2010年成人高考专升本高数(一)真题试题及答案
2010高等数学1

2010年成人专升本招生全国统一考试高等数学(一)试卷一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
120lim(1)x x →+=( C )。
A 3 B 2 C 1 D 0 知识点:求极限)(x f 无分母或分母不为0,其极限=函数值2设sin y x x =+,则y '=( D ) A sin x B x C cos x x + D 1cos x +知识点:导数公式,求导规则v u v u '±'='±)(3设2x y e =,则dy =( B ) A 2x e dx B 22x e dx C 212x e dx D 2x e dx知识点:导数公式,复合函数求导规则 ,微分公式解:x x e x e y 222)2.(='=', dx e dx y dy x 22='=41(1)dx x -=⎰( C )。
A 21x c x -+ B 21x c x++ C ln ||x x c -+ D ln ||x x c ++ 知识点:积分公式,积分性质⎰⎰⎰+=+gdx fdx dx g f )(5设5x y =,则y '=( C )。
A 15x - B 5x C 5ln 5x D 15x + 知识点:导数公式 6limxt x e dt x→=⎰( D ) A x e B 2e C e D 1知识点:洛比达法则求型极限,变上限定积分求导 解:limxt x e dt x→=⎰11lim 0=→xx e 7设22zx y xy =+,则z x∂=∂( A )。
A 22xy y + B 22x xy + C 4xy D 22x y + 知识点:计算一阶偏导数8过点(1,0,0),(0,1,0),(0,0,1)的平面方程为( A ) A1x y z ++= B 21x y z ++= C 21x y z ++= D 21x y z ++=知识点:平面方程,三点决定一个平面。
2010“专升本”《高数》试题及答案

《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。
2010成人高考专升本高数一真题及答案解析

内容:以按劳分配为主体、多种分配方式并存;
意义:有利于发挥激励作用,调动人们的积极性、创造性,吸引人才,发挥人才的作用,促进国家和社会的发展。
☆基本经济制度、分配制度与人民的职业及收入来源的关系:
是因果关系,由于我国实行这种充满生机和活力的基本经济制度、分配制度,极大地调动人民的积极性、创造性,
非公有制经济:个体、私营、外资
☆基本经济制度的意义:
1.是由我国基本国情决定的;
2.公有制是社会主义经济制度的基础,占主体地位,是维护广大人民根本利益和实现共同富裕的保证;
3.非公有制经济是我国经济的重要组成部分;
4.有利于促进经济发展、社会进步,解放、发展生产力;
5.有利于提高人民生活水平,为公民施展才干提供极大的活动舞台和发展空间。
质文明的发展提供政治保证和法律保障;精神文明为物质文明的发展提供思想保证、精神动力和智
力支持;生态文明有利于促进我国经济、社会的可持续发展。
基本经济制度:以公有制为主体,多种所有制经济共同发展。
国有经济
公有制经济 集体经济
经济 混合所有制经济中的国有成分和集体成分
不要嫌多,这可是初中全部的精点,热点,希望可以帮助你 社会主义初级阶段
历史原因:由于中国脱胎于半殖民地半封建社会,是在一穷二白的基础上起步建设的;
.. 1.生产力水平还比较低(根本原因);
原因 现实原因(表现)2.地区发展不平衡;
是否有利于发展社会主义社会的生产力;
“三个有利于”是否有利于增强社会主义国家的综合国力;
是否有利于提高人民的生活水平。
☆我国发展的有利条件:
建立社会主义公有制,能集中力量办大事,有较雄厚的工业基础和经济基础;科学技术提高很大,农业和农
「2010成人高考专升本高数一真题及答案解析」

一1.下列词语中加点字的读音完全相同的一组是 CA.馈赠.曾.孙磨蹭.面目可憎.僧.多粥少B.着.装着.眼着.落沉着.冷静着.手成春C.烙.印骆.驼奶酪.亭台楼阁.络.绎不绝D.笨拙.罢黜.茁.壮咄咄..逼人相形见绌.2.依次填入句中横线上的词语,恰当的一组是 B(1)各级党组织要从我国社会主义现代化建设的实际出发,认真________和识别干部。
