高中数学必修4——任意角与弧度制导学案

合集下载

苏教版高中数学必修四第课时任意角导学案

苏教版高中数学必修四第课时任意角导学案

问题1、初中,我们已经学习了︒0到︒360的角,它是怎样定义的?问题2、体操,跳水中,有“转体︒720”,“翻腾两周半”这样的动作名称,那︒720是怎样的一个角?1、正角、负角、零角的概念2、象限角、轴线角3、终边相同角的集合练习1、作出角︒390 ,︒30,︒-330,︒750,这些角之间有何关系?结论:一般地,与角α终边相同角的集合为{}Z ∈+︒⋅=k k ,360|αββ例题剖析例1、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒650 (2)︒-150 (3)'15990︒-例2、已知α与︒240角的终边相同,判断2α是第几象限角。

思考:(1)终边落在x 轴正半轴上的角的集合如何表示?终边落在x 轴上的角的集合如何表示?(2)终边落在坐标轴上的角的集合如何表示?(3)若α是第三象限角,则2α是第几象限角?巩固练习1、下列命题中正确的是( )A 、第一象限角一定不是负角B 、小于︒90的角一定是锐角C 、钝角一定是第二象限角D 、第一象限角一定是锐角 2、分别作出下列各角的终边,并指出它们是第几象限角:(1)︒330; (2)︒-200; (3)︒945; (4)︒-6503、在︒0到︒360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)︒-55; (2)'8395︒; (3)︒15634、试求出与下列各角终边相同的最小正角和最大负角:(1)︒1140; (2)︒1680; (3)︒-1290; (4)︒-15105、若α是第四象限角,试分别确定α-,α+︒180,α-︒180是第几象限角。

课堂小结正角、负角、零角的概念,象限角的概念;终边相同的角的表示方法。

课后训练班级:高一( )班 姓名__________一、基础题1、以下四个命题中,是真命题的是( )A 、小于︒90的角是锐角B 、第二象限角是钝角C 、锐角是第一象限角D 、负角不可能是第一象限角 2、设︒-=60α,则与角α终边相同的角可以表示为( ) A 、)(36060Z ∈︒⋅+︒k kB 、)(360300Z ∈︒⋅+︒k kC 、)(36030Z ∈︒⋅+︒-k kD 、)(360120Z ∈︒⋅+︒k k3、若α是第三象限角,则α-是第 象限角,α-︒180是第 象限角。

