matlab小波工具箱小波分析步骤

合集下载

Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。

小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。

本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。

一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。

与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。

Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。

1.1 小波基函数小波基函数是小波变换的基础。

不同类型的小波基函数适用于不同类型的信号。

在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。

1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。

通过小波分解,我们可以获取信号在不同尺度上的时频特性。

Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。

1.3 小波重构小波重构是指根据小波系数重新构建原始信号。

通过小波重构,我们可以恢复原始信号的时域特性。

在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。

二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。

小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。

2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。

与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。

在Matlab中,可以使用'wavedec'函数进行小波包分解。

2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。

基于Matlab小波工具箱的数字图像处理及小波分析

基于Matlab小波工具箱的数字图像处理及小波分析

k k ,2/)]2(t ψ1+⊃j j V V图2.2 Mallat重构示意图三、常用小波函数介绍在小波分析理论在数学和工程领域中一个很重要的问题就是小波基的选择,选择一个最优的小波基,可以使图像处理更加优化。

在小波分析理论中有很多种的小波函数,下面介绍一些常用的小波基函数:3.1 Haar小波Haar小波是Haar于1990年提出的一种正交小波,它是小波理论分析发展过程中最早用到的的小波。

Haar小波是由一组互相正交归一的函数集,即Haar函数衍生产生的,是具有紧支撑的正交小波函数,其定义如下[5]:1012()1121tt tψ≤≤⎧⎪=-≤≤⎨⎪⎩其他(3.1)Haar小波是一个最简单的时域不连续的小波,它类似一个阶梯函数,由于它的紧支撑性和正交性,使得Haar小波的应用很普遍。

图3-1所示为Haar波的函数图像。

图3-1 Haar小波函数图像由于Haar小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但也有自己的优点:①计算简单;②在2ja=的多分辨率系统中Haar小波构成一组最简单的正交归一的小波族。

因为()tψ不但与(2),()j t j Zψ∈正交,而且与自己的整数位移正交。

③()tψ的傅里叶变换是:24()sin()2j e jaψΩΩ=-ΩΩ(3.2)3.2Mexican hat(墨西哥草帽)小波Mexican Hat 小波又被称Marr 小波。

Marr 小波函数就是高斯函数的二阶导数,其表达式为:222()(1)t t t e ψ-=- (3.3)222()2e ωψωπω= (3.4)因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。

墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足0)(=⎰∞∞-dx x ψ (3.5)由于它的尺度函数不存在,所以不具有正交性。

其波形如图3-2所示。

Marr 小波的时域、频域都有很好的局部特性,但由于它的正交性尺度函数不存在,所以不具有正交性,主要用于信号处理和边缘检测。

基于MATLAB的小波分析应用(第二版)(周伟)1-4章 (2)

基于MATLAB的小波分析应用(第二版)(周伟)1-4章 (2)

说明 获取在消噪或压缩过程中的默认阈值 去噪的阈值选择 获取一维或二维小波去噪阈值 使用 Birgé-Massart 算法获取一维小波变换的阈值 使用 Birgé-Massart 算法获取二维小波变换的阈值 使用小波进行一维信号的自动消噪 用小波进行消噪或压缩 产生含噪声的小波测试数据 估计一维小波系数的噪声 小波包去噪的阈值选择 用小波包变换进行信号的压缩或去噪 小波包分解系数的阈值处理 一维信号小波系数的阈值处理 二维信号小波系数的阈值处理 软阈值或硬阈值处理 阈值设置管理
说明 尺度对应频率 尺度函数 二维尺度函数 小波管理 小波滤波器组 最大小波分解尺度
第2章 MATLAB小波工具箱简介 3. 小波函数 MATLAB小波工具箱提供的小波变换函数如表2-3所示,它 们主要用于产生一些基本的小波函数及其相应的滤波器。
第2章 MATLAB小波工具箱简介
表2-3 小波变换函数
第2章 MATLAB小波工具箱简介 表2-6 二维离散小波变换函数
函数名 appcoef2 detcoef2
dwt2 dwtmode
idwt2 upcoef2
说明 提取二维小波分解的低频系数 提取二维小波分解的高频系数 单尺度二维离散小波变换 离散小波变换的延拓模式 单尺度二维离散小波逆变换 二维小波分解系数的直接重构
第2章 MATLAB小波工具箱简介
表2-15 树 管 理 函 数
函数名
说明
函数名
说明
allnodes 计算树结点
noleaves 列举非终结点
函数名 laurpoly ls2filt
lsinfo lwt lwt2
lwtcoef lwtcoef2 wave2lp wavenames
说明 构造 Laurent 多项式 将提升方案转化为滤波器组 关于提升方案的信息 一维提升小波变换 二维提升小波变换 一维提升小波变换系数的提取或重构 二维提升小波变换系数的提取或重构 将 Laurent 多项式与小波关联 能够应用于提升小波变换的小波名称

