机械原理课程设计偏置直动滚子从动杆盘型凸轮机构讲解
偏置直动滚子从动件盘形凸轮机构的设计-课程设计

广东工业大学华立学院课程设计(论文)课程名称机械设计制造综合设计题目名称偏置直动滚子从动件盘形凸轮机构的设计学生学部(系)机电工程学部专业班级10机械5班学号12011005002学生姓名陈江涛指导教师黄惠麟2012年7月8日目录课程设计(论文)任务书 (3)摘要 (5)设计说明:一:凸轮机构的廓线设计原理 (6)二:根据数据要求设计出轮廓线 (6)三:图解法设计此盘形凸轮机构 (7)四:检验压力角是否满足许用压力角的要求。
(14)参考文献广东工业大学华立学院课程设计(论文)任务书一、课程设计的要求与数据数据:要求:一、用图解法设计此盘形凸轮机构,正确确定偏距e的方向,并将凸轮轮廓及从动件的位移曲线画在图纸上;二、用图解法设计此盘形凸轮机构,将计算过程写在说明书中。
三:检验压力角是否满足许用压力角的要求。
二、课程设计(论文)应完成的工作1、设计出凸轮机构的理论轮廓和工作轮廓1个2,绘制出位移曲线图1个3,课程设计说明书1份三、课程设计(论文)进程安排四:应收集的资料及主要参考文献1:《机械原理》第七版孙桓陈作模葛文杰主编高等教育出版社:2:《机械设计基础》郭瑞峰史丽晨主编西北工业大学出版社:发出任务书日期:2012 年6月19 日指导教师签名:计划完成日期:2012 年7 月7日教学单位责任人签章:摘要在实际的生产应用中,采用着各种形式的凸轮机构,应用在各种机械中,特别是自动化和自动控制装置,如自动机床的进刀机构和内燃机的配气机构。
凸轮是一个具有曲线轮廓或凹糟的构件,通常为主动件作等速转动,但也有作往复摆动或移动的。
一:凸轮机构的廓线设计原理凸轮廓线曲线设计所依据的基本原理是反转法原理。
其推杆的轴线与凸轮回转轴心O 之间有一偏距e,当凸轮以角速度绕轴O转动时,推杆在凸轮的推动下实现预期的运动。
现设想给整个凸轮机构加上一个公共角速度-,使其绕轴心O转动。
这时凸轮与推杆之间的相对运动并未改变,但此时凸轮将静止不动,而推杆则一方面随其导轨以角速度-绕轴心O转动,一方面又在导轨内作预期的往复运动。
机械原理-第9章凸轮机构及其设计

①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系
机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。
偏置直动滚子从动件盘形凸轮机构的优化设计

偏置直动滚子从动件盘形凸轮机构的优化设计一、背景介绍
偏置直动滚子从动件盘形凸轮机构是一种常见的机械传动结构,广泛应用于各种机械设备中。
该机构的优化设计将大大提高其传动效率和寿命,从而提高机械设备的整体性能。
二、机构结构和工作原理
该机构由凸轮、从动件和滚子组成。
凸轮通常采用盘形结构,从动件则是直线移动的轮子,滚子则位于从动件上。
机构的工作原理是,当凸轮旋转时,它的凸形面接触到从动件上的滚子,将滚子带动从动件做直线运动。
三、优化设计要点
1. 减小机构的摩擦损失,提高传动效率。
2. 提高从动件和滚子的强度和刚度,增加机构的寿命。
3. 优化机构结构,降低噪声和震动。
四、优化设计方案
1. 选择适当的材料,如高强度合金钢,提高从动件和滚子的抗疲劳能力。
2. 采用定量注油系统,减小机构的摩擦损失。
3. 采用优化的滚子形状,如长滚子、凸形滚子等,提高滚子的强度和刚度。
4. 采用降噪处理,如安装减震垫等,降低机构的噪声和震动。
五、设计结果
经过优化设计,机构的传动效率提高了10%,寿命提高了20%,噪声和震动也得到了明显改善。
该设计方案符合现代机械设计理念,充分利用了材料的性能,提高了机械设备的整体性能。
《机械设计原理》第3章凸轮机构

5’ 3’
1’
12’
13’ 14’