高中数学必修4全套学案含答案

高中数学必修4全套学案含答案

第一章三角函数1.1 任意角和弧度制►1.1.1 任意角课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、角的概念1.角的概念(1)角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.(2)角的表示顶点:用O表示;始边:用OA表示,用语言可表示为角的始边;终边:用OB表示,用语言可表示为角的终边.2.角的分类按旋转方向可将角分为如下三类:类型定义图示正角按照逆时针旋转而成的角负角按照顺时针旋转而成的角零角当射线没有旋转时,我们也把它看成一个角,叫做零角1.象限角:若角的顶点在原点,角的始边与x轴非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角.2.轴线角:若角的终边在坐标轴上,则这个角不属于任何象限.三、终边相同的角设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=α+k·360°,k∈Z}.[自我小测]1.判断(正确的打“√”,错误的打“×”)(1)研究终边相同的角的前提条件是角的顶点在坐标原点.( )(2)锐角是第一象限的角,但第一象限的角不一定是锐角.( )(3)象限角与终边落在坐标轴上的角表示形式是唯一的.( )提示:(1)×(2)√(3)×2.做一做(1)下列各组角中,终边不相同的是( )A.60°与-300° B.230°与950°C.1050°与-300° D.-1000°与80°答案 C(2)将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________.答案195°+(-3)×360°课堂合作探究 KETANGHEZUOTANJIU1终边相同的角之间有什么关系?提示:与α终边相同的角,可表示为β=k·360°+α(k∈Z),即两角相差360°的整数倍.2如何表示终边在坐标轴上的角和象限角?提示:终边在x轴非负半轴上的角:α=k·360°(k∈Z);终边在y轴上的角:α=90°+k·180°(k∈Z);第二象限角:90°+k·360°<α<180°+k·360°(k∈Z).题型一正确理解角的概念例1 下列结论:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确的序号为________(把正确结论的序号都写上).[解析] ①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②-330°角是第一象限角,但它是负角,所以②不正确;③480°角是第二象限角,但它不是钝角,所以③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[答案] ①角的概念的理解正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.【跟踪训练1】(1)经过2个小时,钟表上的时针旋转了( )A.60° B.-60°C.30° D.-30°(2)如图∠α=__________,∠β=__________. 答案 (1)B (2)-150° 210°解析 (1)钟表的时针旋转一周是-360°,其中每小时旋转-360°12=-30°,所以经过2个小时应旋转-60°.题型二 终边相同的角的表示及象限角 例2 已知α=-1910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,指出它是第几象限的角; (2)求θ,使θ与α的终边相同,且-720°<θ≤0°. [解] (1)∵-1910°÷360°=-6余250°, ∴-1910°=-6×360°+250°.相应β=250°,从而α=-6×360°+250°是第三象限的角. (2)令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到适合-720°<θ≤0°的角: 250°-360°=-110°,250°-720°=-470°. ∴θ=-110°或θ=-470°.[变式探究] 与-1560°角终边相同的角的集合中,最小正角是________,最大负角是________.答案 240° -120°解析 与-1560°角终边相同的角的集合为{α|α=k ·360°+240°,k ∈Z },所以最小正角为240°,最大负角为-120°.怎样表示终边相同的角及象限角(1)已知终边所处的位置,写角的集合时,可先写出0°~360°范围内的角,然后再加k ·360°(k ∈Z )组成集合即可.(2)象限角的判定有两种方法:一是根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.二是根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.【跟踪训练2】 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限的角.(1)-120°;(2)640°;(3)-950°12′.解(1)-120°=-360°+240°,∴在0°到360°范围内,与-120°终边相同的角是240°角,它是第三象限的角.(2)640°=360°+280°,∴在0°到360°范围内与640°终边相同的角是280°角,它是第四象限的角.(3)-950°12′=-3×360°+129°48′,∴在0°到360°范围内与-950°12′终边相同的角是129°48′,它是第二象限的角.题型三区域角的表示例3 写出终边落在阴影部分的角的集合.[解] 设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.[变式探究] 将例3改为下图,写出角的终边在图中阴影区域的角的集合(包括边界).解(1){α|45°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|-150°+k·360°≤α≤150°+k·360°,k∈Z}.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角.(3)用不等式表示区域内的角,组成集合.【跟踪训练3】写出终边在如下图所示阴影部分内的角α的取值范围.解(1)与45°角终边相同的角的集合为{α|α=45°+k·360°,k∈Z},与30°-180°=-150°角终边相同的角的集合为{α|α=-150°+k·360°,k∈Z},因此终边在阴影部分内的角α的取值范围为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)方法同(1),可得终边在阴影部分内的角α的取值范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.[规律小结]1.角的概念的理解(1)弄清角的始边与终边.(2)结合图形明确这个角从始边到终边转过了多少度.(3)注意逆时针旋转与顺时针旋转的区别.2.研究象限角时应注意的问题(1)前提条件:角的顶点与原点重合,角的始边与x轴的非负半轴重合;(2)并不是任何角都是象限角,如终边落在坐标轴上的角叫轴线角,轴线角的表示如下表:终边所在的位置角的集合x轴非负半轴{α|α=k·360°,k∈Z}x轴非正半轴{α|α=k·360°+180°,k∈Z}y轴非负半轴{α|α=k·360°+90°,k∈Z}y轴非正半轴{α|α=k·360°+270°,k∈Z}3.表示与α终边相同的角时应注意的问题(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k ·360°与α之间是“+”号,如k ·360°-30°应看成k ·360°+(-30°)(k ∈Z );(4)终边相同的角不一定相等,但相等的角终边一定相同. [走出误区]易错点⊳分角所在象限及范围的确定的误区 [典例] 若α是第三象限的角,则α3是( )A.