Matlab中的小波分析工具箱2
Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。
小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。
本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。
一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。
与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。
Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。
1.1 小波基函数小波基函数是小波变换的基础。
不同类型的小波基函数适用于不同类型的信号。
在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。
1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。
通过小波分解,我们可以获取信号在不同尺度上的时频特性。
Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。
1.3 小波重构小波重构是指根据小波系数重新构建原始信号。
通过小波重构,我们可以恢复原始信号的时域特性。
在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。
二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。
小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。
2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。
与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。
在Matlab中,可以使用'wavedec'函数进行小波包分解。
2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。
matlab小波变换信号分离

MATLAB小波变换(Wavelet Transform)是一种常用的信号处理工具,可用于信号的时频分析,特征提取和信号分离等应用。
本文将对MATLAB小波变换进行详细介绍,并利用其进行信号分离的实际应用。
1. 小波变换原理MATLAB小波变换是一种多尺度分析方法,通过将信号分解为不同频率和尺度的小波基函数,能够揭示信号的时频特性。
其原理是利用小波基函数对信号进行分解和重构,从而实现对信号的时频分析和特征提取。
2. MATLAB小波变换工具MATLAB提供了丰富的小波分析工具包,包括小波变换函数、小波滤波器设计函数等,能够方便地进行信号的小波分解和重构。
利用MATLAB小波变换工具,可以对信号进行多尺度分析,揭示信号中的细节和特征信息。
3. 信号分离应用利用MATLAB小波变换,可以实现对混合信号的分离和去噪。
在实际应用中,经常遇到多个信号叠加在一起的情况,通过小波变换可以将这些混合信号分解为各自的成分,从而实现信号的分离和分析。
4. 实例分析接下来,我们通过一个实际的示例来演示MATLAB小波变换在信号分离中的应用。
假设我们有两个信号叠加在一起,分别是正弦信号和方波信号。
我们首先使用MATLAB将这两个信号混合在一起,然后利用小波变换对其进行分析和分离。
我们使用MATLAB生成正弦信号和方波信号,并将它们叠加在一起。
利用小波变换将这两个信号进行分解,得到它们各自的小波系数。
我们根据小波系数重构出原始信号的各个成分,实现信号的分离和还原。
通过实例分析,我们可以看到MATLAB小波变换在信号分离中的有效性和实用性,能够帮助我们从混合信号中提取出感兴趣的成分,实现对信号的分析和处理。
5. 总结MATLAB小波变换是一种强大的信号处理工具,可以用于信号的时频分析、特征提取和信号分离等应用。
通过对小波变换原理和工具的详细介绍,以及实际的应用实例分析,我们深入理解了MATLAB小波变换在信号分离中的应用和优势。
基于Matlab小波工具箱的数字图像处理及小波分析

k k ,2/)]2(t ψ1+⊃j j V V图2.2 Mallat重构示意图三、常用小波函数介绍在小波分析理论在数学和工程领域中一个很重要的问题就是小波基的选择,选择一个最优的小波基,可以使图像处理更加优化。
在小波分析理论中有很多种的小波函数,下面介绍一些常用的小波基函数:3.1 Haar小波Haar小波是Haar于1990年提出的一种正交小波,它是小波理论分析发展过程中最早用到的的小波。
Haar小波是由一组互相正交归一的函数集,即Haar函数衍生产生的,是具有紧支撑的正交小波函数,其定义如下[5]:1012()1121tt tψ≤≤⎧⎪=-≤≤⎨⎪⎩其他(3.1)Haar小波是一个最简单的时域不连续的小波,它类似一个阶梯函数,由于它的紧支撑性和正交性,使得Haar小波的应用很普遍。
图3-1所示为Haar波的函数图像。
图3-1 Haar小波函数图像由于Haar小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但也有自己的优点:①计算简单;②在2ja=的多分辨率系统中Haar小波构成一组最简单的正交归一的小波族。
因为()tψ不但与(2),()j t j Zψ∈正交,而且与自己的整数位移正交。
③()tψ的傅里叶变换是:24()sin()2j e jaψΩΩ=-ΩΩ(3.2)3.2Mexican hat(墨西哥草帽)小波Mexican Hat 小波又被称Marr 小波。