(2)一条新修建的道路,供水部门挖开路面,安装水管;刚刚填平,煤气公司又挖开安装煤气管;不久,环卫系统又来修理污水管……如果几个部门________一下,可以节省多少劳动力和资金啊!(3)一连几天,他高烧不退,________不清。
A. 考查协调神智B.考察协调神志C.考察谐调神志 D.考查谐调神智3.下列各句,没有语病,句意明确的一句是 CA.现在,许多青年男女不再以财产多寡和门第高低为条件,而以能劳动,有科学文化知识为标准去选择自己的伴侣。
B.这个村今年水稻获得了大丰收,不但向国家交售了六万斤谷子,而且不吃国家的供应粮了。
C.厂长采纳了两个工人的合理化建议,这大大激发了全厂职工出谋献策的积极性。
D.鉴于动物有上述特点,我们可以预测,随着信息时代的到来,科学技术的不断发展,在未来的战争舞台上,将有越来越多的“动物兵”出现。
二1.下列各组词语中加点的字的读音,与所给注音全都相同的一组是: CA.角jiǎo 号角.角.落头角.群雄角.逐B.笼lóng 笼.子牢笼.笼.屉烟笼.雾锁C.量liáng 思量.打量.测量.量.体裁衣D.削xuē剥削.削.减瘦削.日削.月割2.依次填入句中横线上的词语,正确的一组是 C《四世同堂》是一部很好的电视剧。
它忠实地体现了老舍先生作品的_______,浓郁而亲切的_______人情气息弥温始终,它记述了历史,同时又记述了北平的_______,北平人及他们的思绪、感情和生活。
这种深沉、朴实的_______,是与导演对作品的深刻理解分不开的。
2010河南专升本高等数学真题及答案详解

2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。
本试卷的试题答案必须答在答题卡上,答在试卷上无效。
一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
1.设函数)(x f 的定义域为区间(1,1]-,则函数(1)e f x -的定义域为A .[2,2]-B .(1, 1]-C .(2, 0]-D .(0, 2]2.若()f x ()x R ∈为奇函数,则下列函数为偶函数的是A .()y x =,[1, 1]x ∈-B .3()tan y xf x x =+,(π, π)x ∈-C .3sin ()y x x f x =-,[1, 1]x ∈-D .25()e sin x y f x x =,[π, π]x ∈- 3.当0→x 时,2e1x-是sin 3x 的A .低阶无穷小B .高阶无穷小C .等价无穷小D .同阶非等价无穷小4.设函数2511sin , 0()e , 0xx x x f x x ⎧>⎪=⎨⎪<⎩,则0x =是)(x f 的 A .可去间断点 B .跳跃间断点 C .连续点D .第二类间断点5.下列方程在区间(0, 1)内至少有一个实根的为 A .220x +=B .sin 1πx =-C .32520x x +-=D .21arctan 0x x ++=6.函数)(x f 在点0x x =处可导,且1)(0-='x f ,则000()(3)lim2h f x f x h h→-+=A .23B .23-C .32-D .327.曲线x x y ln =的平行于直线01=+-y x 的切线方程是 A .1-=x y B .)1(+-=x y C .1y x =-+D .)1)(1(ln -+=x x y8.设函数π2sin 5y =,则='y A.π2cos 5-B.CD.2πcos 55-9.若函数()f x 满足2d ()2sin d f x x x x =-,则()f x = A .2cos xB .2cos x C +C .2sin x C +D .2cos x C -+10.d e sin(12)d d b xax x x --=⎰ A .e sin(12)x x -- B .e sin(12)d x x x -- C .e sin(12)x x C --+D .011.若()()f x f x -=,在区间(0, )+∞内,()0f x '>,()0f x ''>,则()f x 在区间(, 0)-∞内A .()0f x '<,()0f x ''<B .()0f x '>,()0f x ''>C .()0f x '>,()0f x ''<D .()0f x '<,()0f x ''>12.若函数()f x 在区间(, )a b 内连续,在点0x 处不可导,0(, )x a b ∈,则 A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点 C .0x 不是()f x 的极值点 D .0x 可能是()f x 的极值点13.