第一象限的角B.第三象限的角C.第四象限的角D.第一象限或第三象限或第四象限的角[错解档案] 因为α是第三象限的角,所以取α=210°,得到α3=70°,是第一象限的角,故选A.[误区警示] 第三象限的角α有无数个,用α=210°得到α3=70°而选择答案A ,犯了以偏概全的错误.[规范解答] 因为α是第三象限的角,所以k ·360°+180°<α<k ·360°+270°(k ∈Z ),则k ·120°+60°<α3<k ·120°+90°(k ∈Z ),取k =0,得到α3可在第一象限;取k =1,得到α3可在第三象限;取k =2,得到α3可在第四象限.故选D.矫正训练 若α为第二象限的角,则α2为第几象限角?解 若α为第二象限角,则有随堂消化吸收 SUITANGXIAOHUAXISHOU1.[2016·吉林实验高一期中]下列叙述正确的是( ) A .三角形的内角是第一象限角或第二象限角 B .钝角是第二象限角 C .第二象限角比第一象限角大 D .不相等的角终边一定不同 答案 B解析 三角形的内角是第一象限角、第二象限角或在y 轴非负半轴上的角,故A 错误;钝角是第二象限角,B 正确;象限角不能比较大小,故C 错误;不相等的角终边也可能相同,如40°和400°,故D 错误.2.[2016·山东枣庄模拟]若α是第四象限角,则180°+α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案 B解析 因为α与180°+α的终边关于点(0,0)对称,所以角180°+α的终边在第二象限.3.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案 -5 -60解析 将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.4.若α为锐角,则-α+k ·360°(k ∈Z )在第________象限. 答案 四解析 由于0°<α<90°,所以-90°<-α<0°,所以-α是第四象限角,从而-α+k ·360°(k ∈Z )在第四象限.5.[2016·大连高一检测]写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤α≤720°的元素α写出来:(1)60°;(2)-21°.解 第一步:利用终边相同的角的集合公式写出: (1)S ={α|α=60°+k ·360°,k ∈Z }; (2)S ={α|α=-21°+k ·360°,k ∈Z }.第二步:在第一步的基础上,利用约束条件对其中的k 值分别采用赋值法求出元素α; (1)-300°,60°,420°;(2)-21°,339°,699°.课后课时精练 KEHOUKESHIJINGLIAN 时间:25分钟满分:60分一、选择题(每小题5分,共25分)1.已知α=-130°,则α的终边落在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析∵-130°=-360°+230°,而230°是第三象限角,∴α的终边落在第三象限.2.已知角α的终边落在直线y=x上,则角α的集合S=( )A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·90°+45°,k∈Z}C.{α|α=k·360°+225°,k∈Z}D.{α|α=k·180°+45°,k∈Z}答案 D解析本题考查终边在特殊直线上的角以及分类讨论的数学思想.由于角α的终边落在直线y=x上,故角α在0°~360°内所对应的两个角分别为45°及225°,从而角α的集合S={α|α=k·360°+45°或α=k·360°+225°,k∈Z}={α|α=k·180°+45°,k∈Z},故选D.3.若α是钝角,则θ=k·180°+α,k∈Z是( )A.第二象限角B.第三象限角C.第二象限角或第三象限角D.第二象限角或第四象限角答案 D解析当k为偶数时,θ=k·180°+α,k∈Z是第二象限角,当k为奇数时,θ=k·180°+α,k∈Z是第四象限角.4.已知角α、β的终边互为反向延长线,则α-β的终边在( )A.x轴的非负半轴上B.y轴的非负半轴上C.x轴的非正半轴上D.y轴的非正半轴上答案 C解析由题意知β+180°应与α终边相同,即α=β+180°+k·360°(k∈Z),∴α-β=180°+k·360°.故选C.5.已知角2α的终边在x轴上方,那么α是( )A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角答案 C解析由条件知k·360°<2α<k·360°+180°,(k∈Z),∴k·180°<α<k·180°+90°(k∈Z),当k为偶数时,α在第一象限,当k为奇数时,α在第三象限.二、填空题(每小题5分,共15分)6.[2016·广东佛山一中期中]终边在x轴上的角β的集合是________.答案{β|β=180°·k,k∈Z}解析 本题考查终边相同的角的概念.终边在x 轴正半轴上的角的集合为{β|β=360°·k ,k ∈Z },终边在x 轴负半轴上的角的集合为{β|β=180°·(2k +1),k ∈Z },所以终边在x 轴上的角β的集合为{β|β=180°·k ,k ∈Z }.7.时钟的时针走过了1小时20分钟,则分针转过的角为________. 答案 -480°解析 时针走过了1小时20分钟,则分针转了43圈,又因顺时针旋转的角为负角,∴分针转过的角为-43×360°=-480°.8.若集合M ={x |x =k ·90°+45°,k ∈Z },N ={x |x =k ·45°+90°,k ∈Z },则M ________N .(填“”“”)答案解析 M ={x |x =k ·90°+45°,k ∈Z } ={x |x =45°·(2k +1),k ∈Z },N ={x |x =k ·45°+90°,k ∈Z }={x |x =45°·(k +2),k ∈Z },∵k ∈Z ,∴k +2∈Z ,且2k +1为奇数,∴M N . 三、解答题(每小题10分,共20分)9.如图所示,试写出终边落在阴影区域内的角的集合S (包括边界),并指出-950°12′是否是该集合中的角.解 由题图可知,终边落在阴影区域内的角的集合S ={β|120°+k ·360°≤β≤250°+k ·360°,k ∈Z }.∵-950°12′=-3×360°+129°48′,且120°<129°48′<250°,∴-950°12′是该集合中的角. 10.已知α为第二象限角,问2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°,k ∈Z , ∴180°+2k ·360°<2α<360°+2k ·360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k2·360°<α2<90°+k2·360°. 当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ·360°<α2<90°+n ·360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ·360°<α2<270°+n ·360°,此时,α2为第三象限角.∴α2为第一或第三象限角. ►1.1.2 弧度制课前自主学习 KEQIANZIZHUXUEXI[基础自学]一、弧度的概念设扇形的半径为r ,弧长为l ,α为其圆心角,则度量单位类别α为角度制 α为弧度制 扇形的弧长 l =πr ·⎪⎪⎪⎪⎪⎪α180l =r |α| 扇形的面积S =πr 2⎪⎪⎪⎪⎪⎪α360S =12r 2|α|=12rl1.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是相同的,都是用来度量角的单位.