。

永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。

在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。

为了简化永磁同步电机的数学模型,我们通常做如下假设:1) 忽略电机的磁路饱和,认为磁路是线性的;2) 不考虑涡流和磁滞损耗;3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波;4) 驱动开关管和续流二极管为理想元件;5) 忽略齿槽、换向过程和电枢反应等影响。

永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下:(l)电机在两相旋转坐标系中的电压方程如下式所示:d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ⎧=+-⎪⎪⎨⎪=++⎪⎩其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。

若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。

cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ⎛⎫ ⎪-⎛⎫⎪⎛⎫ ⎪⎪=--- ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭ ⎪+-+⎝⎭(2)d/q 轴磁链方程: d d d f q q qL i L i ψψψ=+⎧⎪⎨=⎪⎩ 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定转子磁场的位臵(初始定位)。 知道转子磁极的初始位臵,以该位臵角建 立dq0坐标系,就能使电机以最大力矩起 动。如果初始位臵角确定错误,则可能会 导致转子启动慢、无法启动甚至倒转失步, 最终导致启动失败。
数学模型
永磁同步电动机利用定子三相交流电流与永 磁转子的磁场互相作用所产生的电磁转矩带动 电动机转子转动。电机转速、频率及极对数的 关系如下:
s q d
i i cos
d s
i i sin
q s
可得,T
em

p L i i sin 2 L L i sin 2
1
2 s n md f s d q
T 电动机的运动方程为: T B Jp 式中, 为负载转矩;B为粘滞摩擦系数; 为机械角 速度;J为转子和所带负载的总转动惯量。 机械角速度 与电角速度 的关系为 p 1时, p
BDCM与PMSM比较
内 容 转矩 功率 调速范围 定子纹波 电流 损耗 类别 BDCM 高1 5% 高1 5% 较窄 较大 大
PMSM
低 低 宽 小 小
反馈方式
每隔60度检测一次
连续检测
PMSM简介

永磁式同步电动机结构简单、体积小、重量轻、损耗小、 效率高,和直流电机相比,它没有直流电机的换向器和 电刷等缺点。和其他类型交流电动机相比,它由于没有 励磁电流,因而效率高,功率因数高,力矩惯量比较大, 定子电流和定子电阻损耗减小,且转子参数可测、控制 性能好;但它与异步电机相比,也有成本高、起动困难 等缺点。和普通同步电动机相比,它省去了励磁装臵, 简化了结构,提高了效率。永磁同步电机矢量控制系统 能够实现高精度、高动态性能、大范围的调速或定位控 制,因此,在医疗器械、化工、轻纺、数控机床、工业 机器人、计算机外设、仪器仪表、微型汽车和 电动自 行车等领域中都获得应用。
CLARK变换
在交流电机三相对称绕组中,通过三相对 称电流可以在电机气隙中产生空间旋转的磁场。 在功率不变的条件下,按照磁动势相等的原则, 三相对称绕组产生的空间旋转磁场可以用两相 对称绕组来等效,三相静止坐标系和两相静止 坐标系的变换则建立了在磁动势不变情况下, 三相绕组和两相绕组电压、电流和磁动势之间 的关系。我们可以看出两坐标系的A、α轴共轴。 当磁动势相等时,则ABC在αβ坐标轴上的分 量与两相在该轴上的值必定对应相等。
永磁同步电动机是依靠永磁转子磁场和定子旋
转磁场的相互作用而工作的。 对于由电网直接启动的永磁同步电动机,为了 解决起动和同步运行问题,需在永磁转子上增 设鼠笼绕组或磁滞材料环。 对于由变频器驱动的永磁伺服电动机,不需要 这种感应电动机转矩,因为驱动系统可由静止 状态自同步起动。 考虑到装设阻尼绕组也会为谐波电流提供流通 路径,这些谐波电流是由定子磁通势谐波引起 的,基于上述原因,PMSM一般不装阻尼绕组。
d s d r q q
q s q r d d r md f
d
u R i L i L i / L
q
p r
p T
n
em