曲线e xy x -=的拐点为 A .1x =B .2x =C .222,e ⎛⎫ ⎪⎝⎭D .11,e ⎛⎫ ⎪⎝⎭14.曲线2arctan 35xy x=+ A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 15.若x cos 是)(x f 的一个原函数,则=⎰)(d x fA .sin x C -+B .sin xC + C .cos x C -+D .cos x C +16.设曲线()y f x =过点(0, 1),且在该曲线上任意一点(, )x y 处切线的斜率为e x x +,则=)(x fA .2e 2x x -B .2e 2x x +C .2e x x +D .2e x x -17.2 π4πsin d 1x xx x -=+⎰A .2B .0C .1D .1-18.设)(x f 是连续函数,则2()d x af t t ⎰是A .)(x f 的一个原函数B .)(x f 的全体原函数C .)(22x xf 的一个原函数D .)(22x xf 的全体原函数19.下列广义积分收敛的是 A.1x +∞⎰ B .2 e ln d xx x +∞⎰C .2e1d ln x x x+∞⎰D .21d 1xx x+∞+⎰20.微分方程0)(224=-'+''y x y y x 的阶数是 A .1B .2C .3D .421.已知向量{5, , 2}a x =-和{, 6, 4}b y = 平行,则x 和y 的值分别为A .4-,5B .3-,10-C .4-,10-D .10-,3-22.平面1x y z ++=与平面2=-+z y x 的位置关系是 A .重合 B .平行C .垂直D .相交但不垂直23.下列方程在空间直角坐标系中表示的曲面为柱面的是 A .221y z += B .22z x y =+ C .222z x y =+D .22z x y =-24.关于函数222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩下列表述错误的是A .(, )f x y 在点(0, 0)处连续B .(0, 0)0x f =C .(0, 0)0y f =D .(, )f x y 在点(0, 0)处不可微25.设函数)ln(y x y x z -=,则=∂∂yzA .)(y x y x -B .2ln()x x y y --C .ln()()x y xy y x y -+- D .2ln()()x x y xy y x y ---- 26.累次积分2d (, )d x f x y y ⎰⎰写成另一种次序的积分是A .1d (, )d yyy f x y x -⎰⎰B.2d (, )d y f x y x ⎰⎰C.11d (,)d y f x y x -⎰⎰D.11 11d (, )d y f x y x -⎰⎰27.设{(, )|D x y x =≤2, y ≤2},则⎰⎰=Dy x d dA .2B .16C .12D .428.若幂级数∑∞=0n nnx a的收敛半径为R ,则幂级数∑∞=-02)2(n n n x a 的收敛区间为A.( B .(2, 2)R R -+ C .(, )R R -D.(2 229.下列级数绝对收敛的是 A .∑∞=-11)1(n nnB .∑∞=-1223)1(n n nnC .∑∞=-+-1121)1(n n n nD .∑∞=--1212)1(n nn n30.若幂级数(3)nn n a x ∞=-∑在点1x =处发散,在点5x =处收敛,则在点0x =,2x =,4x =,6x =中使该级数发散的点的个数有A .0个B .1个C .2个D .3个二、填空题(每空2分,共20分)31.设(32)f x -的定义域为(3, 4]-,则)(x f 的定义域为________. 32.极限limx =________.33.设函数()(1)(2)(3)(4)f x x x x x =++--,则(4)()f x =________.34.设参数方程22 1 31x t y t =+⎧⎨=-⎩所确定的函数为()y y x =,则22d d yx =________. 35.(ln 1)d x x +=⎰________.36.点(3, 2, 1)-到平面10x y z ++-=的距离是________. 37.函数(1)x z y =+在点(1, 1)处的全微分d z =________.38.