功分器和耦合器的计算
基础培训资料-功分器和耦合器(临时文件,不作编号)

该文件主要目的为针对市场人员、新技术人员、非功分器耦合器专业的技术人员、技术工人等的技术培训,有些定义为便于理解并不是很严谨,所有提及概念、计算方法等不能作为产品的通用和专用验收的依据。
本文中会主要描述以下产品的基本功能,作用和技术指标的定义等。
● 功分器(功率分配器Power Divider, Power Splitter)● 耦合器(Coupler) 定向耦合器(Directional Coupler) 双定向耦合器(Bi-directional Coupler) ●合路器(Combiner) 混合器(Hybrid) 电桥(Bridge)1. 功分器功分器是将输入的信号的能量进行分路,并实现多路信号的隔离;功分器的带宽可以很宽,比如1-12GHz,2-18GHz 等;分路时可以是等分或不等分;一般功分器都是等相位(0相位)输出,也就是说功分器的输出相位关系基本是相等的,要求不等输出相位的功分器的一般均只能实现10%左右的带宽。
图1 功分器示意图理论上,功分器的分路路数可以是无穷多路,很多多路功分器均以2路分路为基础,所以一般为2/4/8/16等2n 分路技术上实现较容易,而3/6/7/9/10/11等技术上实现较难。
功分器的国际通用符号图2 功分器的国际通用符号InputOutput1 相位0o。
Output2 相位0o Output N 相位0o本文为理解方便,采用了和实物一致端口画法。
图3 1分8的功分器的实际结构(1分8功分器设计上是由7个 1分2功分器组成,这7个功分器分为3个层次)功分器的技术指标插入损耗(Insert Loss)图4 功分器的插入损耗● 插入损耗为功分器在系统中的实际能量衰减;●功分器的插入损耗包含两个部分:功分器的分路损耗和功分器本身对能量的衰减(损耗);● 功分器分路损耗随功分路数不同而不同,见表1。
OutputOutput●插入损耗可以直接从网络分析仪上测得。
四.功分器和定向耦合器的设计

C10logP P1320logS31
dB[S(3,1)]
• 隔离度: 隔离端口4的输出功率P4和输入端口1的输入功率P1之比:
I10logP P1 420logS41 dB[S(4,1)]
定向耦合器的基本原理
• 8-16GHz倍频程内定向度: S41/S31<-17dB
• 8-16GHz倍频程内隔离度: S41<-20dB
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
隔离端口
/4;f012GHz
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
功分器的设计、仿真、优化
设置完成的功分器电路图
功分器的设计、仿真、优化
开始仿真 全频段内隔离度未达指标,并且平坦度较差,需优化
功分器的设计、仿真、优化
电路优化
• 对阻抗匹配电路的优化---优化变量w2,lh
功分器的设计、仿真、优化
电路优化
• 优化仿真器和优化目标的设置—由于电路对称性,S(3,1)和S(3,3)不需优化
dB[S(2,1)]
C1310logP P 3 i 20logS13
dB[S(3,1)]
功分器的基本原理
功分器的基本指标
• 输出端口间的隔离度: 根据输出端口2的输出功率P2与输出端口3的输出功率P3之比计算
• 功分比:
C2310logP P2 320logS S1 12 3
• 定向耦合器属于无源微波器件,为四端口器件,分为:
隔离
耦合
功分器、耦合器、电桥_原理与分析

功分器、耦合器、电桥原理与分析本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
第三章 02功分器耦合器

节定向耦合器
定向耦合器的技术指标
1. 耦合度C
C 10 lg P1 P3
(11.23)a
由于,
P1
a1 2
2
,
P3
b3 2 2
实验三:端口隔离度的测量
室分系统功分器
微波信号源 频谱分析仪
2功 分1
3器
负载
端口隔离度测试框图
室分系统功分器
➢ 设置微波信号源的输出频率为指定频率(如900MHz),输出电平10dBm。 ➢ 将微波信号源的输出和频谱分析仪的输入直接用电缆短路连接,用频 谱分析仪测量功分器端口2的输入信号电平,测试数据并记录。 ➢ 接入被测功分器(如上图所示),用频谱分析仪测量功分器端口3的 输出电平,测试数据并记录。 ➢ 根据测试数据计算“2端口→3端口”的隔离度,测试数据并记录。 ➢ 改变微波信号源的输出信号频率,重复以上测试,测试数据并记录。
室分系统功分器
实验二:幅频特性的测量(扫频法)
➢ 按照上图连接测试仪器和设备。 ➢ 设置微波信号源输出频率890MHz(用于GSM系统),输出功率-10dBm。 ➢ 设置频谱分析仪的中心频率为925MHz,扫描带宽略大于实际系统带宽(如
80MHz),调整参考电平使频谱显示到适当位置。选择Trace → Trace Type → Max Hold功能。 ➢ 设置微波信号源的频率调整步进为0.1MHz,用手动旋钮以0.1MHz为步进逐渐提 高微波信号源的输出频率(从890 ~ 960MHz),在频谱分析仪显示出幅频特性 曲线,测量功分器“1端口→2端口”的幅频特性,测试数据并记录。 ➢ 交换2、3端口的连接,重复以上步骤,测量功分器“1端口→3端口”的幅频特性 ,测试数据并记录。 ➢ 用同样的方法,测量该功分器用于CDMA系统的幅频特性(频率范围825 ~ 880MHz),测试数据并记录。
室分常见器件介绍