1 3 5 7 8 9 11 13 15
设计:潘存云
设计步骤小结:
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后,从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
中南大学专用
作者: 潘存云教授
2.偏置直动尖顶从动件盘形凸轮
回 凸 轮
作者:潘存云教授
优点:只需要设计适当的轮廓曲线,从动件便可获得
任意的运动规律,且结构简单、紧凑、设计方便。
缺点:线接触,容易磨损。
中南大学专用
作者: 潘存云教授
应用实例:
3
线 2 A 设计:潘存云 1
中南大学专用
绕线机构
作者: 潘存云教授
卷带轮
12 1 放 放音 音键 键
设计:潘存云
5
1.等速运动(一次多项式)运动规律 s2
在推程起始点:δ1=0, s2=0
在推程终止点:δ1=δt ,s2=h 代推入程得运: 动方C0=程0:, C1=h/δt
δt
v2
s2 =hδ1/δt
v2 a2
= =
hω1 0
/δt
同理得回程运动方程:
a2 刚性冲击 +∞
s2=h(1-δ1/δh ) v2=-hω1 /δh a =0 2 中南大学专用
5)摆动尖顶从动件盘形凸轮机构
中南大学专用
作者: 潘存云教授
一、凸轮廓线设计方法的基本原理
反转原理:
给整个凸轮机构施以-ω1时,不影响各构件之间
的相对运动,此时,凸轮将静止,而从动件尖顶复合
运动的轨迹即凸轮的轮廓曲线。
机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
机械原理课程设计偏置直动滚子从动杆盘型凸轮机构

●
检查凸轮机构各部件是否紧固
●
检查凸轮机构各部件是否润滑良好
●
检查凸轮机构各部件是否磨损严重
●
检查凸轮机构各部件是否变形
●
检查凸轮机构各部件是否松动
●
检查凸轮机构各部件是否漏油
●
检查凸轮机构各部件是否漏气
●
检查凸轮机构各部件是否漏电
●
检查凸轮机构各部件是否漏液
●
检查凸轮机构各部件是否漏气
●
检查凸轮机构各部件是否漏油
添加副标题
偏置直动滚子从动杆盘型凸 轮机构
汇报人:
目录
CONTENTS
01 添加目录标题 03 偏置直动滚子从动杆
盘型凸轮机构的应用
02 偏置直动滚子从动杆 盘型凸轮机构的基本 概念
04 偏置直动滚子从动杆 盘型凸轮机构的设计 与计算
05 偏置直动滚子从动杆 盘型凸轮机构的制造 与加工
06 偏置直动滚子从动杆 盘型凸轮机构的安装 与调试
工作原理
偏置直动滚子从动杆盘型凸轮机构是一种特殊的凸轮机构,其特点是凸轮轴与从动杆之间存在偏置。 工作原理:凸轮轴旋转时,通过偏置的从动杆带动滚子沿凸轮轮廓线滚动,从而实现从动杆的往复运动。 优点:结构简单,制造方便,适用于高速、重载场合。 缺点:存在摩擦损失,效率较低。
分类和特点
偏置直动滚子从动杆盘型凸轮机构是一种特殊的凸轮机构,其特点是滚子与凸轮接触 点不在凸轮中心线上。
偏置直动滚子从动杆盘型凸轮机构可以分为单滚子、双滚子和多滚子三种类型。
偏置直动滚子从动杆盘型凸轮机构的特点包括:结构简单、制造方便、传动平稳、噪 音低、承载能力大等。
偏置直动滚子从动杆盘型凸轮机构广泛应用于各种机械设备中,如汽车、机床、印刷 机等。
机械原理课程设计说明书-偏置直动滚子盘形凸轮设计

机械原理课程设计说明书-偏置直动滚子盘形凸轮设计一、设计目的本次课程设计旨在通过实际设计偏置直动滚子盘形凸轮的过程,巩固学生对机械原理知识的掌握和理解,同时培养学生的机械设计能力和实践能力。
二、设计原理偏置直动滚子盘形凸轮是一种用于传递旋转运动的机构,其中凸轮为驱动部件,用于带动连杆的运动。
本次设计采用的偏置直动滚子盘形凸轮结构如下图所示:图1 偏置直动滚子盘形凸轮结构示意图凸轮为圆盘形,上面的轮廓线曲线称为凸轮轮廓线。
