机械优化设计方案三个案例

合集下载

机械优化设计案例

机械优化设计案例

机械优化设计案例:某生产线自动送料机构的改进
在制造领域,生产线上的自动送料机构是确保生产流程顺畅、高效的关键环节。

然而,传统的自动送料机构往往存在效率低下、易损坏、维护成本高等问题。

为了解决这些问题,我们采用了机械优化设计的方法,对某生产线上的自动送料机构进行了改进。

该自动送料机构的主要任务是将原材料从存储区输送到生产线,并确保每次输送的数量准确。

但是,在长时间使用后,传统的送料机构常常出现卡顿、输送不准确等问题。

经过分析,我们发现这些问题主要是由于机构中的某些部件设计不合理,导致机械效率降低。

为了解决这些问题,我们采用了以下优化策略:
结构优化:利用拓扑优化技术,对送料机构的主体结构进行了重新设计,使其在满足强度和刚度的同时,减轻了重量,从而减少了动力消耗。

传动系统优化:采用了新型的齿轮和链条传动系统,减少了传动过程中的摩擦和能量损失,提高了传动效率。

控制系统优化:引入了PLC和传感器技术,实现了对送料过程的精确控制,确保了每次输送的数量准确。

维护性优化:设计了易于拆卸和维护的结构,减少了维护时间和成本。

经过上述优化后,新的自动送料机构的性能得到了显著提升。

与传统的送料机构相比,新的机构在输送速度、准确性、使用寿命和维护成本等方面都有了显著的优势。

经过实际生产验证,新的自动送料机构不仅提高了生产效率,还降低了生产成本,为企业带来了显著的经济效益。

第八章机械优化设计应用实例

第八章机械优化设计应用实例
给定初始步长 三,计算结果 最优点
最优值 上面的最优解是连续性的,需进一步离散化处理,从略。
1,确定设计变量
铰链四杆机构按主从动连架杆给定的角度对应关系进行 设计时,各杆长度按同一比例缩放并不影响主,从动杆转 角的对应关系。因此可把曲柄长度作为单位长度,即令 L1=1,其余三杆表示为曲柄长度的倍数,用其相对长度l2, L3,l4作为变量。一般考虑,本问题与初始角 , 也有 关系,所以变量本应为l2,l3,l4, 和 五个。但是两 转角变量并不是独立变量,而是杆长的函数。写出如下式
D:
二,选择优化方法及结果分析
该题维数较低,用哪一种优化方法都适宜。这里选用约束 坐标轮换法。
计算时,曾用若干组不同的初始数据进行计算,从中选出 其中三组。见课本表8.1
由其中的计算结果可以看出,第二次计算结果应为最优解。
, 为相对杆长。最后,根据机构的结构设计需要按一定 的比例尺求出机构实际杆长L1,L2,L3,L4。
由余弦定理a图
整理得约束条件 同理由上页b图传动角最小位置写出 整理得约束条件
⑵按曲柄存在条件建立约束条件 写成约束条件有
用全部约束条件画成次下图所示的平面曲线,则可见, g3(x)~g7(x)均是消极约束。而可行域D实际上只是由g1(x) 与g2(x)两个约束条件围成的。综合上述分析,本题的优 化数学模型如下
输 出 角 函 数 图
对于该机构设计问题,可以取机构输出角的平方偏差 最小为原则建立目标函数。为此,将曲柄转角为
的区间分成n等分,从动摇杆输出角也有相对
应的分点。若各分点标号记作i,以各分点输出角的偏差 平方和作为目标函数,则有
式中的有关参数按如下步骤及公式计算 ①曲柄各等分点的转角
②期望输出角 ③实际输出角