四、衰减器
=30-24
=6dB
POUT_4 POUT_3 POUT_2 POUT_1
B. 插入损耗
该指标也称直通损耗,指的是信号功率通过功分器后输出的功率 和原输入信号相比所减小的量再减去分配损耗的实际值。插入损 耗是由于器件焊接、传输、连接所产生的损耗,由于不同厂商器 件设计及工艺差异造成该值存在一定差距。
四、电桥
(一)、概念 电桥是四端口网络,有两个输入和输出端口,输入端口之间和输出
端口之间均存在相互隔离。 电桥可以将两路信号合成一路信号,也可以将一路信号分成大小相
同的两路信号。因电桥可以合成同频信号,所以也叫同频合路器。电桥 的输入输出是相互对称的。 注:这里的电桥指无源3dB电桥。
(二)、主要技术指标 1、频带宽度
室分常见器件介绍
一、概 述 二、功分器 三、耦合器 四、电 桥 五、衰减器 六、负 载 七、干放
目录
一、概 述
在通信设备和信号覆盖中都会用到一些 无源器件,用于信号的分配、合成以及提取 等。
常见的有功分器、耦合器、电桥、衰减 器、负载、滤波器等。本文主要对这些常见 的无源器件做简单介绍。
二、功分器
(一)、概念 功分器全称功率分配器,是一种将一路输入信号分成两路或多路,输
出相等或不相等能量的器件,也可反过来将多路信号合成一路输出,此 时可也称为合路器。
1. 功分器的分类
A. 按结构划分 ① 微带功分器 ② 腔体功分器 B. 按分支数 ① 二功分器 ② 三功分器 ③ 四功分器
2. 功分器的主要技术指标
1. 耦合器的分类
A. 按结构划分 ① 微带耦合器 ② 腔体耦合器
B. 按耦合度划分 6dB 、10dB 、 15dB 、 20dB、 25dB 、 30dB 、 40dB C. 按是否具有方向性
功分器、耦合器、电桥_原理与分析

