2017-2018年度六年级美国数学大联盟杯赛(中国赛区)初赛
2018年美国“数学大联盟杯赛”(中国赛区)初赛四年级试卷(1)

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛(四年级)(初赛时间:2017年11月26日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
请在装订线内签名表示你同意遵守以上规定。
考前注意事项:1. 本试卷是四年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。
考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。
其他材料均不能带走,请留在原地。
选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1.Which of the following is the smallest?A) 2.018 B) 20.18 C) 0.218 D) 20182.What is the least common multiple of 20 and 18?A) 90 B) 180 C) 240 D) 3603.The sum of the degree-measures of the exterior angles of a triangle is?A) 180 B) 360 C) 540 D) 7204.In the figure on the right, please put the numbers 1 – 11 in the elevencircles so that the three numbers in every straight line add up to 18.What is the number in the middle circle? Note: There are 5 straightlines in total in this figure.A) 6 B) 7 C) 8 D) 95.I am a lovely cat. When I multiply the digits of a whole numberand the product I get is 8, I put that whole number on my list offavorite numbers. Of the whole numbers from 1000 to 9999,how many would I put on my list of favorite numbers?A) 10 B) 12 C) 16 D) 206.Two planes take off at the same time from the same point to race to apoint and back. Place A travels at 180 miles per hour on the way out and240 miles per hour on the return trip. Plane B covers the entire distance at an averagespeed of 210 miles per hour. Which plane wins the race, or is it a tie?A) plane A wins B) plane B winsC) a tie D) non-deterministic 7.52 × 88 = 44 ×?A) 102 B) 96 C) 104 D) 1248.What is the smallest whole number that leaves a remainder of 4, 5, 6 when divided byeach of 5, 6, 7?A) 29 B) 209 C) 210 D) 20099.In △ABC, m∠A + m∠C = m∠B. What is the degree measure of ∠B?A) 80 B) 90 C) 100 D) 18010.I bought a toy for $10, sold it for $20, rebought it for $30, and resold it for $40. My totalprofit on the 4 transactions was ?A) 10 B) 20 C) 30 D) 4011.What is the greatest number of integers I can choose from the first ten positive integers sothat any 3 of the chosen integers could be the lengths of the three sides of a triangle?A) 4 B) 5 C) 6 D) 712.How many whole numbers between 200 and 400 have all their digits increasing in valuewhen read from left to right?A) 30 B) 36 C) 42 D) 4813.What is the value of 1% of 10% of 100?A) 0.01 B) 0.1 C) 1 D) 1014.If three cats can eat three bowls of food in three minutes, how many minutes will it take100 cats to eat 100 bowls of food?A) 1 B) 3C) 100 D) None of the above15.There are three squares. The area of the smallest one is 2. The side-length of the secondsquare is twice the side-length of the smallest one. And the side-length of the third square is three-times the side-length of the smallest one. The total area of the three squares isA) 12 B) 28 C) 36 D) 7216.A man, who had been married for three years, spent25of his yearly income on his family,14on business, and110on personal travel. If he saved $45000 during those three years, what was his annual income?A) $45000 B) $50000C) $65000 D) None of the above17.Given four different integers, at most how many different sums can be formed bychoosing two, three, or four of them and finding each sum?A) 8 B) 9 C) 10 D) 1118. Max places 100 eggs in 10 baskets, with each basket receiving at least1 egg, but no2 baskets receiving the same number of eggs. What is the greatest number of eggs that may be placed in a basket?A) 45 B) 47 C) 55 D) 6519. 