( )(2)终边落在x 轴非正半轴上的角可表示为α=k ·360°+π(k ∈Z ).( ) (3)1 rad 的角和1°的角大小一样.( )(4)用圆心角所对的弧长与半径的比来度量圆心角是合理的.( ) 提示:(1)× (2)× (3)× (4)√2.做一做(1)半径为2,圆心角为π3的扇形的面积是( )A.4π3 B .π C.2π3D.π3答案 C解析 由扇形面积公式S =12r 2·|α|可得S =12×4×π3=2π3,故选C. (2)角度与弧度互化: ①7π6=________;②-75°=________. 答案 ①210° ②-5π12课堂合作探究 KETANGHEZUOTANJIU1角度制与弧度制如何换算?提示:360°=2π rad,180°=π rad,1°=π180rad ,1 rad =⎝⎛⎭⎪⎫180π°≈57.30°.2扇形的弧长与面积的计算公式是什么? 提示:l =|α|·r ,S =12l ·r =12|α|·r 2.题型一 弧度制的概念例1 下列命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .一度的角是周角的1360,一弧度的角是周角的12πC .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位.D .不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关[解析] 根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以D 是假命题.选项A 、B 、C 均为真命题.[答案] D“度”与“弧度”的区别和联系(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.(2)1弧度是长度等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360. (3)无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的值.【跟踪训练1】 下列命题中,真命题是( ) A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案 D解析 根据一弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做一弧度的角.对照各选项,可知D 为真命题.故选D.题型二 弧度和角度的换算 例2 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-115π.[解] (1)20°=20×π180=π9.(2)-15°=-15×π180=-π12.(3)712π=712π×⎝ ⎛⎭⎪⎫180π°=105°.(4)-115π=-115π×⎝ ⎛⎭⎪⎫180π°=-396°.角度制与弧度制互化的注意事项(1)用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写.(2)用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.(3)度化弧度时,应先将分、秒化成度,再化成弧度.【跟踪训练2】 (1)-450°化成弧度是________. (2)75π化成角度是________. 答案 (1)-52π (2)252°解析 (1)-450°=-450×π180=-52π.(2)75π=75π×⎝ ⎛⎭⎪⎫180π°=252°.题型三 用弧度表示角例3 (1)把下列角化为2k π+α(0≤α<2π,k ∈Z )的形式:①16π3;②-315°. (2)用弧度表示顶点在原点,终边落在阴影部分内的角的集合(不包括边界,如图所示). [解] (1)①16π3=4π+4π3.∵0≤4π3<2π,∴16π3=4π+4π3.②-315°=-315×π180=-7π4=-2π+π4.∵0≤π4<2π,∴-315°=-2π+π4.(2)330°=360°-30°=2π-π6,而60°=π3,它所表示的区域位于-π6与π3之间且跨越x 轴的正半轴.所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪2k π-π6<θ<2k π+π3,k ∈Z.弧度制表示角的注意事项(1)用弧度表示区域角,实质是角度表示区域角在弧度制下的应用,必要时,需进行角度与弧度的换算.注意单位要统一.可以先写(-π,π)或(0,2π)内的角,再加上2k π,k ∈Z .(2)终边在同一直线上的角可以合并为{x |x =α+k π,k ∈Z };终边在相互垂直的两直线上的角可以合并为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =α+k ·π2,k ∈Z.【跟踪训练3】 (1)把-1480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α终边相同,求β. 解 (1)∵-1480°=-1480π180=-74π9=-10π+16π9,又0≤16π9<2π,∴-1480°=16π9-2×5π=16π9+2×(-5)π.(2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0],令k =-1,则β=-2π9.令k =-2, 则β=-20π9,∴β的值是-2π9,-20π9.题型四 扇形的弧长与面积 例4 扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小; (2)求该扇形的面积取得最大值时圆心角的大小和弦长AB . [解] 设这个扇形的半径为R ,弧长为l ,圆心角为α(α>0). (1)由已知,得⎩⎪⎨⎪⎧2R +l =8,12lR =3,解得⎩⎪⎨⎪⎧R =3,l =2.或⎩⎪⎨⎪⎧R =1,l =6.由|α|=l R 可得:α=23或α=6.(2)扇形的面积 S =12lR =12(8-2R )R =-(R -2)2+4(0<R <4),所以,当且仅当R =2时,S 取得最大值4. 这时,l =8-2R =4,可求出:α=lR=2. 又∵0<2<π,∴|AB |=2R ·sin α2=4sin1.[变式探究] 将例4中扇形周长改为6 cm ,面积改为2 cm 2,求圆心角的大小. 解 设扇形的半径为R ,弧长为l ,圆心角为α(α>0),则有⎩⎪⎨⎪⎧2R +l =612lR =2解得⎩⎪⎨⎪⎧R =1l =4或⎩⎪⎨⎪⎧R =2l =2,由|α|=lR得α=4或α=1.扇形周长及面积的最值(1)当扇形周长一定时,扇形的面积有最大值.其求法是把面积S 转化为关于r 的二次函数,但要注意r 的取值范围.特别注意一个扇形的弧长必须满足0<l <2πr .(2)当扇形面积一定时,扇形的周长有最小值.其求法是把扇形周长L 转化为关于r 的函数,但要注意r 的取值范围.【跟踪训练4】 已知扇形AOB 的圆心角为120°,半径长为6,求: (1) AB ︵的长; (2)弓形AOB 的面积.解 (1)∵120°=120180π=23π,∴l =6×23π=4π,∴AB ︵的长为4π.(2)∵S 扇形OAB =12lr =12×4π×6=12π,如图所示.又S △OAB =12×AB ×OD (D 为AB 中点)=12×2×6cos30°×6×sin30°=9 3. ∴S 弓形OAB =S 扇形OAB -S △OAB =12π-9 3.[规律小结]1.弧度制与角度制的区别与联系 (1)区别①单位不同.弧度制以“弧度”为度量单位,角度制以“度”为度量单位; ②定义不同. (2)联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值. 2.