功分器、耦合器、电桥原理与分析2010-05-21 13:00本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换•主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测a得与理论值接近的分配损耗)____________________耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm勺信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000十3= 333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm,那么理想分配损耗二输入信号—输出功率= 30-25.2=4.8dB,同样可以算出2功分是3dB, 4功分是6dBl插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB 以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB 、0.5~0.3dB 、0.7~0.4dB 。
插损的计算方法:通过网络分析仪可以测出输入端 A 到输出端B、C、D 的损耗,假设3功分是5.3dB,那么,插损二实际损耗—理论分配损耗二5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器, 一般为0.5dB 左右, 腔体的一般为0.1dB 左右。
功分器和耦合器的计算
功分器和耦合器的计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
二公分差损功率均分
三公分差损 5dBm 功率三分
5dB耦合器直通端差损?
6dB耦合器直通端差损
7dB耦合器直通端差损
10dB耦合器直通端差损
15dB耦合器直通端差损
20dB耦合器直通端差损
分配量是按耦合器的大小来的,比如5dB耦合器,耦合端输出=输入-5dBm 直
通端输出=输入-差损
功分器的分配损耗是可以计算的:10lgN (N为分配支路数量),其实就是能量守恒原理。
插入损耗是入口功率-出口功率,一半都要比分配损耗大一点点,可以看作是期间内部的电路传输损耗。
耦合端损耗(也就是耦合度),比如NdB耦合器,就是说耦合端输出的功率比输入端功率低NdB.
依然因为能量守恒远离,入口功率被分配出去一部分,直通端输出的功率必然被降到更低。
所以耦合度越大,耦合端口分配出去的功率约少,耦合器的插损越小。
比如10dB耦合器,功率分配比9:1,理论上耦合端功率为输入功率的90%,直通端输出功率占输入功率10%,3dB耦合器,相当于功率被耦合50%。
所以对于耦合器的直通端口而言,耦合度越大,插损越小!。
功分器计算
功分器计算功分器是一种用于将输入功率分成若干份的装置。
它常用于电力系统中,用于分配电能或测量功率。
功分器的基本原理是利用耦合器将输入功率分为两路或多路,并且在各路之间保持一定的功率比例。
功分器通常由一对耦合器和多个功分器组成。
耦合器是将输入功率分配到各个功分器的装置,它的作用类似于一个分配器。
功分器则是将分配到自己的功率进一步分配给输出端的装置。
功分器可以是被动的,也可以是主动的。
被动功分器通常通过使用特殊的结构设计来实现功率的分配,例如通过微带线或管路的设计。
而主动功分器则需要使用电子器件来实现功率的分配。
功分器的主要功能是将输入功率按照一定的比例分配到各个输出端。
这个比例可以是固定的,也可以是可调的。
固定比例的功分器在设计上相对简单,一般使用被动器件来实现。
可调比例的功分器则需要使用可调元件来实现,例如可变电阻或可变电容。
在实际应用中,根据需要可以选择不同类型的功分器。
功分器在电力系统中有广泛的应用。
一种常见的应用是将输入功率分配到多个负载中。
例如在无线通信系统中,功分器用于将输入功率分配到多个天线或收发器上。
这样可以实现多用户同时进行通信,提高系统的容量和效率。
另一种常见的应用是测量功率。
功分器通常与功率传感器结合使用,用于测量电路中的功率。
通过选择不同的功分器,可以实现不同功率范围的测量。
除了在电力系统中的应用,功分器在其他领域也有一定的应用。
例如在无线充电系统中,功分器可以用于将输入功率分配到多个接收器上。
这样可以实现同时给多个设备进行无线充电,提高充电效率。
在激光系统中,功分器可以用于将输入功率分配到多个激光器上,实现多光束输出。
在雷达系统中,功分器可以用于将输入功率分配到多个天线上,实现多方向探测。
功分器是一种用于将输入功率分成若干份的装置。
它在电力系统以及其他领域中有广泛的应用。
功分器的设计和选择需要考虑功率分配比例、功率范围、可调性等因素。
通过合理选择和使用功分器,可以实现功率的分配和测量,提高系统的效率和性能。
功分器与耦合器
功分器、耦合器、电桥原理与分析2010-05-21 13:00本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
功分器、定向耦合器课件
S 12 S 23 S 31 1
1 0 0 0 1 0
2
0 0 1
1 0 0
1
3
1
3
环形器
三端口网络——两个端口匹配,无耗,互易
j
S 21 e
0 j S e 0
e
j
0 0
0 0 j e
1
S12 e
无耗网络的散射矩阵满足么正性
2 S kj 1, k 1 4 S * S kj 0, k 1 ki 4
j 1, 2, 3, 4 i j, i , j 1, 2, 3, 4
四端口网络的基本特性(续2)
S12 S12 S13 S14
λg/4 ZC1 ZC ①
③
ZC
R
ZC1 λg/4
ZC
②
0 S 0 j 2
0
0 j 2
j 2 j 2 0
微带功分器(Wilkison 功分器)(续3)
功率不等分:
Z c2 Z c
2
1 K
2
/K
证明:采用反证法,假设三端口网络的所有端口匹配、互易,网络无耗。
S11 S S 21 S 31 S12 S 22 S 32 S13 S 23 S 33
匹配: S 11 S 22 S 33 0
互易: S ij S ji
无耗: S S 1
2
S13 S 23 S 23 S 24
2
S14 S 24 S 34 S 34
2
1 1 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二公分差损功率均分
三公分差损5dBm 功率三分
5dB耦合器直通端差损?
6dB耦合器直通端差损
7dB耦合器直通端差损
10dB耦合器直通端差损
15dB耦合器直通端差损
20dB耦合器直通端差损
分配量是按耦合器的大小来的,比如5dB耦合器,耦合端输出=输入-5dBm 直通端输出=输入-差损
功分器的分配损耗是可以计算的:10lgN (N为分配支路数量),其实就是能量守恒原理。
插入损耗是入口功率-出口功率,一半都要比分配损耗大一点点,可以看作是期间内部的电路传输损耗。
耦合端损耗(也就是耦合度),比如NdB耦合器,就是说耦合端输出的功率比输入端功率低NdB.
依然因为能量守恒远离,入口功率被分配出去一部分,直通端输出的功率必然被降到更低。
所以耦合度越大,耦合端口分配出去的功率约少,耦合器的插损越小。
比如10dB耦合器,功率分配比9:1,理论上耦合端功率为输入功率的90%,直通端输出功率占输入功率10%,3dB耦合器,相当于功率被耦合50%。
所以对于耦合器的直通端口而言,耦合度越大,插损越小!。