设L 为三个顶点分别为(0, 0),(1, 0)和(0, 1)的三角形边界,L 的方向为逆时针方向,则2322()d (3)d Lxyy x x y xy y -+-=⎰ ________.39.已知微分方程x ay y e =+'的一个特解为x x y e =,则a =________.40.级数03!nn n ∞=∑的和为________.三、计算题(每小题5分,共45分)41.求极限2040sin d (e 1)sin lim 1cos x x x t t x x x →⎛⎫- ⎪- ⎪- ⎪⎝⎭⎰. 42.设由方程22e e y xy -=确定的函数为)(x y y =,求d d x yx =. 43.求不定积分2xx .44.求定积分( 2d x x ⎰.45.求过点(1, 2, 5)-且与直线213 3 x y z x y -+=⎧⎨-=⎩平行的直线方程.46.求函数x xy y x y x f 823),(22+-+=的极值. 47.将23()21xf x x x =+-展开成x 的幂级数. 48.计算二重积分Dσ⎰⎰,其中D 是由圆223x y +=所围成的闭区域.49.求微分方程069=+'-''y y y 的通解.四、应用题(每小题8分,共16分)50.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时用料最省? 51.平面图形D 由曲线2x y =,直线x y -=2及x 轴所围成.求: (1)D 的面积;(2)D 绕x 轴旋转形成的旋转体的体积.五、证明题(9分)52.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且(0)0f =,(1)2f =.证明:在)1,0(内至少存在一点ξ,使得()21f ξξ'=+成立.2010年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学试题参考答案及评分标准一、选择题(每小题2分,共60分)二、填空题(每小题2分,共20分)31.[5, 9)- 32.5233.24 34.3235.ln x x C + 3637.2ln 2d d x y + 38.0 39.1- 40.3e三、计算题(每小题5分,共45分)41.3242.222002d d 24e d d e 0x x y y y xx-======- 43.322(e 1)3x C +-44.π22+ 45.125315x y z --+==- 46.函数在(6, 2)--处有极小值(6, 2)24f --=- 47.00111()(1)2[(1)2], , 22nnnnn n nn n n f x x x x x ∞∞∞===⎛⎫=--=--∈- ⎪⎝⎭∑∑∑48.49.1312()e x y C C x =+(1C ,2C 是任意常数) 四、应用题(每小题8分,共16分)50.3232ππ2πππV h V V V r r r r V===⋅=⋅= 51.(1) 1201d 112A x x =+⋅⋅⎰ 13015326x =+= (2) 14201πd π113x V x x =+⋅⋅⎰ 150π8ππ5315x =+=第51题图五、证明题(9分)52.证明:构造函数2()()F x f x x =-,因)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,所以函数)(x F 在闭区间]1,0[上连续,在开区间)1,0(内可导,且()()2F x f x x ''=-.于是)(x F 在]1,0[上满足拉格朗日中值定理的条件,故在开区间)1,0(内至少存在一点ξ,使得(1)(0)()10F F F ξ-'=-,将(0)0f =,(1)2f =代入上式,得(1)(0)()[(1)1][(0)0]110F F F f f ξ-'==---=-,即()21f ξξ'-=,于是()21f ξξ'=+.。
2010成人高考专升本高数一真题及答案解析

2010成人高考专升本高数一真题及答案解析2010成人高考专升本高数一真题及答案解析——2010年成人高等学校招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。
一、选择题:1-10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。
