机械原理 凸轮机构设计
机械原理第九章凸轮机构及其设计

凸轮的设计和参数选择
设计原则
凸轮的设计应考虑载荷、速度 和精度等因素,并满足运动学 和强度学的要求。
参数选择
凸轮的参数包括凸轮半径、凸 轮轴角度和凸轮顶点位置等, 应根据具体需求进行选择。
优化方法
通过数学模型和仿真分析,可 以优化凸轮的形状和参数,以 提高凸轮机构的性能。
凸轮机构的运动分析
1
转动运动
通过凸轮的旋转,实现机构的直线或曲线运动。
2
滑动运动
随着凸轮轮廓的变化,机构的接触点会产生水平或竖直方向的滑动运动。
3
摇摆运动
凸轮的摇杆或滚柱可以实现机构的摇摆运动。
凸轮机构的布置和设计原则
1 布置方式
根据机构的运动要求和空间限制,选择合适 的凸轮布置方式,如列状、行状或环状。
2 设计原则
在凸轮机构的设计过程中,要考虑机构的刚 度、强度和稳定性等因素,以提高机构的性 能。
凸轮机构的应用案例
发动机气门机构
凸轮机构用于控制发动机气门的 开闭,保证发动机的正常运行。
印刷机印版定位
凸轮机构用于实现印刷机印版的 准确定位,提高印刷质量。
纸张折叠机构
凸轮机构用于纸张折叠机构,实 现精确的折叠操作。
小结和要点
1 2 3 4
5
6
凸轮机构是一种常见的机械传动机构。 凸轮机构具有多种分类和特点。 凸轮的设计和参数选择需要考虑多个因素。 凸轮机构的运动分析可以通过几何和动力学方法 实现。 凸轮机构的布置和设计应根据具体要求进行选择。
凸轮机构在多个领域都有广泛应用。
凸轮机构是机械工程中常见的一种机构,用于将轮系运动转化为直线或曲线 的机械动作。它具有简单可靠的特点,广泛应用于各个领域。
机械原理与设计之凸轮机构概述

机械原理与设计之凸轮机构概述摘要本文介绍了机械原理与设计中的凸轮机构。
凸轮机构是一种常用于工程和机械设计中的传动机构,能够将旋转运动转化为直线运动。
本文将详细介绍凸轮机构的基本原理、构造和应用领域,并讨论凸轮机构的设计要点和优缺点。
引言凸轮机构是一种基于凸轮的传动机构,其通过凸轮与从动件之间的接触,将旋转运动转化为直线运动。
凸轮机构广泛应用于机械制造领域和工程设计中,例如发动机、工具机和自动化装置等。
熟悉凸轮机构的工作原理和设计方法对于机械工程师和设计师来说至关重要。
一、凸轮机构的基本原理凸轮机构的基本原理是利用凸轮的几何形状,通过其与从动件的接触来实现运动转换。
凸轮通常是一个圆柱体,其几何形状决定了从动件的运动规律。
当凸轮旋转时,凸轮上的凸起与从动件相互作用,驱动从动件做直线运动。
凸轮的几何形状可以根据特定的运动要求进行设计和调整。
二、凸轮机构的构造凸轮机构由凸轮、从动件和传动组成。
凸轮是凸轮机构的核心部件,其几何形状决定了从动件的运动规律。
从动件与凸轮相互作用,通过凸轮的旋转实现直线运动。
传动装置用于传递动力和控制凸轮的旋转。
凸轮机构的构造可以基于具体的应用需求进行设计和调整。
凸轮机构广泛应用于许多机械设备和自动化系统中。
它们常见的应用领域包括: - 发动机:凸轮机构用于控制气门的开启和关闭,调节进气和排气过程; - 工具机:凸轮机构用于控制工具的运动,例如车床的进给机构和转塔机床的换刀装置; - 自动化装置:凸轮机构用于实现复杂的运动路径和动作,例如自动化流水线和机器人系统。
四、凸轮机构的设计要点设计凸轮机构时,需要考虑以下要点: 1. 凸轮的几何形状:凸轮的形状应根据需要的从动件运动规律进行设计。
2. 从动件的类型:根据不同的运动要求,选择合适的从动件类型,如销轴、滑块或摇杆等。
3. 传动装置:选择合适的传动装置,以传递动力和控制凸轮的旋转。
4. 动力和扭矩:确定凸轮机构所需的动力和扭矩,以确保正常运行。
机械原理课程教案—凸轮机构及其设计

机械原理课程教案一凸轮机构及其设计一、教学目标及基本要求1了解凸轮机构的基本结构特点、类型及应用,学会根据工作要求和使用场合选择凸轮机构。