2 + 3 × 4 – 5 =A) 0 B) 6 C) 9 D) 15 20. What is the highest power of 2 that divides 2 × 4 × 6 × 8 × 10? A) 25 B) 27 C) 28 D) 215 21. Which of the following is a prime number?A) 2017B) 2018C) 2015D) 201622. What is the greatest possible number of acute angles in a figure consisting of a triangleand a line passing through two sides of the triangle?A) 5B) 6C) 7D) 823. Amy can solve 5 questions every 3 minutes. Kate can solve 3 questions every 5 minutes.How many more questions Amy can solve than Kate in one hour?A) 15B) 32C) 60D) 6424. Using 3 Ts and 2 Js, in how many different orders can the five letters be arranged? Forexample, TTTJJ and TTJJT are two such different orders.A) 2B) 10C) 20D) 6025. Coastal Coconuts can divide all their coconuts evenly among 8, 9, or10 customers, with 1 coconut left over each time. If Coastal Coconuts has more than 1 coconut, what is the least number of coconuts they could have?A) 561 B) 721C) 831 D) None of the above 26. 35 ÷ 32 =A) 3 B) 9 C) 27 D) 81 27. If the sum of three prime numbers is 30, what is the least prime number?A) 2B) 3C) 5D) 728. Juxtaposing two identical squares to form a rectangle, the perimeter of the rectangle is 12less than the sum of the perimeter of the two squares. What is the side-length of the original square?A) 3B) 6C) 9D) 1229. It takes Mike 2 hours to finish a task. It takes 4 hours for Tom to finish the same task.Mike and Tom worked together on this task for one hour before Mike had to leave. How long will it take Tom to finish the rest of the task?A) 1 B) 2 C) 3 D) 4 30. The number of triangles in the figure on the right isA) 9 B) 10 C) 11 D) 12 31. What is the thousands digit of the product 1234560 × 2345670 × 3456780?A) 8B) 6C) 5D) 032. The sum of nine consecutive positive integers is always divisible byA) 2B) 5C) 7D) 933. You can put as many as 96 books in 6 backpacks. How many backpacks are necessary for144 books?A) 7B) 8C) 9D) 1034. The number of nickels I have is twice the number of dimes I have, and together thesecoins are worth more than $1. The least number of dimes that I can have isA) 5B) 6C) 8D) 1035. The ages of four kids are four consecutive positive integers. The product of their ages is3024. How old is the oldest kid?A) 8B) 9C) 10D) 1136. In the Game of Life, you earn 3 points for flipping a coin to “heads”, and 5 points forflipping a coin to “tails”. In all, how many positive whole number scores are IMPOSSIBLE to get after flipping it one or more times?A) 4B) 5C) 7D) 1137. Four monkeys can eat four bags of peanuts in three minutes. How many monkeys will ittake to eat 100 bags of peanuts in one hour?A) 4 B) 5 C) 20 D) 100 38. The tens digit of the product of the first 100 positive integers isA) 2B) 4C) 8D) 039. Someone put three dimes into my pile of quarters. If I add up the value of these coins,including the dimes, the sum could beA) $6.25B) $7.75C) $8.05D) $9.5040. Brooke's empty tub fills in 20 minutes with the drain plugged, andher full tub drains in 10 minutes with the water off. How manyminutes would it take the full tub to drain while the water is on?A) 12B) 15 C) 20 D) 30。
2014年美国“数学大联盟杯赛”(中国赛区)初赛五、六年级试卷

37. 将 1 ~ 9 九个数不重不漏地组成一个两位数、一个三位数、一个四位数。 这三个数均能被 9 整除,并且 7、8、9 分别在这三个数中,三个数十位 数字为三个连续的偶数,个位数字为三个连续的奇数。如果将四位数的 千位移到两位数的百位,组成新的三个三位数,新的三位数也均能被 9 整除。那么题中最初的三位数是 。 38. 如图为一个正方体有盖纸盒的示意图,在 1 ~ 30 的数中 选出 7 个,在纸盒的每个面填一个数。将盒盖的两个数 字相加后,三组相对面填的数均满足两两乘积相等。那 么 x 处的数字有 种可能。
姓名(签名)
A) 413 B) 1626 C) 21155 D) 161155 16. Which of the following figures has an odd number of sides? A) rhombus B) trapezoid C) pentagon D) hexagon 17. For how many integers from 55 to 66 is the ones digit greater than the tens digit? A) 4 B) 5 C) 10 D) 11 18. Lex buys 6 same-priced books and pays with a $50 bill. The change Lex receives is twice the price of a book. Each book costs A) $6.25 B) $7.14 C) $8.33 D) $12.50
14. If two consecutive whole numbers have a different number of digits, then their 一、选择题(每小题 5 分,答对加 5 分,答错不扣分,共 150 分,答案请填涂在答题卡上) 1. The band’s trombone plays 2013 notes, the trumpet plays 2014 notes, and the tuba plays 218 notes. That’s a total of ? notes. A) 6245 B) 6045 C) 4245 D) 645 2. The remainder when (999 999 999 + 666 666 + 333 + 1) is divided by 3 is A) 0 B) 1 C) 2 D) 3 3. 20 − 5 × 2 = 2 × ? A) 5 B) 15 C) 25 D) 30 C) 15 D) 100
2017-2018年度校外比赛参赛获奖数目

三等獎 金獎 銀獎 銅獎 銅獎 銀獎 金獎 銅獎 銀獎 銀獎 銅獎 金獎 金獎 銅獎 銀獎 優異獎 優異獎 優異獎 優異獎
梁昫妍 第十屆《兒童英語創意寫作及演講比賽-香港站》決賽 劉芷筠 第十屆《兒童英語創意寫作及演講比賽-香港站》決賽 歐陽佩喬 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 鄭凌怡 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 鄧俊研 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 鄺顯曦 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 黃晉其 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 吳卓庭 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 楊鎧汶 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 麥晴懿 五育中學 ─「2017 小學多元繽紛同樂日」通識徵文比賽 張子航 五育中學 ─「2017 小學多元繽紛同樂日」中文寫作比賽 楊殷穎 五育中學 ─「2017 小學多元繽紛同樂日」中文寫作比賽 林唯廉 五育中學 ─「2017 小學多元繽紛同樂日」英文寫作比賽
浸信會呂明才小學 2017-2018 年度 課外活動組
2017-2018 年度校外比賽參賽/獲獎數目
上學期 下學期 全年總數 參賽項目 獲獎人數 參賽項目 獲獎人數 參賽項目 獲獎人數 6 597 7 331 13 928 3 128 3 80 6 208 12 123 9 376 21 499 21 848 19 787 40 1,635
1隊 151 (47 人) 198 人
2隊 1隊 372 5 (51 人) (24 人) 423 人 29 人
0 1 1隊 4 (24 人) 1隊 0 (5 人) 7隊 707 (221 人) 928 人
2015年美国“数学大联盟杯赛”(中国赛区)初赛六年级试卷

37. In this problem as shown on the right, each square represents a digit from 0 to 9. What is the final product? Answer: ___________. 38. For some integer n, the sum of all of the digits of n is a multiple of 8 and the sum of all of the digits of n + 1 is also a multiple of 8. If n <= 2015, what is the greatest possible value of n? Answer: ___________. 39. In triangle ABC on the right, BD:DC = 1:2. If the area of triangle ABP is 7 and the area of triangle ACP is 5, what is the area of triangle ADP? 2 0 1 5 A P
性别
年级
1. 2 × 0 + 1 × 4 – 2 × 0 + 1 × 5 = ( ) A) 0 B) 5 C) 9 D) 15 2. There are 84 beavers in a colony. Yesterday they all went out in teams of 6 to collect logs. Today they are all going out in teams of 4. There will be ? more teams today than there were yesterday. ( ) A) 2 B) 7 C) 14 D) 21 3. 12 345 + 54 321 = 11 111 × ? A) 66 666 B) 666 ( ) C) 66 D) 6 ? years mmon multiple of 22, 42, 62, 82, and 102 is ( ) A) 3840 B) 14 400 C) 57 600 D) 230 400 28. A snail crawls 2400 mm per hour. It takes ? seconds to crawl 1 mm. ( ) 1 2 A) B) C) 1.5 D) 3 3 3 29. A circle can intersect a quadrilateral at ? points. ( ) A) 0, 2 or 8 only B) 0, 2, 4, 6 or 8 only C) 1, 2, 3, 4, 6, or 8 only D) 0, 1, 2, 3, 4, 5, 6, 7, or 8 30. Carla loves shells! She collects them, labelling each with a 1-, 2-, or 3-letter code. If the same letters are used in a different order, it is a different code. She has used every such code, so she has ? shells. ( ) A) 156 B) 17 576 C) 18 278 D) 20 888 31. If the sum of 50 consecutive integers is 1525, what is the sum of the next 50 consecutive integers? ( ) A) 1575 B) 2775 C) 4025 D) 76 250 32. Of 4 pairs of twins, 3 students are chosen to do a report together. There are ? possible groups of 3 that don’t include both twins from a pair. ( ) A) 16 B) 24 C) 28 D) 32 33. 八年后我的年龄是两年前我的年龄的两倍。请问两年后我是几岁? ( ) A) 14 B) 16 C) 18 D) 20 34. 将 0.75 转换为分数,这些分数的分子和分母都是小于 100 的正整数。这样的分数共有 多少个? ( ) A) 3 B) 24 C) 25 D) 33 35. 船长们划船 5 个小时。从第二个小时开始,每个小时行驶的距离比 前一个小时少了 2 千米。如果 5 个小时的平均行驶速度是 6 千米/小时,那么前 2 个小时行驶了多少千米? ( ) A) 6 B) 12 C) 16 D) 18 二、填空题(每小题 5 分,答对加 5 分,答错不扣分,共 25 分) 36. Calculate the number of digits which are equal to 0 in the product of 826446281, 11 and 11. Answer: ___________.
2017年美国“数学大联盟杯赛”初赛四年级试卷

2017年美国“数学大联盟杯赛”初赛四年级试卷2016-2017年度美国“数学大联盟杯赛”(中国赛区)初赛(四年级)(初赛时间:2016年11月20日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
如果您同意遵守以上协议请在装订线内签名选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1.Which of the following is the greatest?A) 2.017 B) 20.17 C) 201.7 D) 20172.The sum of the degree-measures of the interior angles of a triangle isA) 180 B) 360 C) 540 D) 7203.100 + 200 + 300 + 400 + 500 = 300 ×?A) 3 B) 4 C) 5 D) 64.100 ÷ 4 = 200 ÷?A) 2 B) 4 C) 8 D) 165.In tonight’s talent show, Jack sang 3 songs. The number of songs that Jill sang is 8 lessthan 4 times the number of songs Jack sang. How many songs did Jill sing?A) 3 B) 4 C) 6 D) 76.Doubling a certain number is the same as adding that number and 36. What is thatnumber?A) 18 B) 36 C) 54 D) 727.The side-lengths of three square farms are 1 km, 2 km, and 3 km respectively. The sum ofthe areas of these three farms is ? km2.A) 6 B) 12 C) 13 D) 148.What is the greatest common factor of 2017 and 20 × 17?A) 1 B) 2 C) 3 D) 59.If a computer can download 2% of the files in 2 seconds, how many seconds does it taketo download all the files?A) 100 B) 200 C) 300 D) 40010.In yes terday’s giant-pie eating, all pies were the same size. Al ate 3/4 of a giant pie, Barbate 4/5 of a giant pie, Cy ate 5/6 of a giant pie, and Di ate 6/7 of a giant pie. Who ate the largest portion?A) Al B) Barb C) Cy D) Di 11.The product of two consecutive positive integers is alwaysA) odd B) evenC) prime D) composite12.In a 5-term sequence, the first term is 2. The value of each term after the first is twice thatof its previous term. What is the product of the 5 terms?A) 24B) 210C) 215D) 24513.Ace, Bo, and Cat performed in a talent show. Bo’s total score was twice that of Ace, andCat’s total score was three times that of Bo. If the sum of all three total scores was 900, what was Cat’s total score?A) 100 B) 200C) 300 D) 60014.The length of each side of triangle T is an integer. If twosides of T have lengths of 2016and 2017, what is the least possible value for the length of the third side?A) 1 B) 2 C) 4032 D) 403315.If the sum of three consecutive whole numbers is 2016, what is the sum of the next threeconsecutive whole numbers?A) 2032 B) 2025 C) 2020 D) 201716.If the sum of a prime and a composite is 2017, what is the least possible value for theproduct of the two numbers?A) 3000 B) 4030 C) 6042 D) 912017.What is the smallest whole number that leaves a remainder of 2 when divided by each of 3,4, 5, and 6?A) 58 B) 60 C) 62 D) 6418.What is the highest power of 2 that divides 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9?A) 25B) 26C) 27D) 2819.The product of the digits of 23 is 6. How many different whole numbers between 100 and999 have a product of 6?A) 12 B) 9 C) 6 D) 320.What is the value of 1% of 10% of 100%?A) 0.001 B) 0.01 C) 0.1 D) 121.In a box that contains only balls that are red, yellow, or green, 10% of the balls are red, 1/5of the balls are yellow, and 49 balls are green. How many balls are in the box?A) 70 B) 80 C) 90 D) 10022.Of the following, which has the greatest number of positive whole number divisors?A) 24 B) 26 C) 51 D) 2017第1页,共4页第2页,共4页23.If you subtract the sum of the digits of a whole numbergreater than 9 from the numberitself, the result must be divisible byA) 5 B) 6 C) 9 D) 1224.I bought a painting for $40, sold it for $50, rebought it for $60, and resold it for $70. Mytotal profit on the 4 transactions wasA) $10 B) $20 C) $30 D) $4025.What is the minimum number of whole number divisors of the product of two differentcomposite numbers?A) 5 B) 6 C) 8 D) 926.For each whole number from 1000 to 9999, inclusive, I write the product of its digits.How many of the products I write are even?A) 625 B) 3125 C) 5775 D) 837527.Lisa baked some cookies and cakes. Baking one cookie requires 4 cups of sugar and 3cups of flour, and baking one cake requires 7 cups of sugar and 5 cups of flour. At the end she used 83 cups of sugar and 61 cups of flour. How many cookies did she bake?A) 11 B) 12 C) 13 D) 1428.Working by oneself, Al can build a bridge in 3 years, Barb can build a bridge in 4 years,and Cy can build a bridge in 5 years. Working together, how long, in years, does it take them to build the bridge?A) 12B)6047C)6053D) 129.Jack is a gifted athlete who has trained hardfor the Olympic marathon. In the lasthundred yards he finds the inner strength toincrease his pace and overtakes the runner inthe second place.But then, with the finishing line just feetaway, he is overt aken by two other runners…What medal will Jack receive?A) Gold B) SilverC) Bronze D) None30.If we juxtapose three congruent squares, we get a rectangle with perimeter 64. What is thearea of one of the squares?A) 36 B) 49 C) 64 D) 8131.In a four-digit perfect square, the digits in the hundreds and thousands places are equal,and the digits in the tens and ones places are equal. What is this number?A) 6644 B) 7744 C) 8844 D) 9944 32.For how many of the integers from 100 to 999 inclusive is the product of its digits equal to9?A) 6 B) 7 C) 8 D) 933.What is the smallest positive integer x for which (x + 8) is divisible by 5 and (x + 17) isdivisible by 7?A) 30 B) 31 C) 32 D) 3334.Tom’s new tower was completed. The total value ofthe project, the sum of the cost of the construction andthe cost of the land, was one million dollars. The cost of the construction was $900,000 more than the cost of theland. So what did T om pay for the land?A) $25,000 B) $50,000C) $75,000 D) $90,00035.五个连续正整数的和总是可以被下面哪个数整除?A) 2 B) 3 C) 5 D) 736.从1开始,鲍勃一共喊了2017个数,从第一个数之后的每个数都比前一个数大4。
第6-10届走美杯6年级初赛试题解析

第六届“走进每秒的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷一、填空题I(每题8分,共40分)1. 11111111 612203042567290+++++++=解:原式=11111111223349102105-+-++-=-=L L2.一个表面积为56emz的长方体如图切成27个小长方体,这27个小长方体表面积的和是______cm2.解:每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为168cm2.3.将2、4、6、8、12、18、24、36、72填人右边的九宫格,使每行每列及两条对角线上三数的积都相等.每行的三个数的积是______.解:每行三个数的积相等,所以这个积的3次方等于9个数的积,这就个数是:2130、2230、2131、2330、2231、2132、2331、2232、2332,它们的积21839,所以每行上的3个数的积为2633=1728. 4.0.2.0080.A BCC A B••••=,三位数ABC的最大值是多少?解析:2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.5. 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.分析:根据容斥关系:四边形EFGO 的面积=三角形AFC+三角形DBF-白色部分的面积 三角形AFC+三角形DBF=长方形面积的一半即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 所以四边形的面积=60-50=10二、填空题Ⅱ(每题l0分,共50分)6. 如图,ABCD 是正方形.阴影部分的面积为_______.(π取3.14)分析:正方形和它的内切圆的面积比是固定的,即4:π.小正方形的面积等于(3+5)2-4×3×5÷2==34,所以其内切圆的面积等于34÷4×(4-π)=7.317. 用数字l ~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有种组成方法.分析:l ~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.8.N 为自然数,且1+N ,2+N 、……、9+N 与690都有大于l 的公约数.N 的最小值为_______.解析:690=2×3×5×23,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,剩下的5个数,有3个3的倍数,1个5的倍数,1个23的倍数,则1+N 、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2+N 、8N +是3的倍数(5各偶数当中只有5N +是3的倍数),还有4N +、6N +一个是5的倍数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N +是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N +=是最小解,所以N 的最小值为19.9. 50位同学围成一圈,从某同学开始顺时针报数.第一位同学报l ,跳过一人第 三位同学报2,跳过两人第六位同学报3,……这样下去,报到2008为止.报2008的同学第一次报的是_______.分析:将这些学生按报数方向依次编号;1、2、3、……49、50、51……2008,每一个人的编号不唯一,例如编号为2001、1951……101、51的和编号为1的为同一个人,这样第n 次报数的人的编号为()12n n +, 报2008的同学的编号为2017036,他的最小编号为36,我们知道36=1+2+3+4+5+6+7+8,所以报2008的同学第一次报8.10.用l —9填满三角形空格,一个格子只能填人一个数字,使每个数字在每一行,每一列(包括不相连的行,列)及每个粗黑线围成的区域中至多出现一次.分析:解题顺序如第二附图,依照A 、B 、C 、D ……的顺序.三、填空题Ⅲ(每题l2分,共60分)11.A 、B 两杯食盐水各有40克,浓度比是 3:2.在B 中加入60克水,然后倒人A 中________克.再在A 、B 中加人水,使它们均为100克,这时浓度比为7:3.分析:在B中加入60克水后,B盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水的盐质量比仍然为3:2,B中的盐占所有盐的质量的22325=+,但最终状态B中的盐占所有盐的质量的337310=+,也就是说B中的盐减少了32111054-÷=,也就是说从A中倒出了14的盐水,即25克.12.中午l2时,校准A、B、C三钟.当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分.晚上C钟11点时,A钟_____点_____分,B钟_______点_____分.分析:下午A钟6点,B钟5点50分,两钟的运行比为360:350=36:35B钟7点时,C钟7点20分,时钟运行比为420:440=21:22,A:B:C=108:105:110所以C钟11点的时候,A钟10:48,B钟10:30.13.一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有______种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.分析:枚举法,枚举出所有方法:1423、2143、2413、3124、3142、3412、3421、4123、4132、4231、4312、4321.14.机器人A、B从P出发到Q,将Q处的球搬到P点.A每次搬3个,往返一次需l5秒.8每次搬5个,往返一次需25秒.竞赛开始8立即出发,A在B后10秒出发.在竞赛开始后的420秒内,A领先的时间是_______秒,B领先的时间是______秒.(领先指搬到P的球多).分析:对俩机器人的工作情况分别ABA-B:时间0- 25- 40- 50- 55- 70- 75- 85- 100- 115 ……个数差0 -2 1 -4 -1 2 -3 0 -2 1 ……所以从25秒开始,每隔75秒就会出现一个循环,即周期为75秒.前25秒,A、B都没有完成搬运。
2018-2019年美国“大联盟”(Math League)思维探索活动第一阶段六年级试卷及答案

B) Monday
C) Tuesday
D) Friday
12. Rounding a decimal to the nearest whole number yields a number that is at most ? greater than the original decimal.
A) 0.05
B) 0.1
C) 0.5
D) 0.9
13. The perimeter of a rectangle with area 2019 and integral side-lengths is greatest when its length and width diffC) 670
A) 6
B) 9
C) 12
D) 18
3. The number 36 is the product of -6 and
A) -6
B) 6
C) -30
D) 42
4. 20 ×18 = 20 ×19 + 20 × ?
A) -1
B) 0
C) 1
D) 20
5. Angel arrived 3 of an hour early for her noon appointment. At what time did Angel 10
城市
区
考号
所在学校
年级
姓名(签名)
………………………………………………装……………………………………………订……………………………………………线…………………………………………………………… ……………………………………装…………………订…………………线…………………内…………………不…………………答…………………题………………………………………
2018年美国“数学大联盟杯赛”(中国赛区)初赛三年级试卷(1)

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛(三年级)(初赛时间:2017年11月26日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论,我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
请在装订线内签名表示你同意遵守以上规定。
考前注意事项:1. 本试卷是三年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。
考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。
其他材料均不能带走,请留在原地。
选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1. 5 + 6 + 7 + 1825 + 175 =A) 2015 B) 2016 C) 2017 D) 20182.The sum of 2018 and ? is an even number.A) 222 B) 223 C) 225 D) 2273.John and Jill have $92 in total. John has three times as much money as Jill. How muchmoney does John have?A) $60 B) $63 C) $66 D) $694.Tom is a basketball lover! On his book, he wrote the phrase “ILOVENBA” 100 times.What is the 500th letter he wrote?A) L B) B C) V D) N5.An 8 by 25 rectangle has the same area as a rectangle with dimensionsA) 4 by 50 B) 6 by 25 C) 10 by 22 D) 12 by 156.What is the positive difference between the sum of the first 100 positive integers and thesum of the next 50 positive integers?A) 1000 B) 1225 C) 2025 D) 50507.You have a ten-foot pole that needs to be cut into ten equal pieces. If it takes ten secondsto make each cut, how many seconds will the job take?A) 110 B) 100 C) 95 D) 908.Amy rounded 2018 to the nearest tens. Ben rounded 2018 to the nearest hundreds. Thesum of their two numbers isA) 4000 B) 4016 C) 4020 D) 4040 9.Which of the following pairs of numbers has the greatest least common multiple?A) 5,6 B) 6,8 C) 8,12 D) 10,2010.For every 2 pencils Dan bought, he also bought 5 pens. If he bought 10 pencils, how manypens did he buy?A) 25 B) 50 C) 10 D) 1311.Twenty days after Thursday isA) Monday B) Tuesday C) Wednesday D) Thursday12.Of the following, ? angle has the least degree-measure.A) an obtuse B) an acute C) a right D) a straight13.Every student in my class shouted out a whole number in turn. The number the firststudent shouted out was 1. Then each student after the first shouted out a number that is 3 more than the number the previous student did. Which number below is a possible number shouted out by one of the students?A) 101 B) 102 C) 103 D) 10414.A boy bought a baseball and a bat, paying $1.25 for both items. If the ball cost 25 centsmore than the bat, how much did the ball cost?A) $1.00 B) $0.75 C) $0.55 D) $0.5015.2 hours + ? minutes + 40 seconds = 7600 secondsA) 5 B) 6 C) 10 D) 3016.In the figure on the right, please put digits 1-7 in the sevencircles so that the three digits in every straight line add upto 12. What is the digit in the middle circle?A) 3 B) 4 C) 5 D) 617.If 5 adults ate 20 apples each and 3 children ate 12 apples in total, what is the averagenumber of apples that each person ate?A) 12 B) 14 C) 15 D) 1618.What is the perimeter of the figure on the right? Note: Allinterior angles in the figure are right angles or 270°.A) 100 B) 110C) 120 D) 16019.Thirty people are waiting in line to buy pizza. There are 10 peoplein front of Andy. Susan is the last person in the line. How manypeople are between Andy and Susan?A) 18 B) 19C) 20 D) 2120.Thirty-nine hours after 9:00 AM isA) 1:00 AM B) 12:00 PM C) 8:00 PM D) 12:00 AM21.200 + 400 + 600 + 800 = (1 + 2 + 3 + 4) ×?A) 2 B) 20 C) 200 D) 200022.11…11 (the number consisting of 2016 1’s) is not a mult iple ofA) 11 B) 111 C) 1111 D) 1111123.The average of two thousands and two millions isA) 10000 B) 1000000 C) 1001000 D) 111100024.A triangle has the same area as a square. If the length of a base of the triangle is the sameas the side-length of the square, and the height of the triangle to the base is 4, what is thearea of the square?A) 1/2 B) 2 C) 4 D) 825.When V olta found a field in the shape of an isosceles triangle, she was soexcited that she ran a lap around all three sides. Two sides of the field havelengths of 505 m each, and the third side has a whole-number length.What is the greatest possible distance that V olta might have run in one lap?A) 2016 B) 2017 C) 2018 D) 201926.25 ×66 = 75 ×?A) 22 B) 44 C) 16 D) 3327.The number that has an odd number of whole number divisors isA) 15 B) 16 C) 17 D) 1828.In a sequence of 8 numbers, the average of the 8 terms is 15. If the average of the firstthree terms is 16 and the average of the next two terms is 15, what is the average of thelast three terms?A) 12 B) 13 C) 14 D) 1529.All years between 2000 and 2050 that are divisible by 4 are leap years.No other years between 2000 and 2050 are leap years. How many daysare there all together in the 17 years from 2010 to 2026?A) 6029 B) 6030 C) 5018 D) 501930.The sum of the hundreds digit and the tens digit of 2357 isA) 5 B) 8 C) 10 D) 1231.Which of the expressions below has the greatest value of (quotient × remainder)?A) 27 ÷ 4 B) 47 ÷ 6C) 57 ÷ 8 D) 87 ÷ 1232.I have some dimes and nickels, and together these coins are worth $3. If I replace everynickel with a quarter, I will have $5. How many dimes do I have?A) 10 B) 15 C) 20 D) 2533.I am a lovely cat. When I multiply the digits of a whole numberand the product I get is 9, I put that whole number on my list offavorite numbers. Of the whole numbers from 1000 to 9999, howmany would I put on my list of favorite numbers?A) 5 B) 10 C) 15 D) 2034.The sum of the tens digit and the units digit of the sum 1 + 12 + 123 + 12345+ … + 123456789 isA) 4 B) 5 C) 6 D) 735.The product of all prime numbers between 1 and 10 isA) 210 B) 105C) 1890 D) none of the above36.What is the average of 12, 14, 16, and 18?A) 13 B) 14 C) 15 D) 1637.When Jon shouts out a whole number, Al shouts out the product ofits digits, Barb shouts out the product of the digits of the number Alshouted out, and Cy shouts out the product of the digits of thenumber Barb shouted out. When Cy shouts out 18, what numbermight Jon have shouted out?A) 789 B) 799 C) 899 D) 99938.Each big box contains 3 medium boxes, each medium box contains2 small boxes, and each small box contains 5 apples. How many bigboxes are necessary for 1200 apples?A) 30 B) 40 C) 50 D) 6039.Eighteen years from now, my age will be 4 more than twice my currentage. My age now isA) 12 B) 14 C) 16 D) 1840.Each time Wanda waved her wand, 4 more stars appeared on herdress (which started with no stars). After several waves, Wandamultiplied the total number of stars then on her dress by thenumber of times she had waved her wand. This product cannot beA) 144 B) 256 C) 364 D) 676。