A、3B、2C、1D、0正确答案:C【安通名师解析】根据函数的连续性立即得出结果【安通名师点评】这是计算极限最常见的重要题型。
在教学中一直被高度重视。
在上课时多次强调的重点,必须记住。
正确答案:B【安通名师解析】根据基本初等函数求导公式复合函数求导法则或直接用微分计算【安通名师点评】这样的题目已经在安通学校保过班讲义中练习过多次,属于特别重要内容。
【安通名师解析】基本积分公式,直接积分法。
【安通名师点评】这是每年都有的题目。
考的就是公式是否记住了。
课堂上讲过练过多次,要求学生对基本积分公式背熟。
正确答案:C【安通名师解析】使用基本初等函数求导公式【安通名师点评】这是本试卷中第二个直接使用基本初等函数求导公式的计算题。
考的就是公式是否掌握了。
我们在平时教学中一再要求学生对基本公式背熟。
否则寸步难行。
正确答案:D【安通名师解析】用洛必达法则求解【安通名师点评】这类问题在以往的考试中经常出现,重要但并不难。
是一种典型的题目。
也始终是讲课的重点。
正确答案:A【安通名师解析】把y看作常数,对x求导。
【安通名师点评】本题仍然属于基本题目,是年年考试都有的内容正确答案:A【安通名师解析】因为是选择题,只要验证点的坐标满足方程就可以了。
【安通名师点评】本题如果是填空或解答题,难度将大为增加。
现在是选择题,理解概念就行。
正确答案:B【安通名师解析】直接使用公式【安通名师点评】这是计算收敛半径最常见的题型。
比较简单比较重要。
在教学中一直被高度重视。
二、11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。
2010年成人高考高起专数学真题及答案(文史类)

2010年成人高等学校招生全国统一考试数学(文史财经类)一、选择题:本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}3-≥=x x M ,{}1≤=x x N ,则=N M ( cA.RB.C. []1,3-D. φ (2)函数x y 2sin =的最小正周期为 ( C )A. π6B. π2C.πD.2π (3)=︒︒15cos 15sin (A )A.41 B. 21 C. 43 D. 22 (4)=-8log 27232( B )A. 12B. 6C. 3D. 1(5)设甲:2π=x ,乙:1sin =x ,则( B )A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲不是乙的充分条件,但不是乙的必要条件D. 甲是乙的充分必要条件(6)下列函数中,为奇函数的是( A )A. 3x y -=B. 23-=x yC. xy ⎪⎭⎫ ⎝⎛=21 D. ⎪⎭⎫ ⎝⎛=x y 1log 2(7)已知点)3,5(-A ,)1,3(B ,则线段AB 中点的坐标为( D )A. )1,4(-B. )1,4(-C. )4,2(-D. )2,1(-(8)设函数ax ax x f -=22)(,且6)2(-=f ,则=a ( A )A. 1-B. 43-C. 1D. 4 (9)如果一次函数b kx y +=的图像经过点)7,1(A 和)2,0(B ,则=k ( D )A. 5-B. 1C. 2D. 5(10)若向量a )2,(x =,b ()4,2-=,且a 、b 共线,则=x ( B )A. 4-B. 1-C. 1D. 4(11)=⎪⎭⎫⎝⎛-π619cos ( A ) A. 23-B. 21-C. 21D. 23(12)已知一个等差数列的第5项等于10,前3项的和等于3,那么这个等差数列的公差 ( A )A. 3B. 1C. 1-D. 3-(13)函数x y -=4的定义域是( C )A. (][)+∞-∞-,44,B. (][)+∞-∞-,22,C. []4,4-D. []2,2-(14)从甲口袋内摸出一个球是红球的概率是2.0,从乙口袋内摸出一个红球的概率是3.0,现在从甲、乙两个口袋内各摸出一个球,这两个球都是红球的概率是( D )A. 94.0B. 56.0C. 38.0D. 06.0(15)设函数3)3()(2+-+=x m x x f 是偶函数,则=m (C )A. 3-B. 1C. 3D. 5(16)设10<<<b a ,则 ( D )A. 2log 2log b a <B. b a 22log log >C. 2121b a > D. ba ⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛2121(17)用0,1,2,3这四个数字,组成的没有重复数字的四位数共有( B )A. 24个B. 18个C. 12个D. 10个二、填空题:本大题共4小题,每小题4分,共16分.