小波分析中的matlab使用

小波分析中的matlab使用

小波分析中的matlab使用Matlab主窗口File菜单File菜单,弹出如图1所示的菜单选项。

其中,各子菜单选项的功能如下:图 1New选项包含5个选项:M-File,Figure,Varible,Model和gui。

1)M-File选项:打开m文件编辑器;2)Figure选项:将打开一个空白的图形窗口;3)Variable选项:可变因素;4)Model选项:用于创建新模型的窗口;5)Gui选项:创建新的图形用户界面的对话框。

Open选项:打开一个open对话框,可以在对话框中选择相应的文件,然后matlab将用相应的编辑器打开该文件。

Close…选项:跟随某个打开的视窗名。

单击该选项,将关闭该视窗。

Importdata…选项:打开一个import对话框,用户可以选择相应的数据文件,然后将该数据文件中的数据导入到matlab工作空间。

Saveworkspaceas…选项:打开一个savetomat-File对话框,用户需要为保存的工作空间命名。

Setpath…选项:打开设置路径对话框。

通过该对话框可以更改matlab执行命令时搜索的路径。

Preferences:首选参数。

Pagesetup选项:用于设置页面布局,页面的页眉,页面所用的文字。

Print…选项:用于打印预定义好的页面内容,也可以设置一些参数。

Printselection…选项:当选中命令窗口内的一部分内容后,该选项将处于激活状态,此时单击该选项,将打印对话框中选中的内容。

Exitmatlab选项:关闭matlab。

也可以通过快捷键ctrl+O来关闭。

Edit菜单单击edit菜单,会弹出如图2所示的菜单选项。

其中,各子菜单选项的功能如下:Undo选项:取消上一次的操作。

Redo选项:重复上一次的操作。

Cut选项:剪切所选中的部分。

Copy选项:选复制被选中的部分。

Paste选项:把存放在缓冲区中的内容粘贴到光标所在的位置。

Pastespecial选项:打开导入数据向导,该向导引导用户把存放在缓冲区中的内容以特定格式存放到剪贴板变量中。

小波分析MATLAB工具箱简介

小波分析MATLAB工具箱简介

小波分析MATLAB工具箱简介MATLAB的小波分析一、小波分析用于降噪的基本过程1、分解过程:选定一种小波,对信号进行N层分解;2、作用阈值过程:对分解得到的各层系数选择一个阈值,并对细节系数进行软阈值处理;3、重建过程:降处理后的系数通过小波重建恢复原始信号;二、基本降噪模型函数一维离散小波分解命令Dwt [cA cD] = dwt(X,’wname’)使用小波’wname’对型号X 进行单层分解,求得的近似系数存放于数组cA中,细节系数存放在数组cD 中;[cA cD] = dwt(X,’wname’,’mode’,MODE) 利用MODE方式进行扩展[cA cD] = dwt(X,Lo_D,Hi_D) 利用指定滤波器进行小波分解Wanedec [C, L] = wavedec(X,N,’wname’) 使用wname的小波进行N层分解,C为层数,L为各层系数Idwt X= idwt(cA,cD,’wname’) 利用小波wname把近似系数CA和CD重建为上一层近似系数XX= idwt(cA,cD,’wname’,L) 重建至L层Waverec X= waverec(C,L,‘wname‘)重建为原始信号Wrcoef X = wrcoef(‘type’,C,L,’wname’,N) 通过分解系数重构指定的数,type为a 或者dX= wrcoef(‘type’,C,L,’wname’) 把分解系数重建至最高层Upcoef Y= upcoef(O,X,’wname’,N)用适当的滤波器作用在X上N次,求得重建系数Y,O为a表示低通滤波器,d表示高通滤波器Detcofe D= detcoef(C,L,N)从分解系数中提取第N层近似系数D= detcoef(C,L,N)提取至最后一层Appcoef A= appcoef(C,L,’wname’,N) 用小波从分解系数中提取第N层系数Wnoisest stdc = woisest(c,l,s)根据传入的小波分解系数[c,l]对s中标识的小波层数求得其标准差,作为对噪声强度的估计;Ddencmp [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) 根据传入的参数IN1 和IN2所指定的方式,对输入信号X求得其降噪或压缩的各级阈值。

matlab小波分解与重构 -回复

matlab小波分解与重构 -回复

matlab小波分解与重构-回复Matlab小波分解与重构小波分解与重构是一种在信号处理领域广泛应用的技术,通过对信号进行小波分解可以提取信号中的不同频率成分,并对这些成分进行重构,从而实现信号的压缩、降噪、特征提取等一系列应用。