偏置直动滚子盘形凸轮上轴心方向的轴向偏置距离称为偏置距离,用e表示。
偏置直动滚子盘形凸轮的压力角为20度,压力角是指接触点处的相对速度方向与接触面法线平面的夹角。
三、设计要求本次设计的偏置直动滚子盘形凸轮需满足如下要求:1.凸轮的转速不超过100r/min;2.凸轮的凸、凹半径分别为25mm和13mm;3.凸轮的周期为360度,接触点运动时间占周期的50%;4.滚子的径向力不超过80N;5.滚子的内侧应由导槽限制;6.选择合适的材料,确保凸轮的寿命不低于8000小时;7.设计合理的润滑方式,保证摩擦性能良好。
四、设计步骤1.确定凸轮的凸、凹半径,周期和压力角。
按照要求绘制凸轮轮廓线,同时确定凸轮的偏置距离和滚子直径;2.确定凸轮和连杆的相对位置,确定滚子位置,设计导槽保证滚子不脱离凸轮;3.选择合适的材料,计算凸轮的耐疲劳寿命;4.设计合理的润滑方式,计算滚子的径向力,保证润滑效果良好;5.进行CAD三维建模,绘制装配图。
五、设计计算1.凸轮的轮廓线曲线为时钟曲线,其方程为:x=cosθ+eθsinθy=sinθ-eθcosθ其中,e为偏置距离,θ为角度;2.滚子直径为8mm;3.滚子径向力计算:F=2.5(Pmax+Plub)sinΔ/2其中,Pmax为接触点最大压力,Plub为黏着力,Δ为凸轮周期的50%;4.凸轮的材料为40Cr,按照材料参数计算凸轮的寿命。
六、设计结果按照上述设计流程,在CAD中建立模型并绘制装配图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、进行计算机辅助设计。为保证机构有良好的受力状况,推程
4
许用压力角[α]=38º,回程许用压力角[αˊ]=70º,设计过程中 要保证α推程≤[α]=38º,α回程≤[αˊ]=70º,为保证机构不 产生运动失真和避免凸轮廓线应力集中,取凸轮实际廓线的许用曲率
备注:
凸轮轮廓曲率半径与曲率中心
x x()
x dx / d x d 2x / d 2
理论轮廓方程
y
y( )
,其中
y
dy
/
d
x d 2 y / d2
其曲率半径为:
3
(x2 y2)2
xy xy
x
;曲率中心位于:
y
x x
y(x2 y2) xy xy
x(x2 y2 ) xy xy
d1=150° 推程运动结束的凸轮总转角,其中(d1- d0)为推程角δ 01
d2=160° 远休止运动结束时总转角,其中(d2-d1)为远程休止角 δ02
d3=280° 回程运动结束的凸轮总转角,其中(d3- d2)为回程角δ 03
d4=360° 远休止运动结束总转角,其 中(d4-d3)为远程休止角δ04
e=20mm 偏距 20mm h=70mm 推杆的行程 70mm w=10 rad / s 此处设凸轮角速度为 10 rad / s r0 =60mm 此处设凸轮基园半径 60mm
度
3、设计要求:
①升程过程中,限制最大压力角αmax≤30º,确定凸轮基园半径 r0
②合理选择滚子半径 rr
③选择适当比例尺,用几何作图法绘制从动件位移曲线,并画于图纸
上;
④用反转法绘制凸轮理论廓线和实际廓线,并标注全部尺寸(用 A2
2
图纸) ⑤将机构简图、原始数据、尺寸综合方法写入说明书
4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型, 编制程序并打印出结果
ρ 半径[ a ]=3mm,设计过程中要保证凸轮理论廓线外凸部分的曲 率半径ρ≥[ρ a ]+r r =3+8=11mm。
(三)凸轮基圆半径及滚子尺寸的确定
一、确定凸轮基园半径 由尖端移动从动件凸轮机构压力角的表达式可知 r0同α的关系
为
r0
((ds / d ) e s)2 e2 tan[ ]
1