角度制与弧度制换算时应注意的问题(1)弧度制与角度制的互化是一种比例关系的变形,具体变化时,可牢记以下公式:π180=弧度角度,只要将已知数值填入相应的位置,解出未知的数值,再添上相应的单位即可; (2)如无特别要求,不必把π写成小数;(3)度化为弧度时,应先将分、秒化为度,再化为弧度; (4)同一个式子中角度和弧度不能混用. [走出误区]易错点⊳角度制与弧度制的应用误区[典例] 将-1485°化成2k π+α(0≤α<2π,k ∈Z )的形式为________. [错解档案] 因为-1485°=-4×360°-45°=-4×360°+(-360°+315°)=-5×360°+315°, 所以-1485°化为2k π+α形式应为-10π+315°.[误区警示] 只考虑了将-1485°写成了“2k π”的组合形式,而忽视了对α的要求,忽视了角度和弧度的统一,这是初学者极易犯的一个错误.[规范解答] 由-1485°=-5×360°+315°, 所以-1485°可以表示为-10π+74π.矫正训练 将17π4化成k ·360°+α(0°≤α<360°,k ∈Z )的形式为________.答案 2·360°+45° 解析 17π4=765°=720°+45°=2×360°+45°, 故17π4=2·360°+45°.随堂消化吸收 SUITANGXIAOHUAXISHOU1.1920°转化为弧度数为( ) A.163 B.323 C.16π3D.32π3答案 D解析 ∵1°=π180弧度,∴1920°=1920×π180=323π.2.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 ∵-3≈-171.9°,∴α=-3表示的角的终边在第三象限.3.[2016·南昌市高一月考]已知扇形的半径为R ,面积为R 2,那么这个扇形中心角的弧度数是________.答案 2解析 由l =|α|·R 及S =12lR ,得S =12|α|R 2.∴|α|=2S R 2=2R2R2=2.4.用弧度制表示终边落在第二象限的角的集合为________.答案 ⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+π2<α<2k π+π,k ∈Z解析 若角α的终边落在第二象限,则 2k π+π2<α<2k π+π,k ∈Z .5.将下列各角转化成2k π+α(k ∈Z ),且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725°;(2)64π3.解 (1)∵-1725°=-5×360°+75°=-10π+5π12,∴-1725°角与角5π12的终边相同.又∵5π12是第一象限角,∴-1725°是第一象限角. (2)∵64π3=20π+4π3,∴角64π3与角4π3的终边相同.又∵4π3是第三象限角,∴64π3是第三象限角. ,课后课时精练 KEHOUKESHIJINGLIAN时间:25分钟满分:60分一、选择题(每小题5分,共25分) 1.-300°化为弧度是( ) A .-4π3B .-5π3C .-7π4D .-7π6答案 B解析 ∵1°=π180 rad ,∴-300°=-5π3 rad.2.8π5弧度化为角度是( ) A .278° B .280° C .288° D .318°答案 C 解析 ∵1 rad =⎝⎛⎭⎪⎫180π°,∴8π5=8π5×⎝ ⎛⎭⎪⎫180π°=288°.3.[2016·清华附中月考]若角α,β的终边关于y 轴对称,则α,β的关系一定是( ) A .α+β=π B .α-β=π2C .α-β=(2k +1)π(k ∈Z )D .α+β=(2k +1)π(k ∈Z ) 答案 D解析 本题考查关于y 轴对称的两个角之间的关系.角α,β的终边关于y 轴对称,则画图可知α+β=(2k +1)π(k ∈Z ),D 选项正确;也可以用特殊值方法,例如取α=π4,β=3π4或α=-π4,β=-3π4,结合选项可知D 正确.故选D. 4.[2016·兰州一中高一期末]已知扇形的圆心角的弧度数为2,扇形的弧长为4,则扇形的面积为( )A .2B .4C .8D .16答案 B解析 由S =12lR 及|α|=l R ,得S =12l 2|α|=12·422=4.5.[2016·浙江永嘉高一月考]集合⎩⎪⎨⎪⎧α⎪⎪⎪ k π+π4≤α≤k π+π2,} k ∈Z 中的角所表示的范围(阴影部分)是()答案 C解析 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.二、填空题(每小题5分,共15分) 6.角度制与弧度制间的互化:(1)1095°=__________rad ;(2)-94π=__________.答案 (1)7312π (2)-405°解析 (1)1095°=1095×π180=73π12.(2)-94π=-94π×⎝ ⎛⎭⎪⎫180π°=-405°. 7.若圆的半径为6 cm ,则15°的圆心角所对的弧长为________,扇形面积为________.(用π表示)答案π2 cm 32π cm 2解析 15°=15×π180=π12,l =|α|·r =π12×6=π2cm , S =12l ·r =12×π2×6=32π cm 2.8.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________.答案 13解析 本题考查弧长公式的应用.设原来圆的半径为r ,弧长为l ,圆心角为α,则l =αr ,设将圆的半径变为原来的3倍后圆心角为α1,则α1=l 3r =αr 3r =α3,故α1α=13.三、解答题(每小题10分,共20分) 9.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求角γ,使γ与角α的终边相同,且γ∈⎝⎛⎭⎪⎫-π2,π2. 解 (1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=149π+(-3)×2π.∵角α与14π9终边相同,∴角α是第四象限角.(2)∵与角α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.10.已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为α,半径为R cm ,面积为S cm 2,弧长为l cm ,则有l +2R =20,∴l =20-2R ,∴S =12lR =12(20-2R )R =-R 2+10R =-(R -5)2+25.故当半径R =5时,扇形的面积有最大值25 cm 2.此时扇形的圆心角为α=l R =20-2×55=2.[基础自学]一、三角函数的定义 1.单位圆中三角函数的定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α,即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0). 2.任意角的三角函数的定义直角坐标系中任意大小的角α终边上一点P 的坐标(x ,y ),它到原点的距离是r (r >0),r =x 2+y 2,那么任意角的三角函数的定义:tanαyxtanα=yx⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α≠kπ+π2,k∈Z记忆口诀:“一全正、二正弦、三正切、四余弦”.三、诱导公式(一)名称符号语言文字语言诱导公式(一)sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)终边相同的角的同名三角函数值相等1.判一判(正确的打“√”,错误的打“×”)(1)sinα,cosα,tanα中可以将“α”与“sin”“cos”“tan”分开.( )(2)同一个三角函数值能找到无数个角与之对应.( )(3)sin253π=sin⎝⎛⎭⎪⎫π3+8π=sinπ3=32.( )提示:(1)×(2)√(3)√2.