Marr 小波函数就是高斯函数的二阶导数,其表达式为:222()(1)t t t e ψ-=- (3.3)222()2e ωψωπω= (3.4)因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。
墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足0)(=⎰∞∞-dx x ψ (3.5)由于它的尺度函数不存在,所以不具有正交性。
其波形如图3-2所示。
Marr 小波的时域、频域都有很好的局部特性,但由于它的正交性尺度函数不存在,所以不具有正交性,主要用于信号处理和边缘检测。
MATLAB中的时频分析与小波变换技巧

MATLAB中的时频分析与小波变换技巧引言时频分析是信号处理中的一项关键技术,可以帮助我们在时域和频域上同时展示信号的特征。
其中,小波变换作为一种时频分析方法在MATLAB中得到广泛应用。
本文将介绍MATLAB中的时频分析和小波变换技巧,以帮助读者更好地理解和应用这些技术。
一、时频分析基础时频分析是分析信号在时域和频域上的特性变化。
在MATLAB中,常用的时频分析方法有短时傅里叶变换(Short-Time Fourier Transform,STFT)和小波变换(Wavelet Transform)。
其中,STFT将信号分解为一系列时间上滑动的窗口,并对每个窗口进行傅里叶变换,得到频谱。
小波变换则使用小波函数作为基函数,在不同的尺度和位置上进行信号分析。
二、MATLAB中的STFT分析MATLAB提供了丰富的函数和工具箱,用于进行STFT分析。
其中,常用的函数包括"stft"和"spectrogram"。
通过这些函数,我们可以方便地对信号进行STFT分析,并绘制出时频谱图。
首先,我们需要将信号读取进MATLAB中。
可以使用"audioread"函数读取音频文件,或者使用"load"函数读取其他类型的信号数据。
接着,我们可以使用"stft"函数对信号进行STFT分析,设置合适的窗口长度和重叠比例。
最后,使用频谱绘制函数,如"spectrogram",将得到的时频谱图展示出来。
三、小波变换的基本原理小波变换是一种局部时频分析技术,对信号的局部特征更为敏感。
与傅里叶变换是基于正弦函数的频域分析方法不同,小波变换使用小波函数作为基函数,在时域和频域上同时分析信号。
MATLAB中的小波变换函数主要有"wavelet"和"cwt"。
其中,"wavelet"函数用于创建小波对象,选择适合信号的小波函数。
基于MATLAB的小波分析应用(第二版)(周伟)1-4章 (2)

说明 获取在消噪或压缩过程中的默认阈值 去噪的阈值选择 获取一维或二维小波去噪阈值 使用 Birgé-Massart 算法获取一维小波变换的阈值 使用 Birgé-Massart 算法获取二维小波变换的阈值 使用小波进行一维信号的自动消噪 用小波进行消噪或压缩 产生含噪声的小波测试数据 估计一维小波系数的噪声 小波包去噪的阈值选择 用小波包变换进行信号的压缩或去噪 小波包分解系数的阈值处理 一维信号小波系数的阈值处理 二维信号小波系数的阈值处理 软阈值或硬阈值处理 阈值设置管理
说明 尺度对应频率 尺度函数 二维尺度函数 小波管理 小波滤波器组 最大小波分解尺度
第2章 MATLAB小波工具箱简介 3. 小波函数 MATLAB小波工具箱提供的小波变换函数如表2-3所示,它 们主要用于产生一些基本的小波函数及其相应的滤波器。
第2章 MATLAB小波工具箱简介
表2-3 小波变换函数
第2章 MATLAB小波工具箱简介 表2-6 二维离散小波变换函数
函数名 appcoef2 detcoef2
dwt2 dwtmode
idwt2 upcoef2
说明 提取二维小波分解的低频系数 提取二维小波分解的高频系数 单尺度二维离散小波变换 离散小波变换的延拓模式 单尺度二维离散小波逆变换 二维小波分解系数的直接重构
第2章 MATLAB小波工具箱简介
表2-15 树 管 理 函 数
函数名
说明
函数名
说明
allnodes 计算树结点
noleaves 列举非终结点
函数名 laurpoly ls2filt
lsinfo lwt lwt2
lwtcoef lwtcoef2 wave2lp wavenames
说明 构造 Laurent 多项式 将提升方案转化为滤波器组 关于提升方案的信息 一维提升小波变换 二维提升小波变换 一维提升小波变换系数的提取或重构 二维提升小波变换系数的提取或重构 将 Laurent 多项式与小波关联 能够应用于提升小波变换的小波名称
小波分析MATLAB工具箱简介

小波分析MATLAB工具箱简介MATLAB的小波分析一、小波分析用于降噪的基本过程1、分解过程:选定一种小波,对信号进行N层分解;2、作用阈值过程:对分解得到的各层系数选择一个阈值,并对细节系数进行软阈值处理;3、重建过程:降处理后的系数通过小波重建恢复原始信号;二、基本降噪模型函数一维离散小波分解命令Dwt [cA cD] = dwt(X,’wname’)使用小波’wname’对型号X 进行单层分解,求得的近似系数存放于数组cA中,细节系数存放在数组cD 中;[cA cD] = dwt(X,’wname’,’mode’,MODE) 利用MODE方式进行扩展[cA cD] = dwt(X,Lo_D,Hi_D) 利用指定滤波器进行小波分解Wanedec [C, L] = wavedec(X,N,’wname’) 使用wname的小波进行N层分解,C为层数,L为各层系数Idwt X= idwt(cA,cD,’wname’) 利用小波wname把近似系数CA和CD重建为上一层近似系数XX= idwt(cA,cD,’wname’,L) 