2.了解凸轮机构的设计过程,对凸轮机构的运动学、动力学参数有明确的概念。
3.掌握从动件常用运动规律的特点及适用场合,了解不同运动规律位移曲线的拼接原则与方法。
4.掌握凸轮机构基本尺寸设计的原则,学会根据这些原则确定移动滚子从动件盘形凸轮机构的基圆半径、滚子半径和偏置方向,摆动从动件盘形凸轮机构的摆杆长、中心距以及移动平底从动件平底宽度。
5.熟练掌握应用反转法原理设计平面凸轮廓线,学会凸轮机构的计算机辅助设计方法。
二、教学内容及学时分配第一节概述第二节凸轮机构基本运动参数设计第三节凸轮机构基本尺寸设计(第一、二、三节共2学时)第四节凸轮轮廓曲线设计(15学时)第五节凸轮机构从动件设计(1学时)第六节凸轮机构的计算机辅助设计(0.5学时)三、教学内容的重点和难点重点:1.凸轮机构的型式选择。
2.从动件运动规律的选择及设计。
3.盘形凸轮机构基本尺寸的设计,凸轮轮廓曲线设计的图解法和解析法。
4.从动件的设计,包括高副元素形状选择,滚子半径和平底宽度的确定。
难点:凸轮轮廓曲线设计的图解法四、教学内容的深化与拓宽空间凸轮机构与高速凸轮机构简介。
五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。
在教学过程中应强调凸轮机构的运动学参数与结构参数的概念及其选用设计;应用反转法原理进行凸轮轮廓曲线的图解法设计时凸轮转角的分度,要注意从动件反转方向;正确确定偏置移动从动件凸轮机构在反转过程中从动件所依次占据的位置线;滚子从动件凸轮机构理论轮廓曲线与实际轮廓曲线的联系和区别等。
要注意突出重点,多采用启发式教学以及教师和学生的互动。
六、主要参考书目1黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2010 2申永胜主编.机械原理教程(第2版).北京:清华大学出版社,20053孙桓,陈作模、葛文杰主编.机械原理(第七版).北京:高等教育出版社,20064石永刚,徐振华.凸轮机构设计.上海:上海科学技术出版社,1995七、相关的实践性环节凸轮机构运动参数测试实验。
机械原理课程设计——凸轮机构

目录(一)机械原理课程设计的目的和任务 (2)(二)从动件(摆杆)及滚子尺寸的确信 (4)(三)原始数据分析 (5)(四)摆杆的运动规律及凸轮轮廓线方程 (6)(五)程序方框图 (8)(六)运算机源程序 (9)(七)程序计算结果及其分析 (14)(八)凸轮机构示意简图 (16)(九)心得体会 (16)(十)参考书籍 (18)(一)机械原理课程设计的目的和任务一、机械原理课程设计的目的:一、机械原理课程设计是一个重要实践性教学环节。
其目的在于:进一步巩固和加深所学知识;二、培育学生运用理论知识独立分析问题、解决问题的能力;3、使学生在机械的运动学和动力分析方面初步成立一个完整的概念;4、进一步提高学生计算和制图能力,及运用电子运算机的运算能力。
二、机械原理课程设计的任务:一、摆动从动件杆盘型凸轮机构二、采纳图解法设计:凸轮中心到摆杆中心A的距离为160mm,凸轮以顺时针方向等速回转,摆杆的运动规律如表:3、设计要求:①确信适合摆杆长度②合理选择滚子半径rr③选择适当比例,用几何作图法绘制从动件位移曲线并画于图纸上;④用反转法绘制凸轮理论廓线和实际廓线,并标注全数尺寸(用A2图纸)⑤将机构简图、原始数据、尺寸综合方式写入说明书4、用解析法设计该凸轮轮廓,原始数据条件不变,要写出数学模型,编制程序并打印出结果 备注:一、尖底(滚子)摆动从动件盘形凸轮机构压力角:00[cos()]tan sin()d la l d a ψψψϕαψψ+-=+在推程中,当主从动件角速度方向不同时取“-”号,相同时取“+”号。
1、三、课程设计采纳方式:关于这次任务,要用图解法和解析法两种方式。