pT
n
1
r / J

PMSM结构
结构形式要根据应用上的具体要求和运行条件而定, 还与选择的永磁材料有关。 整体结构而言:内转子和外转子式 源自磁场方向而言:径向和轴向磁场
定子结构而言:分布绕组和集中绕组,以及有槽和无槽 转子结构而言:凸装式、嵌入式和内埋式,前两种又称 为外装式结构。
永磁同步电动机的起动
PARK变换
数学模型中d、q变量与a、b、c变量关系如下:
模型建立
在不影响控制性能的情况下,为了简化分 析的复杂性,结合所用电机的特点,我们给出 以下假设: 1)定子三相绕组对称,均匀,Y型连接; 2)反电动势为正弦; 3)铁磁部分磁路线性,不计饱和、剩磁、涡流、 磁滞损耗等影响; 4)转子无阻尼绕组,永磁体无阻尼作用。
其中:ns以表示同步转速,f1为定子电流频率, P是永磁同步电动机的极对数。
为了实现电机数学模型的解耦,常用的坐标系及其 关系如下图所示。
坐标变换

坐标变换 矢量变换是简化交流电机模型复杂性的重要数学方 法,是交流电机矢量控制的基础。在建立永磁同步电机 数学模型之前,我们先简要介绍一下两种常用的坐标变 换,即:Clark变换和Park变换。其具体内容如下:
em 1 r r
r n r n r r
于是有
T 1 B r Jp r T em p p n n
为了便于动态仿真,可将 电压方程和运动方程写成状态 方程的形式,即:
p id
p iq
u R i L i / L
在稳态情况下有:
u R i L i u R i L i
q s q r d d r
d s d r q q
f
磁琏方程中:

d
Ld i d Lmd i f
md f f
其中, 为d轴励磁电感。
L i
最终电压方程还可以写成:
u R i L p i L i L i
辅助电动机起动法:选用一台与同步电动机极数相同的小 型异步电动机作为起动电动机,起动时,先用起动电动机 将同步电动机带动到异步转速,再将同步电动机接上三相 交流电源,这样同步电动机即可起动,但这种方法仅适用 于空载起动。 变频电源起动法:先采用变频电源向同步电动机供电,调 节变频电源使频率从0缓慢升高,旋转磁场转速也从0缓慢 升高,带动转子缓慢同步加速,直到额定转速。该方法多 用于大型同步电动机的起动。 异步起动法:在转子上加上鼠笼或起动绕组,使之有异步 电动机功能,在起动时励磁绕组不通电,相当异步电动机 起动,待转速接近磁场转速时再接通励磁电源,就进入同 步运行。
q s q q q r d d md f

u
d
R s i d r Lq i q
电磁转矩方程:
T
em

p i i
n d q q d
将磁琏方程带入
T
em

p i
n f
q

L L i i
d q d q
在转子参考坐标中,若取d轴的反方向为虚轴,取q 轴为实轴,则在整个复平面内,可将定子电流空间向量 表示为: i i j i 与d轴间角度为β,于是可有
s q q
d s d d d r q q
另外, e 为永磁体正弦磁场在转速 绕组中产生的感应电动势。 于是,电压方程还可以写成
r f f
下于q轴
u R i L pi L i e
q s q q q r d d
f
u
d
R s i d Ld p i d r Lq i q
电压方程还可以写成:
u R i L pi L i
q s q q q r d d r f
u R i L pi
d s d d
d
p r Lq iq
f
若式中
q
p 0
f
,则有
q r d d r f
u R i L pi L i u R i L p i L i
永磁同步电机原理及数学模型
交流永磁伺服系统分类


无刷直流电动机(BDCM)
基点:用装有永磁体的转子取代有刷直流电动机的定子 磁极,将原直流电 动机的电枢变成定子。


三相永磁同步电动机(PMSM)
基点:用永磁体取代绕线式同步电动机转子中的励磁绕 组,从而省去了励磁线圈、滑环和电刷,以电子换向实 现无刷运行。PMSM的定子与绕线式同步电机基本相同。 主要从永磁体励磁磁场在定子相绕组中感应出的电 动势波形来区分这两类电动机。
相关文档
最新文档