重建至L层Waverec X= waverec(C,L,‘wname‘)重建为原始信号Wrcoef X = wrcoef(‘type’,C,L,’wname’,N) 通过分解系数重构指定的数,type为a 或者dX= wrcoef(‘type’,C,L,’wname’) 把分解系数重建至最高层Upcoef Y= upcoef(O,X,’wname’,N)用适当的滤波器作用在X上N次,求得重建系数Y,O为a表示低通滤波器,d表示高通滤波器Detcofe D= detcoef(C,L,N)从分解系数中提取第N层近似系数D= detcoef(C,L,N)提取至最后一层Appcoef A= appcoef(C,L,’wname’,N) 用小波从分解系数中提取第N层系数Wnoisest stdc = woisest(c,l,s)根据传入的小波分解系数[c,l]对s中标识的小波层数求得其标准差,作为对噪声强度的估计;Ddencmp [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) 根据传入的参数IN1 和IN2所指定的方式,对输入信号X求得其降噪或压缩的各级阈值。
关于小波分析的matlab程序

(个人收集关于小波分析的matlab程序)小波滤波器构造和消噪程序重构% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endendL_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-20*n*t);figure(1);plot(y);title('原信号');l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');l_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull);h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %信号重构figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %重构信号subplot(3,1,3);消噪、小波谱分析mallat算法经典程序clc;clear;%% 1.正弦波定义f1=50; % 频率1f2=100; % 频率2fs=2*(f1+f2); % 采样频率Ts=1/fs; % 采样间隔N=120; % 采样点数n=1:N;y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合figure(1)plot(y);title('两个正弦信号')figure(2)stem(abs(fft(y)));title('两信号频谱')%% 2.小波滤波器谱分析h=wfilters('db30','l'); % 低通g=wfilters('db30','h'); % 高通h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)figure(3);stem(abs(fft(h)));title('低通滤波器图')figure(4);stem(abs(fft(g)));title('高通滤波器图')%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)sig2=ifft(fft(y).*fft(g)); % 高通(高频分量) figure(5); % 信号图subplot(2,1,1)plot(real(sig1));title('分解信号1')subplot(2,1,2)plot(real(sig2));title('分解信号2')figure(6); % 频谱图subplot(2,1,1)stem(abs(fft(sig1)));title('分解信号1频谱')subplot(2,1,2)stem(abs(fft(sig2)));title('分解信号2频谱')%% 4.MALLET重构算法sig1=dyaddown(sig1); % 2抽取sig2=dyaddown(sig2); % 2抽取sig1=dyadup(sig1); % 2插值sig2=dyadup(sig2); % 2插值sig1=sig1(1,[1:N]); % 去掉最后一个零sig2=sig2(1,[1:N]); % 去掉最后一个零hr=h(end:-1:1); % 重构低通gr=g(end:-1:1); % 重构高通hr=circshift(hr',1)'; % 位置调整圆周右移一位gr=circshift(gr',1)'; % 位置调整圆周右移一位sig1=ifft(fft(hr).*fft(sig1)); % 低频sig2=ifft(fft(gr).*fft(sig2)); % 高频sig=sig1+sig2; % 源信号%% 5.