图解法形象,直观,应用图解法可进一步提高学生画图能力,在某些方面,如凸轮设计中,图解法是解析法的起点和基础;但图解法精度低,而解析法那么可应用运算机进行运算,精度高,速度快。
在本次课程设计中,可将两种方式所得的结果加以对照。
四、编写说明书:一、设计题目(包括设计条件和要求);二、机构运动简图及设计方案的确信,原始数据; 3、机构运动学综合;4、列出必要的计算公式,写出图解法的向量方程,写出解析法的数学模型,计算流程和计算程序,打印结果; 五、分析讨论。
机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计一、教学目标1. 让学生了解凸轮机构的定义、分类和应用。
2. 使学生掌握凸轮的轮廓曲线设计方法。
3. 培养学生分析、解决凸轮机构实际问题的能力。
二、教学内容1. 凸轮机构的定义及分类1.1 凸轮机构的组成1.2 凸轮机构的分类1.3 凸轮机构的应用2. 凸轮的轮廓曲线2.1 凸轮的轮廓曲线类型2.2 基圆、止点圆和顶点圆的概念2.3 凸轮轮廓曲线的设计方法3. 凸轮机构的设计步骤3.1 确定凸轮的类型和参数3.2 选择合适的凸轮材料3.3 设计凸轮的轮廓曲线3.4 计算凸轮的强度和寿命4. 凸轮机构的实际应用案例分析三、教学方法1. 采用讲授法,讲解凸轮机构的定义、分类和应用。
2. 利用多媒体演示法,展示凸轮机构的运动原理和设计方法。
3. 案例分析法,分析实际应用中的凸轮机构设计。
四、教学准备1. 教案、教材、多媒体课件。
2. 凸轮模型或图片。
五、教学过程1. 导入:简要介绍凸轮机构的定义和应用,激发学生的学习兴趣。
2. 讲解:详细讲解凸轮机构的分类、凸轮的轮廓曲线设计方法。
3. 演示:利用多媒体展示凸轮机构的运动原理和设计方法。
4. 实践:让学生分组讨论,分析实际应用中的凸轮机构设计案例。
6. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对凸轮机构基本概念的理解。
2. 练习题:布置针对性的练习题,巩固学生对凸轮轮廓曲线设计和凸轮机构设计步骤的掌握。
3. 案例分析报告:评估学生对实际应用案例分析的能力,检查学生能否将理论知识运用到实际问题中。
七、拓展学习1. 介绍其他类型的凸轮机构,如摆动凸轮、复合凸轮等。
2. 探讨凸轮机构在现代机械设计中的应用和发展趋势。
八、课后作业1. 复习本节课的内容,重点掌握凸轮机构的分类、凸轮轮廓曲线的设计方法及设计步骤。
2. 分析课后练习题,加深对凸轮机构及其设计的理解。
九、课程回顾与展望2. 展望下一节课的内容,让学生对后续学习有所期待。
机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
机械原理第10章 凸轮设计

①等分位移曲线;
②选定r0,画基圆;
③应用反转法逐点作图确 定 各 接 触 点 位 置 B0 , B1 , B2,……;
④光滑连接B0,B1,B2 , …… 点 , 就 得 所 要 设 计 的 凸轮廓线。
10.2 凸轮机构的廓线设计
2)滚子从动件
第10章 凸轮机构设计
Design of Cam Mechanisms
第10章 凸轮机构及其设计
1
凸轮机构的运动与传力特性
2
凸轮机构的廓线设计
10.1 凸轮机构的运动与传力特性
10.1.1 凸轮机构的工作循环
基圆——以凸轮轮廓的最小向径rb (或r0)为半径的圆。
图10-1 尖端移动从动件盘形凸轮机构的工作循环
从动件一方面随机架和导路以角速度-ω 绕O点转动,另一方面又在导 路中往复移动。由于尖端始终与凸轮轮廓相接触,所以反转后尖端的运动 轨迹就是凸轮轮廓。
10.2 凸轮机构的廓线设计
10.2.2 图解法设计过程
添加!