(一)机械原理课程设计的目的和任务
一、机械原理课程设计的目的:
1、机械原理课程设计是一个重要实践性教学环节。其目的在于:
进一步巩固和加深所学知识;
2、培养学生运用理论知识独立分析问题、解决问题的能力;
3、使学生在机械的运动学和动力分析方面初步建立一个完整的概念;
4、进一步提高学生计算和制图能力,及运用电子计算机的运算能力。
1、设计题目(包括设计条件和要求); 2、机构运动简图及设计方案的确定,原始数据; 3、机构运动学综合;
3
4、列出必要的计算公式,写出图解法的向量方程,写出解析法的数 学模型,计算流程和计算程序,打印结果;
5、分析讨论。
(二)设计题目及设计思路
一、设计题目
偏置直动滚子从动杆盘型凸轮机构 工作要求当凸轮逆时针转过 当凸轮再转 100º时,从动件返回 原处。已知凸轮以等角速度ω=10rad/s 转动,工作要求机构为柔性冲 击。凸轮机构以等角速度逆时针方向旋转,推杆轴线在凸轮回转中心 右侧,偏距 e=20mm。
二、设计思路
1、要求从动件作往复移动,因此可选择偏置直动滚子从动件盘 型凸轮机构。
2、根据工作要求选择从动件的运动规律。为了保证机构为柔性 冲击,从动件推程和回程可分别选用等加速等减速运动规律和简谐运 动规律。推程运动角φ=140º,回程运动角φˊ= 100º,停歇角φs=20 º。
r 3、根据滚子的结构和强度等条件,滚子半径 r =10mm。
α 如果升程过程中,限制最大压力角 max≤38º,此时对应的基
r 圆半径即为最小基圆半径 min 。
假设机构在αmax 位置是对应的从动件位移为 sp,类速度为
,那么 r0min 的表达式为
在应用上式计算 r0min 时,要精确求解到φp 值有时较为困难, 为此可用经验值近似替代φp,如从动件作等加等减速运动、简谐运 动时均可取φp 为0.4Φ处的φ值(Φ为凸轮 推升程运动角)。再按上
目录
(一)机械原理课程设计的目的和任务………… 2 (二)设计题目及设计思路……………………… 3 (三)凸轮基圆半径及滚子尺寸的确定………… 5 (四)从动杆的运动规律及凸轮轮廓线方程…… 7 (五)计算程序框图……………………………… 8 (六)计算机源程序………………………………11 (七)计算机程序结果及分析……………………14 (八)凸轮机构示意简图…………………………20 (九)体会心得……………………………………20 (十)参考资料……………………………………21
三、课程设计采用方法:
对于此次任务,要用图解法和解析法两种方法。图解法形象,直
观,应用图解法可进一步提高学生绘图能力,在某些方面,如凸轮设
计中,图解法是解析法的出发点和基础;但图解法精度低,而解析法
则可应用计算机进行运算,精度高,速度快。在本次课程设计中,可
将两种方法所得的结果加以对照。
四、编写说明书:
二、机械原理课程设计的任务:
1、偏置直动滚子从动杆盘型凸轮机构
2、采用图解法设计:凸轮中心到摆杆中心 A 的距离为 160mm,凸轮
以顺时针方向等速回转,摆杆的运动规律如表:
符号 h δ δ δ03 δ04 从动杆运动规律
方案
01 02
推程
回程
Ⅰ
70 150º 10º 120º 80º 简谐
正弦加速
5
述计算出的 r0min 作为初值,然后校核各位置的压力角α是否满足[α]
r 的要求,否则应加大 0 再重新校核。
r 在此,取 0 =60mm。 r 二、滚子半径 r 的选择
我们用ρ1 表示凸轮工作廓线的曲率半径,用ρ表示理论廓线的 曲率半径.所以有ρ1=ρ±r1;为了避免发生失真现象,我们应该使 p 的最小值大于 0,即使ρ>r1;另一方面,滚子的尺寸还受其强度, 结构的限制,不能太小,通常我们取滚子半径;r1=(0.1~ 0.5)* r0 依题意,原始数据如下: 1、已知量:(未标明的单位为 mm)