在Matlab中,小波分解与重构可以通过Wavelet Toolbox实现。

本文将详细介绍Matlab中的小波分解与重构的步骤和应用。

一、准备工作在进行小波分解与重构之前,首先需要导入Wavelet Toolbox。

在MATLAB命令窗口中输入"wavelet"命令,或者直接点击MATLAB工具栏的"Apps"选项卡,然后在"Wavelet Toolbox"中选择Wavelet Analyzer 来打开Wavelet Toolbox工具箱。

二、小波分解1. 导入信号在开始之前,需要先导入需要进行小波分解与重构的信号。

可以通过MATLAB的文件读取函数来读取信号数据。

例如,可以使用`audioread`函数来导入音频信号:matlab[x, fs] = audioread('your_audio_file.wav');其中,`x`为读取到的音频信号,`fs`为采样率。

2. 选择小波函数和参数在进行小波分解之前,需要选择合适的小波函数和分解层数。

在Wavelet Analyzer工具箱中,可以通过"Wavelet"选项卡来选择小波函数。

常用的小波函数有haar、db、sym等。

选择小波函数后,需要指定小波的分解层数。

3. 进行小波分解在选择好小波函数和参数后,可以使用`wavedec`函数进行小波分解。

语法如下:matlab[c, l] = wavedec(x, n, wavelet)其中,`x`为输入信号,`n`为小波的分解层数,`wavelet`为选择的小波函数。

`c`为分解系数向量,`l`为各个分解层级的长度向量。

matlab小波工具箱小波分析步骤

matlab小波工具箱小波分析步骤

选择要处理的信 号,界面出现 loaded信号,这就 是没有去噪前的原 始信号
在wavemenu主界面 中选择file-load signal或者import from workspace— import signal
将数据文件(.Mat 格式)托到matlab 软件主界面的 workspace
分析后在左边栏目 中出现s,a*, d*,其中s为原信 号,a*为近似信 号,d*为细节信号
点击denoise开始 正式去噪
在噪声结构下面的 数值不要随意改, 这是系统默认的去 噪幅度
在噪声结构中选择 unscaled white noise,因为在工 程应用中的噪声一 般不仅仅含有白噪 声
去噪结束
去噪结束后,把去 噪后信号(.mat格 式)拖至matlab主 界面的workspace 中,与原信号一起 打包,以便以后计 算统计量
Matlab编程计算相 关统计量以及特征 量
得出统计量和特征 量后结束
将原始数据文件夹 copy到装有matlab 的电脑
打开matlab软件, 进入软件主界面
在软件的左下方找 到start按钮,点 击选择toolbox, 然后选择wavelet
Hale Waihona Puke 进入wavemenu界 面,选择一维小波 中的wavelet1-D并 进入
右上角选择用于小 波分析的小波基以 及分解层数并点击 analyse开始分析
然后点击denoise 去噪
阈值方法常用的有 4种fixed(固定阈 值), rigorsure, heusure,minmax 根据需要选择,一 般情况下 rigorsure方式去 噪效果较好
Soft(软阈值), hard(硬阈值)一 般选择软阈值去噪 后的信号较为平滑

matlab对信号小波变换

matlab对信号小波变换

matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。

小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。

MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。

二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。

小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。

三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。

以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。

2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。

3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。

4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。

5.重构信号:使用 waverec 函数根据小波系数重构信号。

四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。

2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。

3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。

五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab编程计算相 关统计量以及特征 量
得出统计量和特征 量后结束
选择要处理的信 号,界面出现 loaded信号,这就 是没有去噪前的原 始信号
在wavemenu主界面 中选择file-load signal或者import from workspace— import signal
将数据文件(.Mat 格式)托到matlab 软件主界面的 workspace
分析后在左边栏目 中出现s,a*, d*,其中s为原信 号,a*为近似信 号,d*为细节信号
将原始数据文件夹 copy到装有matlab 的电脑
打开matlab软件, 进入软件主界面
在软件的左下方找 到start按钮,点 击选择tooቤተ መጻሕፍቲ ባይዱbox, 然后选择wavelet
进入wavemenu界 面,选择一维小波 中的wavelet1-D并 进入
右上角选择用于小 波分析的小波基以 及分解层数并点击 analyse开始分析
点击denoise开始 正式去噪
在噪声结构下面的 数值不要随意改, 这是系统默认的去 噪幅度
在噪声结构中选择 unscaled white noise,因为在工 程应用中的噪声一 般不仅仅含有白噪 声
去噪结束
去噪结束后,把去 噪后信号(.mat格 式)拖至matlab主 界面的workspace 中,与原信号一起 打包,以便以后计 算统计量
然后点击denoise 去噪
阈值方法常用的有 4种fixed(固定阈 值), rigorsure, heusure,minmax 根据需要选择,一 般情况下 rigorsure方式去 噪效果较好
Soft(软阈值), hard(硬阈值)一 般选择软阈值去噪 后的信号较为平滑
在此窗口下点击 file-save denoised singal,保存输出 去噪后的信号
相关文档
最新文档