凸轮轮廓曲线的绘制 (图解法凸轮廓线的设计)
(26分钟)
10.2 凸轮机构的廓线设计
10.2 凸轮机构的廓线设计
10.2.3 凸轮廓线设计的解析方法
移动滚子从动件盘形凸轮机构
如图所示为一偏置移动滚子从动件盘形凸轮机构。建立直角坐标系oxy。若已
知凸轮以等角速度逆时针方向转动,凸轮基圆半径rb、滚子半径rr,偏距e,从动 件的运动规律s=s()。
1、理论廓线方程 B点坐标(凸轮的理论廓线方程)
s
v
a
j
h (1 cos)
机械原理-第9章凸轮机构及其设计

①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理课程设计——凸轮机构设计(一)目录 (1)_________________________(一)、题目及原始数据 (2)(二)、推杆运动规律及凸轮廓线方程 (3)(三)、计算程序方框图 (5)(四)、计算源程序 (6)(五)、程序计算结果及分析 (10)(六)、凸轮机构图 (15)(七)、心得体会 (16)(八)、参考书 (16)(一)、题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,凸轮以1rad/s的角速度沿逆时针方向转动。
要求:(1)、推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动规律;(2)、打印出原始数据;(3)、打印出理论轮廓和实际轮廓的坐标值;(4)、打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)、打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)、打印出凸轮运动的位移;(7)、打印最后所确定的凸轮的基圆半径。
原始数据如下:r0=0.015; 初选的基圆半径r0Deltar0=0.0005; 当许用压力角或许用最小曲率半径不满足时,r0以Δr0为步长增加重新计算rr=0.010; 滚子半径r rh=0.028; 推杆行程he=0.005; 偏距eomega=1; 原动件凸轮运动角速度,逆时针ωdelta1=pi/3; 近休止角δ1delta2=2*pi/3; 推程运动角δ2delta3=pi/2; 远休止角δ3delta4=pi/2; 回程运动角δ4alpha1=pi/6; 推程许用压力角[α1]alpha2=(70/180)*pi; 回程许用压力角[α2]rho0min=0.3*rr; 许用最小曲率半径ραmin(二)、推杆运动规律及凸轮廓线方程推杆运动规律:(1)近休阶段:0o≤δ<60 os=0v=0a=0(2)推程阶段:60o≤δ<180 o等加速运动规律:60o≤δ<120 os=2h(δ-60o)2/(120 o)2v=4hω(δ-60o)/(120 o)2a=4hω2/(120 o)2等减速运动规律:120o≤δ<180 os=h-2h(120o -(δ-60o))2/(120 o)2v=4hω(120o -(δ-60o))/(120 o)2a=-4hω2/(120 o)2(3)远休阶段:180o≤δ<270 os=hv=0a=0(4)回程阶段:270o≤δ≤360 o五次多项式运动规律:s=h-(10h(δ-270o)3/(90 o)3-15h(δ-270o)4/(90 o)4+6h(δ-270o)5/(90 o)5) v=-(30hω(δ-270o)2/(90 o)3-60hω(δ-270o)3/(90o)4+30hω(δ-270o)4/(90 o)5)a=-(60hω2(δ-270o)/(90 o)3-180hω2(δ-270o)2/(90o)4+120hω2(δ-270o)3/(90 o)5)凸轮廓线方程:(1)理论廓线方程:s0=sqrt(r02-e2)x=(s0+s)sinδ+ecosδy=(s0+s)cosδ-esinδ(2)实际廓线方程先求x,y的一阶导数x’=(v/ω-e) sinδ+(s0+s)cosδy’=(v/ω-e) cosδ-(s0+s)sinδ再求sinθ,cosθsinθ=x’/sqrt((x’)2+(y’)2)cosθ=-y’/sqrt((x’)2+(y’)2)最后求实际廓线方程x1=x-rr cosθy1=y-rr sinθ压力角方程:曲率半径计算公式:(四)、计算源程序%凸轮机构大作业 Matlab语言源程序%选题:偏置直动滚子推杆盘形凸轮机构 5—A% 推程运动规律:等加速等减速运动% 回程运动规律:五次多项式运动% 作者:WYH 学号:xxxxxxxx 