比较figure(7);subplot(2,1,1)plot(real(sig1));title('重构低频信号');subplot(2,1,2)plot(real(sig2));title('重构高频信号');figure(8);subplot(2,1,1)stem(abs(fft(sig1)));title('重构低频信号频谱');subplot(2,1,2)stem(abs(fft(sig2)));title('重构高频信号频谱');figure(9)plot(real(sig),'r','linewidth',2);hold on;plot(y);legend('重构信号','原始信号')title('重构信号与原始信号比较')小波包变换分析信号的MATLAB程序%t=0.001:0.001:1;t=1:1000;s1=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t)); for t=1:500;s2(t)=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t)); endfor t=501:1000;s2(t)=sin(2*pi*200*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t)); endsubplot(9,2,1)plot(s1)title('原始信号')ylabel('S1')subplot(9,2,2)plot(s2)title('故障信号')ylabel('S2')wpt=wpdec(s1,3,'db1',''); %plot(wpt);s130=wprcoef(wpt,[3,0]); s131=wprcoef(wpt,[3,1]); s132=wprcoef(wpt,[3,2]); s133=wprcoef(wpt,[3,3]); s134=wprcoef(wpt,[3,4]); s135=wprcoef(wpt,[3,5]); s136=wprcoef(wpt,[3,6]); s137=wprcoef(wpt,[3,7]); s10=norm(s130);s11=norm(s131);s12=norm(s132);s13=norm(s133);s14=norm(s134);s15=norm(s135);s16=norm(s136);s17=norm(s137);st10=std(s130);st11=std(s131);st12=std(s132);st13=std(s133);st14=std(s134);st15=std(s135);st16=std(s136);st17=std(s137);disp('正常信号的特征向量');snorm1=[s10,s11,s12,s13,s14,s15,s16,s17] std1=[st10,st11,st12,st13,st14,st15,st16,st17] subplot(9,2,3);plot(s130);ylabel('S130');subplot(9,2,5);plot(s131);ylabel('S131');subplot(9,2,7);plot(s132);ylabel('S132');subplot(9,2,9);plot(s133);ylabel('S133');subplot(9,2,11);plot(s134); ylabel('S134');subplot(9,2,13);plot(s135); ylabel('S135');subplot(9,2,15);plot(s136); ylabel('S136');subplot(9,2,17);plot(s137); ylabel('S137');wpt=wpdec(s2,3,'db1',''); %plot(wpt);s230=wprcoef(wpt,[3,0]); s231=wprcoef(wpt,[3,1]); s232=wprcoef(wpt,[3,2]); s233=wprcoef(wpt,[3,3]); s234=wprcoef(wpt,[3,4]); s235=wprcoef(wpt,[3,5]); s236=wprcoef(wpt,[3,6]); s237=wprcoef(wpt,[3,7]); s20=norm(s230);s21=norm(s231);s22=norm(s232);s23=norm(s233);s24=norm(s234);s25=norm(s235);s26=norm(s236);s27=norm(s237);st20=std(s230);st21=std(s231);st22=std(s232);st23=std(s233);st24=std(s234);st25=std(s235);st26=std(s236);st27=std(s237);disp('故障信号的特征向量');snorm2=[s20,s21,s22,s23,s24,s25,s26,s27] std2=[st20,st21,st22,st23,st24,st25,st26,st27] subplot(9,2,4);plot(s230);ylabel('S230');subplot(9,2,6);plot(s231);ylabel('S231');subplot(9,2,8);plot(s232);ylabel('S232');subplot(9,2,10);plot(s233); ylabel('S233');subplot(9,2,12);plot(s234); ylabel('S234');subplot(9,2,14);plot(s235); ylabel('S235');subplot(9,2,16);plot(s236); ylabel('S236');subplot(9,2,18);plot(s237); ylabel('S237');%fftfigurey1=fft(s1,1024);py1=y1.*conj(y1)/1024;y2=fft(s2,1024);py2=y2.*conj(y2)/1024;y130=fft(s130,1024);py130=y130.*conj(y130)/1024; y131=fft(s131,1024);py131=y131.*conj(y131)/1024;y132=fft(s132,1024);py132=y132.*conj(y132)/1024; y133=fft(s133,1024);py133=y133.*conj(y133)/1024; y134=fft(s134,1024);py134=y134.