做一做(1)若sinα<0,且tanα<0,则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案 D解析若sinα<0,则α为第三或第四象限角.若tanα<0,则α为第二或第四象限角,故α为第四象限角,选D.(2)计算:sin180°+2cos270°的值为________.答案0解析sin180°+2cos270°=0+2×0=0.(3)tan390°的值为________.答案33解析tan390°=tan(360°+30°)=tan30°=33.课堂合作探究 KETANGHEZUOTANJIU1三角函数值在各象限的符号有什么规律吗?提示:由三角函数的定义知sin α=y r ,cos α=x r ,tan α=y x(r >0),可知角的三角函数值的符号是由角终边上任一点P (x ,y )的坐标确定的,可简记为:一全正,二正弦,三正切,四余弦.2诱导公式一的作用是什么?提示:公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.题型一 求任意角的三角函数值例1 [2015·黑龙江五校联考]已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ 的值.[解] 由已知有24m =m3+m2, 得m =0,或m =± 5.(1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153. [变式探究] 将例1中的P 点坐标改为(3,m )再去求解. 解 ∵24m =mm 2+3,∴m =0或m =±5, 当m =0时,cos θ=1,tan θ=0; 当m =5时,cos θ=64,tan θ=153; 当m =-5时,cos θ=64,tan θ=-153.利用三角函数的定义求值的策略(1)求一个角的三角函数值,需确定三个量:角的终边上异于原点的点的横、纵坐标及其到原点的距离.(2)若终边在直线上时,因为角的终边是射线,应分两种情况处理.(3)若已知角,则需确定出角的终边与单位圆的交点坐标.【跟踪训练1】 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则2cos 2θ-1=( )A .-45B .-35C.35D.45答案 B解析 设P (t,2t )(t ≠0)为角θ终边上任意一点,则 cos θ=t5|t |. 当t >0时,cos θ=55;当t <0时,cos θ=-55. ∴2cos 2θ-1=25-1=-35.题型二 三角函数值的符号例2 (1)α是第四象限角,判断sin α·tan α的符号; (2)若sin α|sin α|+|cos α|cos α=0,试判断α所在象限.[解] (1)∵α是第四象限角,∴sin α<0,tan α<0,∴sin α·tan α>0. (2)由条件知,sin α与cos α异号. ∴α是第二象限角或第四象限角.[变式探究] 将例2(1)中α改为第三象限角,则sin α·tan α的符号如何? 解 ∵α是第三象限角,∴sin α<0,tan α>0,∴sin α·tan α<0.熟记各象限函数值的符号准确确定三角函数中角所在象限是基础,准确记忆三角函数在各象限的符号并牢记记忆口诀“一全正,二正弦,三正切,四余弦”是解决这类问题的关键.【跟踪训练2】 (1)若sin α=-2cos α,判断sin α·tan α的符号;(2)判断符号:sin3·cos4·tan ⎝ ⎛⎭⎪⎫-23π4.解 (1)∵sin α=-2cos α,∴sin α与cos α异号. ∴α是第二或第四象限角.当α是第二象限角时,tan α<0,sin α>0,∴sin α·tan α<0. 当α是第四象限角时,tan α<0,sin α<0,∴sin α·tan α>0.(2)∵π2<3<π,π<4<3π2,∴sin3>0,cos4<0.∵-23π4=-6π+π4,∴tan ⎝⎛⎭⎪⎫-23π4>0. ∴sin3·cos4·tan ⎝ ⎛⎭⎪⎫-234π<0.题型三 诱导公式(一)的应用 例3 计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式化简(1)将已知角化为k ·360°+α(k 为整数,0°≤α<360°)或2k π+β(k 为整数,0≤β<2π)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角三角函数的定义达到化简求值的目的.【跟踪训练3】 求值: (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-154π; (2)sin810°+ta n765°+tan1125°+cos360°. 解 (1)原式=cos(8π+π3)+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32.(2)原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0°=1+1+1+1=4.[规律小结]1.对三角函数定义的理解(1)三角函数也是一种函数,它满足函数的定义,可以看成是从一个角的集合(弧度制)到一个比值的集合的对应,并且对任意一个角,在比值集合中都有唯一确定的象与之对应.三角函数的自变量是角α,比值是角α的函数.(2)三角函数是用比值来定义的,所以三角函数的定义域是使比值有意义的角的范围.如在求正切时,若点P 的横坐标x 等于0,则tan α无意义.(3)三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.三角函数值在各象限内的符号(1)三角函数值的符号是根据三角函数的定义,由各象限内点的坐标的符号得出的. (2)对正弦、余弦、正切函数值的符号可用下列口诀记忆:“一全正,二正弦,三正切,四余弦”,该口诀表示:第一象限全是正值,第二象限正弦是正值,第三象限正切是正值,第四象限余弦是正值.3.诱导公式一的理解及其应用(1)公式一的实质是说终边相同的角的三角函数值相等.(2)公式一的结构特征:①左、右为同一三角函数;②公式左边的角为α+k ·2π,右边的角为α.(3)公式一的作用:把求任意角的三角函数值转化为求0~2π(或0°~360°)范围内角的三角函数值.[走出误区]易错点⊳求三角函数定义域的误区[典例] 求满足y =sin x ·tan x 的x 的取值范围. [错解档案] 由题意知,只需要sin x ·tan x ≥0.即⎩⎪⎨⎪⎧sin x ≥0tan x ≥0①或⎩⎪⎨⎪⎧sin x ≤0tan x ≤0②对①可知x 为第一象限角或终边在x 轴或y 轴上的角. 对②可知x 为第四象限角或终边在x 轴或y 轴上的角. 因此x的取值范围为⎩⎪⎨⎪⎧x ⎪⎪⎪ 2k π-π2≤x <2k π或2k π<x ≤2k π+π2或x =⎭⎬⎫k π2,k ∈Z .[误区警示] 求y =sin x ·tan x 的x 取值范围时没有考虑tan x 的条件,致使思考问题不周全而出错.[规范解答] 所求x 应满足⎩⎪⎨⎪⎧sin x ·tan x ≥0,x ≠k π+π2k ∈Z ,即⎩⎪⎨⎪⎧sin x ≥0,tan x ≥0,x ≠k π+π2k ∈Z ,或⎩⎪⎨⎪⎧sin x ≤0,tan x ≤0,x ≠k π+π2k ∈Z .根据x 所在象限情况可判断x 的取值范围是⎩⎨⎧⎭⎬⎫x 2k π-π2<x <2k π或2k π<x <2k π+π2或x =k π,k ∈Z .矫正训练 求y =cos xsin x的x 的取值范围. 解 ∵cos x ≥0∴x 为第一、四象限角或x 轴非负半轴上的角或y 轴上 又∵sin x ≠0 ∴x 不能在x 轴上∴x 为第一或第四象限角或y 轴上.x 的取值范围是⎩⎪⎨⎪⎧x ⎪⎪⎪ -π2+2k π≤x <2k π或2k π<x ≤2k π+⎭⎬⎫π2,k ∈Z。