日期:2007.12.26%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%clear all;%close all;clc;%赋初值r0=0.015;Deltar0=0.0005;rr=0.010;h=0.028;e=0.005;omega=1; %原动件凸轮运动角速度,逆时针delta1=pi/3; %近休止角delta2=2*pi/3; %推程运动角delta3=pi/2; %远休止角delta4=pi/2; %回程运动角alpha1=pi/6; %推程许用压力角alpha2=(70/180)*pi; %回程许用压力角rho0min=0.3*rr; %许用最小曲率半径del1=delta1+delta2;del2=del1+delta3;temp=0; %判断是否执行r0=r0+Deltar0的变量while (temp==0)temp=1;s0=sqrt(r0^2-e^2); %求解 s0alpha1max=0;delta1max=0; %定义alpha1的最大值以及对应的delta1值alpha2max=0;delta2max=0; %定义alpha2的最大值以及对应的delta2值rhoamin=r0-rr;deltamin=0; %定义rhoa的最小值以及对应的delta值for I=0:120; %圆周120等分delta=(I*3/180)*pi;if delta>=0&delta<delta1 %近休阶段s=0; %位移v=0; %速度a=0; %加速度elseif delta>=delta1&delta<(delta2/2)+delta1 %等加速推程s=2*h*(delta-delta1)^2/delta2^2;v=4*h*omega*(delta-delta1)/delta2^2;a=4*h*omega^2/delta2^2;elseif delta>=(delta2/2)+delta1&delta<del1 %等减速推程s=h-2*h*(delta2-(delta-delta1))^2/delta2^2;v=4*h*omega*(delta2-(delta-delta1))/delta2^2;a=-4*h*omega^2/delta2^2;elseif delta>=del1&delta<del2 %远休阶段s=h;v=0;a=0;elseif delta>=del2&delta<=2*pi %五次多项式运动规律回程s=h-(10*h*(delta-del2)^3/delta3^3-15*h*(delta-del2)^4/delta3^4+6*h*(d elta-del2)^5/delta3^5);v=-(30*h*omega*(delta-del2)^2/delta4^3-60*h*omega*(delta-del2)^3/delt a4^4+30*h*omega*(delta-del2)^4/delta4^5);a=-(60*h*omega^2*(delta-del2)/delta4^3-180*h*omega^2*(delta-del2)^2/d elta4^4+120*h*omega*(delta-del2)^3/delta4^5);endx=(s0+s)*sin(delta)+e*cos(delta); %理论轮廓方程式y=(s0+s)*cos(delta)-e*sin(delta);x_=(v/omega-e)*sin(delta)+(s0+s)*cos(delta); %理论轮廓对delta求一次导数y_=(v/omega-e)*cos(delta)-(s0+s)*sin(delta);x__=(a/omega^2-(s0+s))*sin(delta)+(2*v/omega-e)*cos(delta); %理论轮廓对delta求二次导数y__=(a/omega^2-(s0+s))*cos(delta)-(2*v/omega--e)*sin(delta);x1=x-rr*(-y_/sqrt(x_^2+y_^2)); %实际轮廓方程式y1=y-rr*(x_/sqrt(x_^2+y_^2));alpha=atan((v-e)/(sqrt(r0^2-e^2)+s)); %求压力角if delta>=del2&delta<=2*pi %判断是否为回程if abs(alpha)>alpha2 %判断是否大于回程许用压力角r0=r0+Deltar0;temp=0;break;elseif abs(alpha)>alpha2max %满足许用压力角,则找出回程最大压力角alpha2max=abs(alpha);delta2max=delta;endendelseif