(18)圆2522=+y x 的圆心到直线01=++y x 的距离为22. (19)曲线123+=x y 在点)3,1(处的切线方程是0 .(20)如果二次函数的图像经过原点和点)0,4(-,则该二次函数图像的对称轴方程为 -2 .(21)某中学五个学生的跳高成绩(单位:米)分别为 a 72.1 50.1 53.1 68.1 他们的平均成绩为61.1米,则=a 1.62 .三、解答题:本大题共4小题,共49分.解答应写出推理、演算步骤. (22)在锐角三角形ABC 中,8=AC ,7=BC ,734sin =B ,求AB . 解析:由⎪⎩⎪⎨⎧=+=1cos sin 734sin 22B B B 可得71cos =B .在锐角三角形ABC 中,由余弦定理得B BC AB BC AB AC cos 2222⋅⋅-+=,即01522=--AB AB ,解得5=AB ,3-=AB (舍去).(23)已知数列{}n a 中,21=a ,n n a a 211=+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 前5项的和5S .解析:(Ⅰ)由已知得0=/n a ,211=+n n a a ,所以{}n a 是以21=a 为首项,21为公比的等比数列,则有1212-⎪⎭⎫ ⎝⎛⋅=n n a 即221-=n n a .(Ⅱ)831211211255=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=S .(24)已知椭圆的离心率为35,且该椭圆与双曲线1422=-y x 焦点相同,求椭圆的标准方程和准线方程.解析:由已知可得椭圆焦点为)0,5(1-F,)0,5(2F . 设该椭圆的标准方程为12222=+b y ax )0(>>b a ,则 ()⎪⎩⎪⎨⎧==-,355,5222a b a 解得⎩⎨⎧==,2,3b a 所以椭圆的标准方程为14922=+y x ,椭圆的准线方程为5592±=±=c a x ,即559±=x .(25)设函数24)(3++=ax x x f ,曲线)(x f y =在点)2,0(P 处切线的斜率为12-,求:(Ⅰ)a 的值;(Ⅱ)函数)(x f 在区间[]2,3-的最大值与最小值.解析:(Ⅰ)由已知可得a x x f +=212)(',故有12)0('-=f ,得12-=a . (Ⅱ)2124)(3+-=x x x f ,)1)(1(121212)('2-+=-=x x x x f . 令0)('=x f ,解得1±=x .因为70)3(-=-f ,10)1(=-f ,6)1(-=f ,10)2(=f ,所以)(x f 在区间[]2,3-的最大值为10,最小值为70-.参考答案:一、选择题:本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)答案 C解析:{}[]1,313-=≤≤-=x x N M . (2)答案 C解析:本题中2=ω,所以最小正周期ππωπ===222T . (3)答案 A解析:由二倍角公式可知,41152sin 2115cos 15sin =︒⨯=︒︒. (4)答案 B . 解析:()633338log 272323232=-=-=-,所以选B .(5)答案 B 解析:2π=x ⇒1sin =x ,同时1sin =x ⇒/2π=x .故选B .(6)答案 A解析:奇函数的是)()(x f x f -=-,可知答案选A . (7)答案 D解析:线段AB 中点的坐标为 ⎝⎛+-235,⎪⎭⎫+213,即为)2,1(-. (8)答案 A解析:由6)2(-=f ,则628-=-a a ,1-=a . (9)答案 D解析:一次函数b kx y +=的图像经过点)7,1(A 和)2,0(B ,则有⎩⎨⎧==+,2,7b b k 解得=k 5.(10)答案 B解析:a 、b 共线,所以0)2(24=-⨯-x ,解得1-=x . (11)答案 A 解析:2365cos 654cos 619cos -==⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-ππππ.