苏教版高中数学必修四任意角、弧度弧度学案

苏教版高中数学必修四任意角、弧度弧度学案

弧度制导学案一、学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式||lrα=(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。

二、学习重、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。

三、预习导引 (一)问题情境复习:初中时所学的角度制,是怎么规定1o角的?(初中时把一个周角的1360记为1o) 1.在本章引言中,考虑用(r , l )来表示点P,那么r , l , α之间具有怎样的关系。

2.在本章将学习三角函数,函数自变量必须为实数,而我们学习的角用度来表示,显然不能作为三角函数的自变量,如何用实数来表示角。

(二)研讨新知 1.弧度制的定义:规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为1rad . 练习:圆的半径为r ,圆弧长为2r 、3r 、2r的弧所对的圆心角分别为多少? 说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。

思考:什么π弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是: 2.弧度的推广及角的弧度数的计算:规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角α的弧度的绝对值是rl =||α,(其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径)。

说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是4||4l r r rπαπ-=-=-=-. 3.角度与弧度的换算3602π=orad 180π=orad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈o4.弧长公式:在弧度制下,弧长公式又如何表示?因为||l rα=(其中l 表示α所对的弧长),所以,弧长公式为||l r α=⋅.5.扇形面积公式:扇形面积公式为:22||1222lr S r r lr αππππ=⋅==.说明:①弧度制下的公式要显得简洁的多了;②以上公式中的α必须为弧度单位.四、典例练讲------数学应用(一)角的角度制与弧度的相互转化 例1把下列各角从弧度化为度:(1)35π (2) 3.5 (3) 2 (4)4π例2把下列各角从度化为弧度:(1)0252 (2)0/1115 (3) 030 (4)'3067︒(二) 用弧度制分别表示轴线角、象限角、终边相同的角等角的集合 例3 用弧度制分别表示轴线角、象限角的集合。

最新人教A版数学必修四导学案:1.1.2弧度制

最新人教A版数学必修四导学案:1.1.2弧度制
课外作业——弧度制姓名:
1.
2.已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.
3.如果弓形的弧所对的圆心角为 ,弓形的弦长为4 cm,则弓形的面积是____cm2.
4.已知扇形的圆心角为2 rad,扇形的周长为8 cm,则扇形的面积为_________cm2.
3.记住公式 ( 为以角 作为圆心角时所对圆弧的长, 为圆半径)。
二:课前预习
我们把周角的 规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.
1.弧度角的定义:
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
说明:我们用弧度制表示角的时候,“弧度”或 经常省略,即只写一实数表示角的度量。

高中数学必修四教学方案范文《任意角和弧度制》

高中数学必修四教学方案范文《任意角和弧度制》

高中数学必修四教学方案范文《任意角和弧度制》高中数学必修4《任意角和弧度制》教案【一】教学准备教学目标1、知识与技能(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强生的参与意识.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.教学重难点重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.难点:终边相同的角的表示.教学工具投影仪等.教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的假如你的手表快了1.25小时,你应当如何将它校准当时间校准以后,分针转了多少度[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题又该如何区分和表示这些角呢[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(poitiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).8.学习小结(1)你知道角是如何推广的吗(2)象限角是如何定义的呢(3)你熟练掌握具有相同终边角的表示了吗会写终边落在某轴、y轴、直线上的角的集合.五、评价设计1.作业:习题1.1A组第1,2,3题.2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点.课后小结(1)你知道角是如何推广的吗(2)象限角是如何定义的呢(3)你熟练掌握具有相同终边角的表示了吗会写终边落在某轴、y 轴、直线上的角的集合.课后习题作业:1、习题1.1A组第1,2,3题.2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,进一步理解具有相同终边的角的特点.板书略高中数学必修4《任意角和弧度制》教案【二】教学准备教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值教学重难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.教学工具投影仪等教学过程一、创设情境,引入新课师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.二、讲解新课1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢1弧度是什么意思一周是多少弧度半周呢直角等于多少弧度弧度制与角度制之间如何换算请看课本,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(师生共同)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.四、课堂小结度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案一、教学目标1. 理解任意角的概念,掌握任意角的几何性质;2. 理解弧度制的概念,掌握弧度制的基本用法;3. 掌握任意角的三角函数及其基本性质。

二、教学内容1. 任意角的定义和性质;2. 弧度制的概念和计算公式;3. 三角函数的定义、性质及其图象。

三、教学方法1. 归纳法、演示法、讨论法;2. 短片展示、综合练习。

四、教学步骤步骤一:导入新课1. 充分利用素材,抛出有关问题,启发学生思考,激发探究兴趣,从而引出新课。

2. 展示台湾百事可乐的广告,提问:“你们觉得这是哪种角度?”3. 解释任意角的概念,举一些例子,使学生了解不同角度的概念。

步骤二:学习任意角的定义和性质1. 任意角的定义和表示方法。

2. 讲解任意角的性质。

步骤三:学习弧度制的概念和计算公式1. 弧度的概念和推导过程。

2. 弧度与角度的换算公式及例题。

步骤四:学习三角函数的定义、性质及图象1. 正弦函数、余弦函数、正切函数的定义和图象。

2. 三角函数的性质及相互关系。

步骤五:练习讲解1. 小组讨论,练习几何问题。

2. 练习弧度制的换算,解答相关问题。

3. 课后作业:巩固基础知识,拓展思维应用。

五、教学反思本节课的核心是任意角和弧度制,由于任意角和弧度制是高中数学必修课程,因此教学难度较大,需要遵循步步深入的原则,先从角度和任意角说起,再讲述弧度制及其换算公式,最后介绍三角函数及其相关性质。

在教学过程中,教师应运用多种教学方法,使学生更直观地理解这些概念和公式,同时也需要拓展学生的思维应用,使他们发现数学的应用价值,激发学生的学习兴趣。

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案高二数学必修四《任意角和弧度制》教案什么是教案?教案是老师为顺当而有效地开展教学活动,依据课程标准,教学大纲和教科书要求及同学的实际状况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的详细设计和支配的一种有用性教学文书。

教案包括教材简析和同学分析、教学目的、重难点、教学预备、教学过程及练习设计等。

高二数学必修四《任意角和弧度制》教案作为一位无私奉献的人民老师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。

那么大家知道正规的教案是怎么写的吗?以下是我帮大家整理的高二数学必修四《任意角和弧度制》教案,供大家参考借鉴,期望可以帮忙到有需要的朋友。

高二数学必修四《任意角和弧度制》教案1教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6)使同学通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制———弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好预备。