*conj(y134)/1024; y135=fft(s135,1024);py135=y135.*conj(y135)/1024; y136=fft(s136,1024);py136=y136.*conj(y136)/1024; y137=fft(s137,1024);py137=y137.*conj(y137)/1024; y230=fft(s230,1024);py230=y230.*conj(y230)/1024; y231=fft(s231,1024);py231=y231.*conj(y231)/1024; y232=fft(s232,1024);py232=y232.*conj(y232)/1024; y233=fft(s233,1024);py233=y233.*conj(y233)/1024; y234=fft(s234,1024);py234=y234.*conj(y234)/1024; y235=fft(s235,1024);py235=y235.*conj(y235)/1024; y236=fft(s236,1024);py236=y236.*conj(y236)/1024; y237=fft(s237,1024);py237=y237.*conj(y237)/1024; f=1000*(0:511)/1024; subplot(1,2,1);plot(f,py1(1:512));ylabel('P1');title('原始信号的功率谱') subplot(1,2,2);plot(f,py2(1:512));ylabel('P2');title('故障信号的功率谱') figuresubplot(4,2,1);plot(f,py130(1:512));ylabel('P130');title('S130的功率谱')subplot(4,2,2);plot(f,py131(1:512)); ylabel('P131');title('S131的功率谱') subplot(4,2,3);plot(f,py132(1:512)); ylabel('P132'); subplot(4,2,4);plot(f,py133(1:512)); ylabel('P133'); subplot(4,2,5);plot(f,py134(1:512)); ylabel('P134'); subplot(4,2,6);plot(f,py135(1:512)); ylabel('P135'); subplot(4,2,7);plot(f,py136(1:512)); ylabel('P136'); subplot(4,2,8);plot(f,py137(1:512));figuresubplot(4,2,1);plot(f,py230(1:512)); ylabel('P230');title('S230的功率谱') subplot(4,2,2);plot(f,py231(1:512)); ylabel('P231');title('S231的功率谱') subplot(4,2,3);plot(f,py232(1:512)); ylabel('P232'); subplot(4,2,4);plot(f,py233(1:512)); ylabel('P233'); subplot(4,2,5);plot(f,py234(1:512)); ylabel('P234'); subplot(4,2,6);plot(f,py235(1:512));subplot(4,2,7);plot(f,py236(1:512));ylabel('P236');subplot(4,2,8);plot(f,py237(1:512));ylabel('P237');figure%plottree(wpt)利用小波变换实现对电能质量检测的算法实现N=10000;s=zeros(1,N);for n=1:Nif n<0.4*N||n>0.8*Ns(n)=31.1*sin(2*pi*50/10000*n);elses(n)=22.5*sin(2*pi*50/10000*n);endendl=length(s);[c,l]=wavedec(s,6,'db5'); %用db5小波分解信号到第六层subplot(8,1,1);plot(s);title('用db5小波分解六层:s=a6+d6+d5+d4+d3+d2+d1'); Ylabel('s');%对分解结构【c,l】中第六层低频部分进行重构a6=wrcoef('a',c,l,'db5',6);subplot(8,1,2);plot(a6);Ylabel('a6');%对分解结构【c,l】中各层高频部分进行重构for i=1:6decmp=wrcoef('d',c,l,'db5',7-i);subplot(8,1,i+2);plot(decmp);Ylabel(['d',num2str(7-i)]);end%-----------------------------------------------------------rec=zeros(1,300);rect=zeros(1,300);ke=1;u=0;d1=wrcoef('d',c,l,'db5',1);figure(2);plot(d1);si=0;N1=0;N0=0;sce=0;for n=20:N-30rect(ke)=s(n);ke=ke+1;if(ke>=301)if(si==2)rec=rect;u=2;end;si=0;ke=1;end;if(d1(n)>0.01) % the condition of abnormal append. N1=n;if(N0==0)N0=n;si=si+1;end;if(N1>N0+30)Nlen=N1-N0;Tab=Nlen/10000;end;end;if(si==1)for