机械结构设计优化案例分析

机械结构设计优化案例分析

机械结构设计优化案例分析在机械工程领域,机械结构设计的优化是提高产品性能和降低成本的关键环节。

通过精心设计和优化,可以使机械结构更加坚固、稳定,以及提高工作效率。

下面我将结合一个实际案例,分析机械结构设计优化的过程和原理。

案例分析:某公司生产的液压缸在使用过程中,出现了频繁故障的问题,导致了生产效率的下降和维修成本的增加。

经过调查和分析,发现液压缸设计存在结构不稳定、材料选用不当等问题。

经过一系列的优化措施,终于解决了问题。

优化步骤:1. 结构分析:首先对液压缸进行了结构分析,发现设计中存在的问题,如承受力不均匀、连接件受力不稳定等。

通过有限元分析软件模拟不同情况下的受力状态,找出结构中容易出现应力集中、疲劳裂纹等问题,为优化设计提供依据。

2. 材料选用:根据结构分析结果,重新选择了耐高温、高强度的材料,提高了液压缸的抗疲劳性能和耐腐蚀性能。

同时,根据实际使用需求,合理选择了材料的硬度和韧性,提高了产品的耐用性和安全性。

3. 结构优化:在重新选用材料的基础上,对液压缸结构进行了优化设计。

通过调整连接件的位置和形状,增加支撑件的数量和大小,优化了受力分布,减少了结构的应力集中,提高了整体的稳定性和强度。

4. 实验验证:优化后的液压缸进行了实验验证,测试其承载能力、耐疲劳性能等指标。

通过实验数据的分析,验证了优化设计的有效性,确保产品在实际工作中能够稳定可靠地运行。

结果与效果:经过以上优化步骤,液压缸的故障率明显下降,生产效率得到了提高,维修成本也减少了。

同时,产品的性能和质量得到了明显提升,提高了用户的满意度和公司的竞争力。

结语:通过以上案例分析,我们可以看到机械结构设计的优化是一个系统工程,需要全面考虑材料、结构、受力等因素,不断调整和完善设计方案,以达到最佳效果。

只有不断迭代优化,才能使产品在市场上立于不败之地。

希望本文能够对机械结构设计优化的理解和实践有所启示。

机械优化设计范例(共9张PPT)

机械优化设计范例(共9张PPT)

设计变量
现设 甲矿运往东站x万吨
乙矿运往东站y万吨
则甲矿运往西站200-x万吨
乙矿运往西站260-y万吨 令x=x1,y=x2
所以:X43;1.5(200-x1)+0.8x2+1.6(260-x2) =716-0.5x1-0.8x2(万元)
所以:Min f(X)= 716-0.5x1-0.8x2
约束条件
- x1 ≤0 X1-200 ≤0 -x2 ≤0 x2 - 260 ≤ 0
x1+x2-280≤ 0 100-x1-x2≤0
求解结果
x2 280 260
100
Z
(20,260)
x1=20 x2=260
Minf(X)= 498万元
100
200 280
x1
所以: 乙矿运往西站260-y万吨
Mx2in-f(26X0)≤ =0 498万元 则令甲x=矿x1运,y=往x2西站200-x万吨
最少的运费为498万元 x令1x+=xx21-2,y8=0x≤20
己 x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 M甲i煤nf(矿X运)往=东49站8和万西元车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所。以:Min f(X)= 716-0. 煤乙矿应 运怎往样东编站制y万调吨运方案才能使总运费最少? 己x1知+x甲2-、28乙0≤两0煤矿每年的产量分别为200万吨和260万吨,需经过东、西两个车站运外地。 xM1i+nfx(2-X2)80=≤ 4098万元 现甲设煤矿甲运矿往运东往站东和站西x万车吨站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨 所 。以:X = [ x1, x2 ]T