教学重难点重点:理解并把握弧度制定义;娴熟地进行角度制与弧度制地互化换算;弧度制的运用。

新人教版高中数学 1-1《任意角和弧度制》导学案必修四-2019最新整理

新人教版高中数学 1-1《任意角和弧度制》导学案必修四-2019最新整理

新人教版高中数学 1-1《任意角和弧度制》导学案必修四-2019最新整理【学习目标】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题.3. 初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成一个角,点是角的顶点,射线分别是角的终边、始边.O OA OBαO,OA OBα说明:在不引起混淆的前提下,“角”或“”可以简记为.αα∠α2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则x(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:都是第一象限角;是第四象限角.30,390,330--300,60(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:等等.90,180,270说明:角的始边“与轴的非负半轴重合”不能说成是“与轴的正半轴重合”.因为轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.x x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角
【学习目标】1、了解任意角的概念;正确理解正角、零角、负角的概念;
2、正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边
相同的角的集合表示.
【重点难点】正确理解终边相同的角的概念
【学习过程与方法】
1.角的定义:
2.角的分类:
正角:按 方向旋转形成的角叫做正角;
负角:按 方向旋转形成的角叫做负角;
零角:如果一条射线 旋转,我们称它为零角。

说明:零角的始边和终边重合。

3.象限角:
在直角坐标系中,使角的 与坐标原点重合,角的 与x 轴的非负轴重合, 若角的 在第几象限,我们就说这个角是第几象限角。

如:30,390,330-都是第 象限角;
300,60-是第 象限角。

注:非象限角(也称象限间角、轴线角):如果角的终边在 上,就认为这个角
不属于任何象限。

例如:90,180,270等等。

4.终边相同的角的集合
所有与角α终边相同的角,连同角α在内,可构成一个集合:
{}|360,S k k Z ββα==+⋅∈,
小结:1、任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

2、终边相同的角不一定相等,相等的角终边一定相同。

【典型例题】
例1.(1)钟表经过10分钟,时针和分针分别转了多少度?
(2)若将钟表拨慢10分钟,则时针和分针分别转了多少度?
例2.在00到0360的范围内,找出与下列各角终边相同的角,并分别判断它们是第
几象限角:
(1)0650 (2)0150- (3)0'99015-
例3、若3601575,k k Z α=⋅-∈,试判断角α所在象限。

例4.已知α与0240角终边相同,判断2α
是第几象限角.
例5. 写出终边落在第一、三象限的角的集合.
【课堂练习】
1.与500°终边相同的角为( )
A .()36040k k Z ⋅+∈ B.()360140k k Z ⋅+∈
C .()360240k k Z ⋅+∈ D.()360340k k Z ⋅+∈
2.下列各命题,其中正确的有( )
①相等的角终边相同; ②终边相同的角一定相等;
③第二象限的角一定大于第一象限的任意角;
④若0180α<<,则α必是第一或第二象限的角
A.0个
B.1个
C.2个
D.3个
3.下列各角420°,-75°,855°,-510°所在象限依次为( )
A.一、二、三、四
B.二、四、一、三
C.一、四、二、三
D.二、一、四、三
4.下列命题中正确的是( )
A.终边在y 轴非负半轴上的角是直角
B.第二象限角一定是钝角
C.第四象限角一定是负角
D.若β=α+k·360°(k∈Z),则α与β终边相同
5、(1)写出与1840-终边相同的角的集合M
(2)若M α∈,且360,360α⎡⎤∈-⎣⎦,则α= 。

6、若角β的终边在第一象限或第三象限的角平分线上,则角β的集合是 .
7、若角α与β终边相同,则一定有( )
A.α+β=180°
B.α+β=0°
C.α-β=k·360°,k∈Z
D.α+β=k·360°,k∈Z
弧度制
【学习目标】1. 理解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度
数;
2. 掌握弧度制下的弧长公式和扇形的面积公式.
【重点难点】弧度与角度的换算及弧度制下的弧长公式和扇形的面积公式.
【学习过程与方法】
1、弧度角的定义:
规定:周角 为1度的角; 叫做1弧度的角.
规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。

角α的弧度数的绝对值是:r
l =
||α 2、角度制与弧度制相互换算 360___rad =; 180__=rad ;
1801π=
︒rad ≈____rad ; 1rad =_____5718'≈.
3、扇形的面积公式 211||22
S rl r α=
=(其中l 为弧长,r 为半径) 4、常用弧度制与角度制的互化
【典型例题】
例1、把下列各角从弧度化为角度:
(1)
12π (2)25
π (3)43π- (4)12π-
例2.把下列各角从角度化为弧度:
(1)075 (2)0210- (3)0135 (4)0'2230
例3.已知扇形的周长为8厘米,圆心角为2弧度,求该扇形的面积.
【课堂练习】
1.下列各角中与︒240角终边相同的角为( ) 23A π、 B 、6
5π- C 、32π- D 、67π 2.把︒-1125化成),20(2Z k k ∈<≤+παπα的形式是( ) A.ππ64-- B.ππ647- C.ππ84-- D.ππ84
7-
3.半径为π cm ,中心角为︒120的扇形的弧长为( )
O A
B A.3π cm B. 3
2π cm C.32π cm D.322π cm 4.若2弧度的圆心角所对的弧长为4cm ,则这个圆心角所夹的扇形的面积是( )
A.4cm 2
B.2 cm 2
C.4πcm 2
D.π2 cm 2
5.已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?
6.集合|,,|2,22A k k Z B k k Z ππααπααπ⎧⎫⎧⎫==+∈==±∈⎨⎬⎨⎬⎩⎭⎩⎭
的关系是 ( ) (A )A B = (B )A B ⊆ (C )A B ⊇ (D )以上都不对。

7.若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积
是 .
8.在以原点为圆心,半径为1的单位圆中,一条弦AB
AB 所对的圆心角α 的弧度数为 .
9. 如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。

相关文档
最新文档