k=N0:N0+99 %testing of 1/4 period signals to sce=sce+s(k)*s(k)/10000;end;re=sqrt(sce*200) %re indicate the pike value of .sce=0;si=si+1;end;end;NlenN0n=1:300;figure(3)plot(n,rec);基于小波变换的图象去噪Normalshrink算法function [T_img,Sub_T]=threshold_2_N(img,levels)% reference :image denoising using wavelet thresholding[xx,yy]=size(img);HH=img((xx/2+1):xx,(yy/2+1):yy);delt_2=(std(HH(:)))^2;%(median(abs(HH(:)))/0.6745)^2;%T_img=img;for i=1:levelstemp_x=xx/2^i;temp_y=yy/2^i;% belt=1.0*(log(temp_x/(2*levels)))^0.5;belt=1.0*(log(temp_x/(2*levels)))^0.5; %2.5 0.8%HLHL=img(1:temp_x,(temp_y+1):2*temp_y);delt_y=std(HL(:));T_1=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%T_HL=sign(HL).*max(0,abs(HL)-T_1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%T_img(1:temp_x,(temp_y+1):2*temp_y)=T_HL;Sub_T(3*(i-1)+1)=T_1;%LHLH=img((temp_x+1):2*temp_x,1:temp_y);delt_y=std(LH(:));T_2=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%T_LH=sign(LH).*max(0,abs(LH)-T_2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%T_img((temp_x+1):2*temp_x,1:temp_y)=T_LH;Sub_T(3*(i-1)+2)=T_2;%HHHH=img((temp_x+1):2*temp_x,(temp_y+1):2*temp_y);delt_y=std(HH(:));T_3=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_HH=sign(HH).*max(0,abs(HH)-T_3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%T_img((temp_x+1):2*temp_x,(temp_y+1):2*temp_y)=T_HH;Sub_T(3*(i-1)+3)=T_3;end。
小波分析MATLAB实例

小波分析MATLAB实例小波分析是一种信号处理方法,可以用于信号的时频分析和多尺度分析。
在MATLAB中,可以使用Wavelet Toolbox实现小波分析。
这个工具箱提供了丰富的函数和工具,可以方便地进行小波分析的计算和可视化。
小波分析的核心是小波变换,它将信号分解成一组不同尺度和频率的小波基函数。
在MATLAB中,可以使用`cwt`函数进行连续小波变换。
以下是一个小波分析的MATLAB实例,用于分析一个心电图信号的时频特性。
首先,导入心电图信号数据。
假设心电图数据保存在一个名为`ecg_signal.mat`的文件中,包含一个名为`ecg`的变量。
可以使用`load`函数加载这个数据。
```MATLABload('ecg_signal.mat');```接下来,设置小波变换的参数。
选择一个小波基函数和一组尺度。
这里选择Morlet小波作为小波基函数,选择一组从1到64的尺度。
可以使用`wavelet`函数创建一个小波对象,并使用`scal2frq`函数将尺度转换为频率。
```MATLABwavelet_name = 'morl'; % 选择Morlet小波作为小波基函数scales = 1:64; % 选择1到64的尺度wavelet_obj = wavelet(wavelet_name);scales_freq = scal2frq(scales, wavelet_name, 1);```然后,使用`cwt`函数进行小波变换,得到信号在不同尺度和频率下的小波系数。
将小波系数的幅度平方得到信号的能量谱密度。
```MATLAB[wt, f] = cwt(ecg, scales, wavelet_name);energy = abs(wt).^2;``````MATLABimagesc(1:length(ecg), scales_freq, energy);colormap('jet');xlabel('时间(样本)');ylabel('频率(Hz)');```运行整个脚本之后,就可以得到心电图信号的时频图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?waveinfo('meyr')
MEYRINFO Information on Meyer wavelet.
Meyer Wavelet
General characteristics: Infinitely regular orthogonal wavelet.