机械优化设计实例

机械优化设计实例

机械优化设计实例公司生产的机械设备是用来处理废气的,该设备由风机和过滤系统组成。

一些客户反映在高温环境下,设备的性能下降严重,需要频繁维护和更换零部件。

为了解决这个问题,公司决定进行机械优化设计,提高设备在高温环境下的性能和可靠性。

首先,公司通过实地调研和用户反馈,发现高温环境下设备性能下降的主要原因是风机的叶轮脆性破坏和过滤系统的滤芯耐高温能力差。

因此,公司决定对风机和过滤系统进行优化设计。

风机优化设计的一项重要措施是改变叶轮材料。

公司与材料科学研究院合作,选用一种可耐高温的新型材料。

这种新材料具有良好的耐腐蚀性和高强度,能够在高温环境下保持稳定的性能。

通过对风机进行新材料叶轮的更换,可以大大提高设备在高温环境下的可靠性和寿命。

过滤系统的优化设计主要包括滤芯材料的改进和结构的优化。

公司与滤芯制造商进行合作,针对高温环境下滤芯易损的情况,选用了一种能够耐受高温的特殊材料制作滤芯。

该材料具有优异的耐热性和抗腐蚀性,能够有效过滤废气中的有害物质。

此外,公司还对滤芯的结构进行优化设计,增加了滤芯的表面积,提高了吸附效率和容尘量。

除了对零部件的优化设计,公司还对设备的工艺流程进行了改进。

在原有的设备上增加了高温预热和冷却系统,可以避免温度的突变对设备的影响,提高了设备的稳定性和寿命。

经过优化设计,该公司的机械设备在高温环境下的性能得到了显著提高。

经实际运行验证,设备在高温环境下能够稳定工作,无需频繁维护和更换零部件,极大地减少了停机时间和维修成本。

同时,设备的可靠性和寿命也得到了显著提升,增强了客户的信任和满意度。

这个实例充分展示了机械优化设计的重要性和成功应用。

通过对机械结构、工艺流程和材料的优化,可以提高机械产品的性能、效率和可靠性,满足客户的需求,提升企业的竞争力。

机械优化设计_经典实例

机械优化设计_经典实例

1.5 f max
1

1 321
x1 x22
1

0
g5 (x) x1 0
g6 (x) x2 0
盖板优化实例
f (x) 2 60t 2 0.5h 120 x1 x2
盖板优化实例
g1 ( x)

1
1 4
x2

0
7 g2 (x) 1 45 x1x2 0
目标函数:
f (x) 2 60t 2 0.5h 120 x1 x2
约束:
g1 ( x)

[ ] max
1

1 4
x2
1
0
g2 (x)

[ ] max
1
7 45
x1 x2
1

0
g3 (x)

c max
1

7 45
x13 x2
1
0
g4 (x)
第2部分 优化计算工具
2.1 线性规划优化函数 2.2 无约束非线性优化函数 2.3 约束优化函数
MATLAB解决的线性规划问题的标准形式为:
min cT x s.t. Ax b, x 0
A (aij )mn , x (x1, x2, x3,...xn )T c (c1, c2, )T ,b (b1,b2,...bm )T ,且b 0
a2

1 b2

an

1 bn

(a、b维数必须相同)
1.4 源文件(M-文件)
分为两类: 函数文件和非函数文件 都用扩展名.M
1.4.1 函数文件(相当于子程序)

机械优化设计方案三个案例

机械优化设计方案三个案例

机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。

2.已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。

3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。

由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。

单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ式中符号意义由结构图给出,其计算公式为b c d m u m z d d d mu m z D m z d m z d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为T z z T d d l m z b x x x x x x x ][][211654321==3.2目标函数为min)32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0.9,max ϕ=1.4,得04.1)()(0)(9.0)(32133212≤-=≤-=x x x x g x x x x g3)动力传递的齿轮模数应大于2mm ,得 02)(34≤-=x x g4)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于max 1d ,得0300)(325≤-=x x x g 5)齿轮轴直径的范围:max min z z z d d d ≤≤得0200)(0130)(0150)(0100)(69685756≤-=≤-=≤-=≤-=x x g x x g x x g x x g 6)轴的支撑距离l 按结构关系,应满足条件:l 2min 5.02z d b +∆+≥(可取min ∆=20),得0405.0)(46110≤--+=x x x x g7)齿轮的接触应力和弯曲应力应不大于许用值,得400)10394.010177.02824.0(7098)(0400)10854.0106666.0169.0(7098)(0550)(1468250)(224222321132242223211213211≤-⨯-⨯+=≤-⨯-⨯+=≤-=---x x x x x x g x x x x x x g x x x x g8)齿轮轴的最大挠度max δ不大于许用值][δ,得0003.0)04.117)(445324414≤-=x x x x x x g 9)齿轮轴的弯曲应力w δ不大于许用值w ][δ,得5.5106)1085.2(1)(05.5104.2)1085.2(1)(1223246361612232463515≤-⨯+⨯=≤-⨯+⨯=x x x x x g x x x x x g4.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab 优化工具箱中的fmincon 函数来求解此非线性优化问题,避免了较为繁重的计算过程。

机械优化设计经典实例

机械优化设计经典实例

机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。

机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。

本文将介绍几个经典的机械优化设计实例。

第一个实例是汽车发动机的优化设计。

汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。

一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。

例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。

此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。

第二个实例是飞机机翼的优化设计。

飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。

机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。

例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。

第三个实例是电机的优化设计。

电机是广泛应用于各种机械设备和电子产品中的核心动力装置。

电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。

例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。

总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。

通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。

这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。

2.已知条件已知数输入功p=58kw,输入转速n=1000r/min,齿数比1?]=550Mpa,许用弯用应力[曲应力u=5,齿轮的许H?]=400Mpa。

[ F3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。

由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。

单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:222222??)?0.25(b?c)(.25Db(d?d?dv?0.25)b(d??d)?02gzz1g122222222????d?)?0.257l(d8?dddc?2112 zzzz022222222??)10m(mzu?d?b.25?[m0zb?d.b?m8zbub0?1112zz12222]3228dd6d)?d?l?05bd.?005 b(mzu?10m?1..2 2zz2zz2z121式中符号意义由结构图给出,其计算公式为d?mz,d?mz2112D?umz?10m12g d?1.6d,d?0.25(umz?10m?1.6d)2z2g210z c?0.2b由上式知,齿数比给定之后,体积取决于b、z、m、l、d 和z11d 六个参数,则设计变量可取为z2TT]ddbzmxxxxx]l?[xx?[23145z61z213.2目标函数为222222f(x)?0.785398(4.75xxx?85xxx?85xx?0.92xx?xx?5231116233112222220.8xxxx?1.6xxx?xx?xx?28x ?32x)?min6646213316545约束条件的建立3.3.zz?17?,得1)为避免发生根切,应有min0??17?xg(x)21b???????maxmin d的最大值为齿宽系数2 )齿宽应满足和,dmaxmin??,,得和最小值,一般取=1.4=0.9maxmin g(x)?0.9?x(xx)?03212g(x)?x(xx)?1.4?031323)动力传递的齿轮模数应大于2mm,得g(x)?2?x?0344)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于d,得max1g(x)?xx?300?0352d?d?d5)齿轮轴直径的范围:得maxzminzz0?100?xxg()?560?x150?g(x)?570?x?g(x)?130680200?x)?x?g(69l按结构关系,应距离满足条件:撑6)轴的支?b?2??0.5d?l=20),得(可取2zminmin g(x)?x?0.5x?x?40?041610)齿轮的接触应力和弯曲应力应不大于许用值,得7.0550?xxx)?1468250g(x)?(1231170980?x)??400g(42??2212)x?0.854?10xxxx(0.169?0.6666?102223170 980g(x??400?)4?22213)x?10?0.?xxx(0.2824?0.17710394x23221??][ 8)齿轮轴的最大挠度,得不大于许用值max440?.003xxx(xx)?0g(x)?117.04 4521443??][ 9)齿轮轴的弯曲应力,得不大于许用值ww6x?102.8512124?5.5?2.4?100g(x)?()?153xxx3526x1085?12.2124?5.5?10?0?g(x)()?6163xxx3624.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab优化工具箱中的fmincon函数来求解此非线性优化问题,避免了较为繁重的计算过程。

5.数学模型的求解5.1.1将已知及数据代入上式,该优化设计的数学优化模型表示为:2222minf(x)?0.785398(4.75xxx?85xxx?85xx?311132322220.92xx?xx?0.8xxxx?1.6xxx?xx5631616154312222 ?xx?28x?32x)6465Subject to:0?17?x(gx)?210xx)?0.9?x(g(x)?32210.4?(xx)?1g(x)?x33120?x?g(x)?2340?300?x)?xxg(3520?x ?(x)?100g560150?x)?x?g(570x?x)?130?g(680??200(x)g?x690??405x?xg(x)?x?0.410160550?xx) ??g(x)1468250(x131127098?400)??0g(x4??22212)10x.854(0.169?0.6666?10?x?0xxx231227098?400? 0xg()?4?22213)x394?.2824?0177?1010x?0.xxx(0.2122344g(x)?117.04x(xxx)?0.003x?0 44514326x?1012.852124?5.5?0)?2.4?10(gx)?(153xxx3526x10.85?122124?5.10?5?0)g(x?()?6163xxx326 5.1.2运用Matlab优化工具箱对数学模型进行程序求解首先在Matlab优化工具箱中编写目标函数的M文件myfun.m,返回x处的函数值f:function f = myfun(x)f=0.785398*(4.75*x(1)*x(2)^2*x(3)^2+85*x(1)*x(2)*x(3)^2-85*x(1)*x(3)^2+0.92* x(1)*x(6)^2-x(1)*x(5)^2+0.8*x(1)*x(2)*x(3)*x(6)-1.6*x(1)*x(3)*x(6)+x(4)*x(5)^2+ x(4)*x(6)^2+28*x(5)^2+32*x(6)^2)由于约束条件中有非线性约束,故需要编写一个描述非线性约束条件的M文件mycon.m:function[c,ceq]=myobj(x)c=[17-x(2)。

0.9-x(1)/(x(2)*x(3))。

x(1)/(x(2)*x(3))-1.4。

2-。

x(6)-200。

130-x(6)。

x(5)-150。

100-x(5)。

x(2)*x(3)-300。

x(3).x(1)+0.5*x(6)-x(4)-40。

1486250/(x(2)*x(3)*sqrt(x(1)))-550。

7098/(x(1)*x(2)*x(3)^2*(0.169+0.006666*x(2)-0.0000854*x(2)^2))-400。

7098/(x(1)*x(2)*x(3)^2*(0.2824+0.00177*x(2)-0.0000394*x(2)^2))-400。

117.04*x(4)^4/(x(2)*x(3)*x(5)^4)-0.003*x(4)。

(1/(x(5)^3))*sqrt((2850000*x(4)/(x(2)*x(3)))^2+2.4*10^12)-5.5。

(1/(x(6)^3))*sqrt((2850000*x(4)/(x(2)*x(3)))^2+6*10^13)-5.5]。

ceq=[]。

最后在command window里输入:x0=[230。

21。

8。

420。

120。

160]。

%给定初始值[x,fval,exitflag,output]=fmincon(@myfun,x0,[],[],[],[],[],[],@myobj,output)%调用优化过程5.1.3最优解以及结果分析运行结果如下图所示:由图可知,优化后的最终结果为x=[123.3565 99.8517 1.7561 147.3157 150.4904 129.5096]7 f(x)=2.36e*10由于齿轮模数应为标准值,齿数必须为整数,其它参数也要进行圆整,所以最优解不能直接采用,按设计规范,经标准化和圆整后:x=[124 100 2 148 150 130]7f(x)=6.16 *106.结果对比分析73,而优化后mm大约为6.32×10V若按初始值减速器的体积73,优化结果比初始值体积减少为:10mm 的体积V则为6.16×77)×100%10/6.32×=101Δν=-(6.16×2.5%所以优化后的体积比未优化前减少了2.5%,说明优化结果相对比较成功。

7.学习心得体会学习机械优化设计课程的心得体会通过将近一学期的学习,对这门课有了初步的了解和认识,学期伊始,浏览全书,发现全是纯理论知识,觉得这门课会很枯燥,但是又回过头来想想,作为21世纪的大学生,要使自己适应社会需求,首先在做任何事之前都应该有正确的态度看待问题,把这些想法作为促使自己进步的动力,再去学习课本知识,效果应该很不一样,有了想法就付诸行动,随着对课本内容的学习跟老师的讲解,发现并不是像自己在学期初想的那样困难,特别是在老师介绍了一些与机械优化设计相关的计算机语言和计算机软件后,真正体会到科学优化设计的强大跟简洁明了,与传统优化设计方法相比较,大大提高了设计效率和质量。

传统设计方法常在调查分析的基础上,参照同类产品通过估算,经验类比或实验来确定初始设计方案,如不能满足指标要.求,则进行反复分析计算—性能检验—参数修改,到满足设计指标要求为止。

整个传统设计过程就是人工凑试和定性分析比较的过程,是被动地重复分析产品性能,不是主动设计产品参数。

按照传统设计方法做出的设计方案,有改进余地,但不是最佳设计方案。

而现代化设计工作是借助电子计算机,,应用一些精确度较高的力学数值分析方法,优化软件进行分析计算,找最优设计方案,实现理论设计代替经验设计,用精确计算代替近似计算,用优化设计代替一般的安全寿命可行性设计。

在进行程序求解的过程中,因为是初学Matlab软件,对很多问题的关键点不能够掌握,非线性约束如何书写,上、下限如何选择,函数格式如何书写,变量未定义等等或大或小的问题,但是在一步步排除错误、重新编写程序的过程中,渐渐的对Mtalab熟悉起来,懂得了一些优化方法的简单计算过程和原理,省去了繁琐复杂的优化计算过程在学完课程之后,反思自己在学习过程中的得失,深深体会到,不论在人生的哪个阶段,都要对自己负责,做任何事都要耐心,细致,“千里之行,始于足下”,学会在物欲横流的社会大潮中,坚持踏踏实实走好人生的每一步。

8.参考文献[1] 孙靖民,梁迎春. 机械优化设计. 北京:机械工业出版社,2006.[2] 濮良贵,纪名刚. 机械设计. 8版. 北京:高等教育出版社,2006.[3] 孙桓,陈作模,葛文杰. 机械原理. 7版. 北京:高等教育出版社,2006.[4]李涛,贺勇军,刘志俭. MATLAB工具箱应用指南—应用数学篇[M].北京:电子工业出版社,2000.机械优化设计案例2复杂刀具优化设计数学模型的建立及算法改进摘要: 目的建立复杂刀具优化的数学模型,提高优化算法速度.方法采用优化设计与CAD相结合的方法.结果与结论解决了传统刀具设计的缺点,改进后的算法速度大幅度提高.关键词: 数学模型;优化;算法在传统的刀具设计中,通过查表和经验公式来确定各种结构参数和几何参数,然后,反复计算来得到相对较优的刀具参数.这种方法使设计过程复杂费时,且得不到最优化的参数,设计出的刀具成本高,加工效率低.因而刀具的计算机辅助设计应采用优化设计与CAD相结合的方法,欲进行优化设计,必需首先建立刀具优化设计的数学模型,由于复杂刀具的种类繁多,结构变[1],此篇仅以轮切式拉因而需分门别类地建立模型化多样,优化目标不同,.刀为例1 拉刀优化设计的数学模型在拉刀参数设计过程中需要选择的主要参数有拉削余量A,齿升量a,f齿距t,容屑槽形状和深度h,容屑系数k,同时工作齿数等,这些参数可分为两类,一类是独立参数,如拉削余量和容屑槽形状等,这些参数基本不受其他如齿升量、齿距、容屑槽深度、容,另一类参数是非独立参数.参数的影响屑系数等,这些参数既相互限制又相互依赖,第一类参数的选择比较容易.可以用经验公式和数据库来解决.第二类参数比较复杂,只有通过优化的方法才能得到较好的结果.粗切齿升量的选择是一个比较复杂的问题.增大a可使齿数减少,拉刀f长度变短,但同时又要求容屑槽深度增加.另外齿升量的增加又会引起拉削力的增大,受到拉床和拉刀拉应力的限制.齿距是决定拉刀长度的一个重要因素,t越大,拉刀越长,同时工作齿数越少.这样会在拉削过程中引起振动,生产效率低,降低刀具的使用寿命。

相关文档
最新文档