(12)答案 A 解析:由题意知,⎪⎩⎪⎨⎧=⨯+==+=,32233,1041315d a S d a a 解得⎩⎨⎧=-=,3,21d a 故选A .(13)答案 C 解析:函数x y -=4有意义,则需04≥-x ,也即4≤x ,解得.故选C .(14)答案 D解析:两个球都是红球说明甲口袋内摸出一个球是红球和乙口袋内摸出一个红球,两个事件必须同时发生,故都是红球的概率为06.03.02.0=⨯. (15)答案 C解析:函数3)3()(2+-+=x m x x f 是偶函数,则有)1()1(f f =-,3)3(13)1()3()10(22+-+=+-⨯-+-m m ,解得=m 3.(16)答案 D解析:本题可以直接用特殊值代入,选出正确答案,比如对于2log 2log b a <,取2141lo g 2lo g 2lo g 2241-==,121log 2log 2log 2221-==,显然可以判断A 错误.同理 可判断B 和C 也是错误的.(17)答案 B解析:由题可知,千位上有3种填法,百位上有3种填法,十位上有2种填法,个位上有1种填法.根据乘法原理共有181233=⨯⨯⨯种填法,也即有18个没有重复数字的四位数. 二、填空题:本大题共4小题,每小题4分,共16分. (18)答案22解析:圆2522=+y x 的圆心为)0,0(,圆心到直线01=++y x 的距离为221110022=+++. (19)答案 036=--y x解析:由123+=x y 知x y 6'=,则6')3,1(=y ,此即为切线的斜率6,切线方程为)1(63-=-x y ,即036=--y x .(20)答案 2-=x .解析:二次函数的图像经过原点和点)0,4(-,可知对称轴经过原点和点)0,4(-的中点,所以对称轴方程为224-=+-=x ,即2-=x . (21)答案 62.1解析:由题意知()61.1 72.1 50.153.168.151=++++⨯a ,解得62.1=a . 三、解答题:本大题共4小题,共49分.解答应写出推理、演算步骤.(22)解析:由⎪⎩⎪⎨⎧=+=1cos sin 734sin 22B B B 可得71cos =B . 在锐角三角形ABC 中,由余弦定理得B BC AB BC AB AC cos 2222⋅⋅-+=,即01522=--AB AB ,解得5=AB ,3-=AB (舍去). (23)解析:(Ⅰ)由已知得0=/n a ,211=+n n a a , 所以{}n a 是以21=a 为首项,21为公比的等比数列,则有1212-⎪⎭⎫⎝⎛⋅=n n a 即221-=n n a .(Ⅱ)831211211255=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=S .(24)解析:由已知可得椭圆焦点为)0,5(1-F ,)0,5(2F .设该椭圆的标准方程为12222=+by a x )0(>>b a ,则()⎪⎩⎪⎨⎧==-,355,5222ab a 解得⎩⎨⎧==,2,3b a所以椭圆的标准方程为14922=+y x ,椭圆的准线方程为5592±=±=c a x ,即559±=x . (25)解析:(Ⅰ)由已知可得a x x f +=212)(',故有12)0('-=f ,得12-=a .(Ⅱ)2124)(3+-=x x x f ,)1)(1(121212)('2-+=-=x x x x f .令0)('=x f ,解得1±=x .因为70)3(-=-f ,10)1(=-f ,6)1(-=f ,10)2(=f , 所以)(x f 在区间[]2,3-的最大值为10,最小值为70-.。
2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x e x - 4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B.2121n n n n∞=++∑ C.1n n n ∞=D.212n n n ∞=∑5.二次积分111(,)y dy f x y dx+⎰⎰交换积分次序后得( ) A. 1101(,)x dx f x y dy+⎰⎰B.211(,)x dx f x y dy-⎰⎰C. 2111(,)x dx f x y dy-⎰⎰D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x=-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。