2020/4/5
Family Short name
Meyer meyr
Orthogonal
yes
Biorthogonal
yes
Compact support no
DWT
possible but without FWT
CWT
possible
Support width
infinite
Effective support [-8 8]
Regularity
其中:cA :低频分量, cD:高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
2020/4/5
多层小波分解:
[A,L]=wavedec(X,N,’wname’) [A,L]=wavedec(X,N,H,G) 其中:A :各层分量, L:各层分量长度
N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
allnodes 列出数结构的所有节点。 isnode 判断指定位置是否存在节点。 istnode 判断一个节点是否为终端节点。 nodejoin 树的剪枝。
……
2020/4/5
小波包分析函数:
besttree 寻找最优分解树。 bestlevt 寻找最优满树。 wentropy 计算熵值。 wpdec 一维信号的小波包分解。 wpdec2 二维信号的小波包分解。 wpfun 小波包函数族 wpjoin 小波包分解树的节点合并 wprec 一维信号的小波包信号重构。
其中:cA :低频分量, cH:水平高频分量 cV:垂直高频分量 cD:对角高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
2020/4/5
二维信号的多层小波分解:
[A,L]=wavedec2(X,N,’wname’) [A,L]=wavedec2(X,N,H,G) 其中:A :各层分量, L:各层分量长度
2020/4/5
其他的一维函数:
• 抽样: dyaddow • 补零插值:dyaup • 滤波器生成:qmf,orthfilt,wfilters • 反变换:idwt,idwtper, • 重构: upwlev,waverec,wrcoef,
2020/4/5
二维离散小波变换:
• dwt2 [cA,cH,cV,cD]=dwt2(X,’wname’) [cA,cH,cV,cD]=dwt2(X,H,G)
freqbrk .mat
sin( 0.03t ) 1 t 500
freqbrk
(t
)
sin(
0
.3t
)
501 t 1000
2020/4/5
连续小波变换:
格式: coefs=cwt(s,scales,’wname’) coefs=cwt(s,scales,’wname’,’plot’)
说明: s:输入信号 scales: 需要计算的尺度范围 wname:所用的小波基 plot: 用图像方式显示小波系数
2020/4/5
例子:
•
c = cwt(s,1:32,'meyr')
•
c = cwt(s,[64 32 16:-2:2],'morl')
•
c = cwt(s,[3 18 12.9 7 1.5],'db2')
2020/4/5
一维离散小波变换:
• dwt [cA,cD]=dwt(X,’wname’) [cA,cD]=dwt(X,H,G)
2020/4/5
• LastWave 小波信号和图像处理软件,用C语言编写, 可在Unix和Macintosh上运行。
wprec2 二维信号的小波包信号重构。 …
2020/4/5
信号去噪与压缩:
• 在
2020/4/5
阀值操作 多层小波重构
其他的免费软件工具:
• Wavelab David Donoho在斯坦福大学开发的Matlab 程序库,最新版本为Wavelab 0.802,有 1200多个文件。
indefinitely derivable
Symmetry
yes
2020/4/5
Reference: I. Daubechies, Ten lectures on wavelets, CBMS, SIAM, 61, 1994, 117-119, 137, 152.
计算小波滤波器系数的函数:
2020/4/5
• 常用的小波基函数。 • 连续小波变换及其应用。 • 离散小波变换及其应用。 • 小波包变换。 • 信号和图像的多尺度分解。 • 基于小波变换的信号去噪。 • 基于小波变换的信号压缩。
2020/4/5
沈阳妈妈 baby.nen
常用的小波基函数:
2020/4/5
怎样获取小波基的信息:
• 在Matlab窗口键入“waveinfo(‘参数名’)
N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
2020/4/5
其他的二维函数:
• 对变换信号的伪彩色编码:wcodemat • 反变换:idwt2,idwtper2, • 重构: upwlev2,waverec2,wrcoef2,
2020/4/5
• 树操作
小波包分解:
wname='bior2.2'; [rf,rd]=biorwavf(wname)
rf =
0.2500 0.5000 0.2500
2020/4/5
rd = -0.1250 0.2500 0.7500 0.2500 -0.1250
用于验证算法的数据文件:
2020/4/5
sum sin .mat sum sin( t ) sin( 3t ) sin( 0.3t ) sin( 0.03t )
Matlab中的小波分析工具箱
(Wavelet Toolbox,Ver.1.0)
• Matlab小波分析工具箱提供了一个可视化 的小波分析工具,是一个很好的算法研究 和工程设计,仿真和应用平台。特别适合 于信号和图像分析,综合,去噪,压缩等 领域的研究人员。
2020/4/5
小波分析工具箱的七类函数: