《代入法解二元一次方程组》-教学设计

合集下载

七年级数学下册《代入法解二元一次方程组》优秀教学案例

七年级数学下册《代入法解二元一次方程组》优秀教学案例
3. 教师点评学生的表现,强调代入法在实际问题中的应用价值,并对本节课的知识点进行梳理和总结。
(五)作业小结
1. 布置适量的课后作业,要求学生运用代入法解决实际问题,巩固所学知识。
2. 布置一道拓展题,鼓励学生在课后进行思考,提高他们的问题解决能力。
3. 要求学生撰写学习心得,反思自己在学习代入法过程中的收获和不足,为下一节课的学习做好准备。
3. 强调代入法的关键点:选择合适的方程和未知数进行代入,以及如何将问题简化为求解一个一元一次方程。
4. 示例讲解,逐步展示代入法的解题过程,让学生跟随教师一起完成解题。
(三)学生小组讨论
1. 将学生分成小组,要求他们共同探讨代入法的应用,并尝试解决实际问题。
2. 给每个小组分配不同的问题,鼓励他们在讨论中分享自己的想法,学会倾听他人的意见。
4. 反思与评价助力学生自我成长
案例中,教师引导学生进行课堂小结和课后反思,帮助他们总结经验、发现不足。同时,合理的评价体系促使学生全面认识自己的学习过程和结果,为他们的自我成长提供有力支持。
5. 作业小结实现知识的巩固与拓展
本案例在作业布置上注重知识巩固与拓展,让学生在实际问题中运用所学,提高问题解决能力。同时,拓展题的设置激发学生的求知欲,促使他们在课后继续深入探究数学知识。
2. 问题导向促进思维发展
案例中,以问题为导向的教学策略促使学生主动思考、积极探索。通过设计富有启发性的问题,引导学生逐步深入探讨代入法的原理和应用,培养他们的逻辑思维和数学推理能力。
3. 小组合作提高学生团队协作能力
本案例注重小组合作学习,让学生在交流、讨论中共同解决问题。这种教学策略不仅有助于提高学生的团队合作意识,还能培养他们的沟通能力、批判性思维和自我评价能力。

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案

用代入法解二元一次方程组教案一、教学目标1.能够运用代入法解二元一次方程组。

2.理解代入法的基本思想和具体操作方法。

3.通过解题提高学生的运算和推理能力。

二、教学过程1.引入:老师将题目写在黑板上,让学生回忆一下上一节课学的解二元一次方程组的方法,看能否解出来。

2.呈现:(1)2某+y=5;(2)某-y=1;3.讲解:教师在黑板上教学,给出代入法解二元一次方程组的基本思想和具体操作方法。

(1)假设得到方程组的一个解(某1,y1),用其中一个方程将某1或y1代入另一方程中,得到一个关于某或y的一元方程,求出某或y的值。

(2)将上面求出的某或y的值代入已知方程中,求出同步的另一个变量值。

在这道题目中,我们可以先用第二个方程式求出某的值,再将某值代入第一个方程式求出y的值。

4.举例:(1)2某+y=5;(2)某-y=1;解:我们可以先将第二个方程式变形为某=y+1,然后将某值代入第一个方程式得到2(y+1)+y=5,得到y的值为1、将y值带入某=y+1得到某=2、所以(某,y)=(2,1)。

5.练习:请解下面的方程组:(1)某+y=4;(2)某-y=2;解:将第二个方程式变形为某=y+2,然后将某值代入第一个方程式得到(y+2)+y=4,解出y的值为1、将y值带入某=y+2得到某=3、所以(某,y)=(3,1)。

6.归纳:通过以上例子,我们发现代入法解二元一次方程组的方法是比较简单和易学的。

三、作业老师布置以下作业:请解下面的方程组:(1)3某-2y=5;(2)2某+4y=10;解:将第一个方程式变形为y=(3某-5)/2,然后将y值代入第二个方程式得到2某+4((3某-5)/2)=10,解出某的值为2、将某值带入y=(3某-5)/2得到y=-1、所以(某,y)=(2,-1)。

人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例

人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一次方程组,引导学生发现代入消元法的原理。例如,通过观察方程组,让学生发现其中一个方程可以表示成另一个方程的函数形式,从而引出代入消元法。
2.教师讲解代入消元法的步骤和技巧,让学生理解并掌握解题方法。例如,讲解如何选择合适的方程进行代入,如何化简方程,如何求解未知数等。
3.教师对学生的学习情况进行评价,给予肯定和鼓励。例如,对学生在解决问题过程中的表现进行表扬,增强学生的自信心。
(五)作业小结
1.教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。例如,提供一些综合性的练习题,让学生在解决实际问题的过程中,运用代入消元法。
2.教师要求学生在作业中反思学习过程,总结经验教训。例如,让学生在作业中写一篇反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施。
人教版七年级数学8.2《代入消元法解二元一次方程组》优秀教学案例
一、案例背景
在我国基础教育课程改革的大背景下,人教版七年级数学教材第八章第二节《代入消元法解二元一次方程组》的教学显得尤为重要。这一节内容是学生继一元一次方程之后,首次接触二元一次方程组,是培养学生逻辑思维、抽象思维的关键时期。同时,代入消元法是解决二元一次方程组的常用方法之一,对于学生掌握解方程组的技巧,培养解决实际问题的能力具有重要意义。
4.反思与评价培养学生的自我学习能力:本节课教师在课后引导学生进行反思,总结经验教训。通过让学生写反思日记,记录自己在学习代入消元法过程中的收获、困惑和改进措施,培养学生自我学习的能力。
5.作业小结巩固知识:本节课教师布置具有挑战性的作业,让学生在实践中巩固和提高代入消元法的应用能力。同时,教师要求学生在作业中反思学习过程,总结经验教训。这种作业小结的方式既巩固了所学知识,又提高了学生的自我学习能力。

人教版七年级下册数学代入法解二元一次方程组 说课稿

人教版七年级下册数学代入法解二元一次方程组 说课稿

《代入法解二元一次方程组》说课稿各位老师,各位评委大家下午好。

我是XX号选手。

今天我所讲的课题是《代入法解二元一次方程组》。

主要从以下几个方面进行说明,即教材分析、教学任务分析、教学方法分析。

其中教学方法分析亦是代入消元法的构建过程。

一、教材分析(一)教材地位与作用《代入法解二元一次方程组》是人教版七年级下册第八章第二节的内容。

本节主要内容是在上节已认识二元一次方程组和二元一次方程组的解等概念的基础上,来探究解方程组的第一种方法——代入消元法。

并初步体会“将未知数的个数由多化少、逐一解决”、“由未知向已知转化、用已知解决未知”的化归思想。

代入法解二元一次方程组,既是前面学习一元一次方程的解法的一个延伸,又是为后续学习加减消元法、利用方程组来解决实际问题、求一次函数图像的交点等重要内容奠定基础,同时蕴含着丰富的函数与方程思想。

因此本节课在中学数学体系中处于重要地位。

(二)学情分析八年级的学生已具备了整体代入的认识能力,并初步掌握了逻辑推理能力的认知基础;也掌握了一元一次方程求解的方法与策略;学习了代数式,体验了整体代入思想的数学基础;加上对待事物有自己的见解;探究新鲜事物的欲望强的年龄特征。

这些都为顺利完成本节课的教学任务打下了知识、能力基础。

二、说教学任务(一)教学目标根据2011年义务教育数学课程标准的要求,及本教材的地位和作用,结合初中学生的认知特点确定教学目标如下:(1)知识目标:学生熟悉的掌握利用代入消元法解二元一次方程组。

(2)能力目标:通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想。

(3)情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点勇气。

(二)教学重难点根据本节课内容特点和学生现有知识水平,本节课的教学重难点:1.重 点:代入消元法的构建过程;2.难 点:进一步理解利用代入消元法解方程组是所体现的化归思想。

用代入消元法解二元一次方程组教案

用代入消元法解二元一次方程组教案

用代入消元法解二元一次方程组教案用代入消元法解二元一次方程组教案利用代入消元法解二元一次方程教案〔北师大版新课标实验教材八年级上册〕一、教学目的1、知识与技能会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。

2、过程与方法运用代入消元法解二元一次方程;理解解二元一次方程时的“消元”思想,初步体会“化未知为”的化归思想。

3、情感、态度、价值观在学生理解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“”和化复杂问题为简单问题的化归思想。

感受学习数学的乐趣,进步学习数学的热情;培养学生合作交流,自主探究的`好习惯。

二、教学重、难点1、教学重点会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为”的化归思想。

2、教学难点“消元”的思想;“化未知为”的化归思想。

三、教学设计1、复习,引入新课上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。

下面请同学们回忆一下它们分别是怎样定义的?〔同学们说,说不完的老师利用ppt进展展示〕我们知道:合适一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。

那么,我们能不能求出它的解呢?要怎样求呢?2、新课讲解〔1〕来看我们课本上的例子:上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。

...........(1)?x?y?1.......... ?x?1?2(y?1)........ ....(2)?如今要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?〔学生讨论,老师巡视指导〕通过同学们的讨论我们已经有理解题思想。

首先,由方程〔1〕将x视为数解出y=x-2,由于方程组中一样的字母表示同一未知数,所以可以用x-2代替方程〔2〕中的y,即将y=x-2代入方程〔2〕。

七年级数学《用代入消元法解二元一次方程组》教学设计

七年级数学《用代入消元法解二元一次方程组》教学设计

(一) 创设情境 新课引入
公主被困住了城堡了,我们去看一看吧.
(录音)公主的话:同学们好! 我是公主,我被困在城堡里了,你们 来解救我,好吗?首先去搜集小蘑菇,你 们中间有九个小蘑菇,线索就在小蘑菇的 身后. 问:每组的式子有什么特点?
学生参加游戏 并思考回答问 题.
在游戏的同时 复习二元一次 方程,用含一个 未知数的式子 表示另一个未 知数.
一次方程组的
方法.
⑤ 验——口头检验.
教学过程
教师活动
学生活动
设计意图
6
闯关游戏
在教师的
我们已经获得了知识,要想救出公主, 引导下,让学
大家有没有信心?孩子们,加油吧!
生自己选题来
1.已知 3x y 1,用含 x 的式子表示 y , 做,体验竞赛
则 y = ______________.
的乐趣.
另一个未知数; ② 代——消去一个元; ③ 解——分别求出两个未知数的值; ④ 写——写出方程组的解;
通过尝试完成
练习题,及时巩
固新知,规范做 学 生 独 立 完 题格式. 成,黑板演示,
多媒体展示,
教师纠正错误 并规范书写.
总结归纳代入 消元法解二元
体会合并同类 项对化简方程 的作用. 通过对“变、代、 解、写、验”的 归纳,完善解题 步骤.
教学过程
教师活动
5
学生活动
设计意图
问题:
1.可以用含 y 的式子表示 x 吗? 2.把③式代入①式中可以吗?可以求解
吗?为什么要代入③式中呢?
提出问题,让 学生更为透彻
进一步挖掘,提 出问题,突破学 习中的重难点.
3.解出的 x 的值代入①、②两式中可以求 的理解代入消 元法的解二元

代入消元法——解二元一次方程组教学设计

代入消元法——解二元一次方程组教学设计

代入消元法——解二元一次方程组教学设计《代入消元法——解二元一次方程组》教学设计安顺市普定县补郎中学杨兴一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。

教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。

同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。

三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地运用“代入消元法”解方程组。

过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。

情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。

四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。

五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。

六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。

七、教学具准备电脑、投影仪。

八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。

代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案)

8.2 消元-----解二元一次方程组第一课时代入法解二元一次方程一、教学目标1、会用代入消元法解简单的二元一次方程组;2、初步体会解二元一次方程组的思想是“消元”;3、在探究代入消元法的过程中体会化归思想。

二、教学重难点1、教学重点:用代入法解简单的二元一次方程组;~2、教学难点:“二元”向“一元”的转化,消元思想。

三、教学方法引导发现、练习法相结合四、教具准备多媒体设备五、教学过程(一)复习旧知、引入新课1、判断下列式子是否是二元一次方程?①03=+xy ②2=-y x ③102=+x x ④31-=+y x ⑤zy x 23-=+ 2、判断下列式子是否是二元一次方程组?①⎩⎨⎧-=+=+12103z x y x ②⎩⎨⎧=+-=121b a ab ③⎩⎨⎧-=--=+2315n m n m ④⎪⎩⎪⎨⎧=-=+11113s ts t 3、已知二元一次方程2=-y x ,如何用x 表示y ?如何用y 表示x ?(用x 表示y 即把含x 的项和常数项移到方程的右边,含y 的项移到方程的左边;再将y 的系数化为1)①用x 表示y :2=-y x ②用y 表示x :2=-y xx y -=-2 y x +=2! x y +-=2练习:课本93P 练习1把下列方程改写成用含x 的式子表示y 的形式:(1)32=-y x (2)013=-+y x(请同学板演,教师巡视并指导、讲评)(二)层层递进、探索新知探究:(回顾引例)—解法一:设这个队胜了x 场,负了y 场。

由题意得 ⎩⎨⎧=+=+16210y x y x 凑 ⎩⎨⎧==46y x 解法二:设这个队胜了x 场,则负了()x -10场。

由题意得 ()16102=-+x x 问:(1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?()16102=-+x x162=+y x(2)我们可以把方程②中的y 替换为x -10吗?怎么换?'10=+y x ①→x y -=10用x -10替换方程162=+y x 中的y ,即把x y -=10代入方程162=+y x .(3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?二元一次方程组转换为一元一次方程,可以求出x 的值,还需求y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

消元——二元一次方程组的解法(代入消元法)
学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。

讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。

三维目标
知识与技能 1、会用代入法解二元一次方程组
2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成
未知向已知的转化,培养学生观察能力,体会化归
思想。

情感态度与价值观 :通过研究解决问题的方法,培养学生合作交
流意识和探究精神。

教学重点:
用加减消元法解二元一次方程组。

教学难点:
理解加减消元思想和选择适当的消元方法解二元一次方程组。

教学过程
(一)创设情境,激趣导入
在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),
可以列方程组
x y22
2x y40
+=


+=
⎩表示本章引言中问题的数量关系。

如果只
设一个未知数(设胜x场),这个问题也可以用一元一次方程
________________________[1]来解。

分析:[1]2x+(22-x)=40。

观察
上面的二元一次方程组和一元一次方程有什么关系?[2]
[2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。

这正是下面要讨论的内容。

(二)新课教学
可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。

解这个方程,得x=18。

把x=18代入y=22-x,得y=4。

从而得到这个方程组的解。

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。

这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

[3]
[3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。

所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。

归纳:
上面的解法,是由二元一次方程组中的一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法[4]
[4]这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元。

(三)例题教学
例1 用代入法解方程组
分析:方程①中x的系数是1,用含y的式子表示x,比较简便。

解:由①,得x=y+3。


把③代入②,得 ([5]把③代入①可以吗?试试看。

)
3(y十3)一8y=14。

解这个方程,得y=一1。

把y=-l代入③,得 ([6]把y=-1代入①或②可以吗?)
x=2
所以这个方程组的解是
[5]由于方程③是由方程①得到的,所以它只能代入方程②,而不能代入①。

为使学生认识到这一点,可以让其试试把③代入①会出现什么结果。

[6]得到一个未知数的值后,把它代入方程①②③都能得到另一个未知数的值。

其中代入方程③最简捷。

为使学生认识到这一点,可以让其试试各种代入法。

(四)小结代入法解二元一次方程组的方法
1.将方程组中的一个方程的一个未知数用含另一未知数的式子表示出来.
2.把得到的式子代入另一个方程,得到一元一次方程,并求解.3.把求得的解代入方程,求另一未知数的解。

相关文档
最新文档