abs(alpha)>alpha1 %判断是否大于推程许用压力角r0=r0+Deltar0; %不满足许用压力角,则增大基圆半径重新计算temp=0;break;elseif abs(alpha)>alpha1max %满足许用压力角,则找出推程最大压力角alpha1max=abs(alpha);delta1max=delta;endendendrho=(x_^2+y_^2)^(3/2)/(x_*y__-y_*x__); %计算曲率半径if rho<0rhoa=abs(rho)-rr;if rhoa>=rho0min %满足最小曲率半径if rhoa<rhoamin %找出实际轮廓曲线的最小曲率半径及其对应的delta角rhoamin=rhoa;deltamin=delta;endelser0=r0+Deltar0;temp=0;break;endendDelta(I+1)=(delta/pi)*180; %delta由弧度值转化为角度值 X(I+1)=x*1000;Y(I+1)=y*1000;X1(I+1)=x1*1000;Y1(I+1)=y1*1000;S(I+1)=s;V(I+1)=v;A(I+1)=a;ALPHA(I+1)=(alpha/pi)*180;PHO(I+1)=rho*1000;endenddeltamin=(deltamin/pi)*180;alpha1max=(alpha1max/pi)*180;delta1max=(delta1max/pi)*180;alpha2max=(alpha2max/pi)*180;delta2max=(delta2max/pi)*180;figure(1);axis equal;hold ont=0:0.01:2*pi;xx=r0*cos(t)*1000;yy=r0*sin(t)*1000;xxx=(rr*cos(t)+X(1)/1000)*1000;yyy=(rr*sin(t)+Y(1)/1000)*1000;xxxx=e*cos(t)*1000;yyyy=e*sin(t)*1000;plot(xx,yy,'m--',X,Y,':',X1,Y1,'k',xxx,yyy,'c-',xxxx,yyyy,'y-');%画出理论轮廓及实际轮廓以及基圆legend('基圆','理论轮廓','实际工作轮廓');plot(0,0,'ko')plot(X(1),Y(1),'ko');title('凸轮轮廓曲线图');xlabel('X/mm');ylabel('Y/mm');figure(2);plot(Delta,S,Delta,V,'r--',Delta,A,'k:'); %画出位移、速度、加速度曲线图title('凸轮运动规律曲线图');xlabel('{\delta}/(^o)');ylabel('s/m v/m.s^{-1} a/m.s^{-2}');legend('位移','速度','加速度');%结果显示:disp([num2str(Delta'),num2str(X'),num2str(Y'),num2str(X1'),num2str(Y1 '),num2str(S'*1000)]);disp(['rhoamin=',num2str(rhoamin*1000),'deltamin=',num2str(deltamin)]);disp(['alpha1max=',num2str(alpha1max),' delta1max=',num2str(delta1max)]);disp(['alpha2max=',num2str(alpha2max),' delta2max=',num2str(delta2max)]);disp(['r0=',num2str(r0*1000)]);(五)、程序计算结果及分析求得ραmin及对应的δαmin值:rhoamin=14.0952 deltamin=288求得α1max 及对应的δ1max值:alpha1max=29.782 delta1max=120求得α2max 及对应的δ2max值:alpha2max=47.4426 delta2max=324求得最后的基圆半径r0为:r0=24.5(七)、心得体会通过对凸轮机构的编程设计:(1)、熟悉了推杆的运动规律特别是等加速等减速和五次多项式运动规律;(2)、掌握了已知推杆运动规律用解析法对凸轮轮廓曲线的进行设计的方法以及设计时应该注意的各个性能要求;(3)、加深了对Matlab语言的熟悉与应用(八)、参考书(1)《机械原理》第七版高等教育出版社(2)《MATLAB程序设计教程》中国水利水电出版社。