沪科版七年级上册数学4.5《角的比较与补余角》教案2-教学文档
沪科版七年级数学上册4.5.2角的比较与角的补(余)角优秀教学案例

1.通过小组合作、讨论交流的方式,引导学生主动参与课堂学习,培养他们的合作意识和团队精神。
2.利用实物、模型等直观教具,结合生活实例,让学生在实际操作中感受角的大小和补(余)角的关系,提高学生的动手操作能力。
3.设计具有挑战性的问题情境,激发学生的探究欲望,培养他们独立思考和解决问题的能力。
(二)讲授新知
在讲授新知的环节,我会首先从角的定义出发,回顾角的度量单位——度,以及如何使用量角器测量角的大小。接着,我会引入补角和余角的概念,通过动态图示和实际操作,让学生直观地理解补角和余角的含义。我会给出具体的例子,如直角三角形的两个锐角互为补角,以及一个角的余角是它的补角的补角等。在讲解过程中,我会注重使用直观的语言和教具,确保学生能够清晰地理解这些概念。
4.反思与评价环节的重视
本案例中,反思与评价环节得到了充分的重视。教师鼓励学生在课后进行自我反思,总结学习收获和不足,明确今后的学习方向。同时,开展多元化的评价方式,关注学生的全面发展。这样的设计有助于提高学生的自我认知,培养他们自我评价和反思的能力。
5.教学内容与过程的系统性与连贯性
本案例在教学内容与过程的设计上,注重紧密联系,层层递进。这样的设计有助于学生形成完整的知识结构,更好地理解角的补(余)角的概念、性质和应用。同时,教师通过典型例题的讲解和作业的布置,帮助学生巩固所学知识,提高教学效果。
(三)学生小组讨论
在学生小组讨论的环节,我会根据学生的不同程度,设计不同难度的问题,引导学生分组讨论。例如,基础问题可以是:“找出图中所有的补角和余角。”进阶问题可以是:“如果已知一个角的大小,如何求它的补角和余角?”挑战性问题可以是:“在平面图形中,如何利用补角和余角的性质求解未知角?”通过小组合作,学生能够相互启发,共同解决问题,提高他们的合作能力和解决问题的能力。
2024年沪科版七年级数学上册 4.5 角的比较与补(余)角 课时2(课件)

新知探究 知识点1 补角和余角的概念
α β
如图,∠α+∠β=90°,∠α叫作∠β的余角, ∠β也叫作∠α的余角,∠α与∠β互余.
新知探究 知识点1 补角和余角的概念
特别提醒:(1)余(补)角指的是两个角之间的数量 关系,与位置无关,且它们是成对出现的,单独的一 个角或两个以上的角不能称为余(补)角. (2)若两个角互余,则这两个角一定都是锐角;若 两个角互补,则这两个角可能都是直角,也可能是一 个锐角、一个钝角.
余角
同角(或等角) 的余角相等
°,那么∠2=∠3; (2)如果∠1+∠2=90°,∠3+∠4=90
°,且∠1=∠3,那么∠2=∠4
随堂练习
【教材P160 练习 第1题】
1. 填表:
∠α
50° 45° 60° n°(0<n<90)
∠α的余角 40° 45° 30° ( 90-n )°
∠α的补角 130° 135° 120° ( 180-n ) °
新知探究 知识点2 补角和余角的性质 【归纳总结】
性质
数学语言
(1)如果∠1+∠2= 180°, ∠1+∠3= 18
补角
同角(或等角) 的补角相等
0°,那么∠2=∠3; (2)如果∠1+∠2=180°,
∠3+∠4=180
°,且∠1=∠3, 那么∠2=∠4
(1)如果∠1+∠2= 90°,∠1+∠3= 90
第4章 几何图形初步
4.5 角的比较与补(余)角
第2课时 补角和余角 七上数学 HK
学习目标
1. 了解补角、余角的概念. 2. 掌握补角和余角的性质.
课堂导入
沪科版七年级数学上册角的比较与补(余)角【教案+课件】

∠AOB是∠AOC与∠COB的差,
记作∠AOB=∠AOC-∠COB.
O
A
类似地,∠AOC-∠AOB=∠COB.
探究新知
例1 如图④,求解下列问题: (1)比较∠ AOC与∠BOC,∠BOD与∠COD的大小; (2)将∠AOC写成两个角的和与两个角的差的情势.
A B C
O
图④
D
解:(1)由图④可以看出: ∠AOC>∠BOC(OB在∠AOC 内) ∠BOD>∠COD(OC在∠BOD内) (2)∠AOC=∠AOB+∠BOC, ∠AOC=∠AOD—∠DOC.
探究新知
(2)叠合法:
叠合∠DEF与∠ABC,把∠DEF移动,使它的顶点E移到和∠ABC的顶点B重合,
一边ED和BA重合,另一边EF和BC落在BA的同旁.
如图①,如果EF和BC重合,那么∠DEF=∠ABC.
C(F)
B(E) 图①
A(D)
探究新知
(2)叠合法:
如图②,如果EF落在∠ABC的内部,那么∠DEF<∠ABC;
探究新知
例2 如图⑥,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那么∠2与∠4有什 么关系?
图⑥ 解:因为∠1与∠2互补,所以∠2=180°-∠1. 因为∠3与∠4互补,所以∠4=180°-∠3. 又因为∠1=∠3,所以∠2=∠4.究新知
问题:余角有无上面补角类似的性质?如果有,你能说明道理吗?
课堂总结
问题:通过这节课的学习,你有哪些收获?
1. 角的大小的比较方法:(1)度量法;(2)叠合法.
2. 角平分线的定义及性质: 在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这 条射线叫做这个角的平分线. 若OC是∠AOB的平分线,则∠AOC=∠COB=1∠AOB,∠AOB=2∠AOC=
沪科版七年级数学上册:4.5角的比较与补(余)角教学设计

四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对角的新认识的好奇心。首先,我会通过展示一些生活中的图片,如房门的开合、剪刀的使用、三角板的形状等,让学生观察并指出这些图片中的角。通过这个活动,学生能够直观地感受到角在生活中的普遍存在。接着,我会提出问题:“你们知道这些角的大小如何比较吗?它们之间有什么关系?”通过问题引导,自然过渡到本节课的学习内容。
-学生通过直观比较和逻辑推理,掌握各种类型角的定义,并能在具体问题中正确分类和应用。
3.理解补角和余角的概念,能够计算给定角的补角和余角。
-学生应理解补角是使两角和为180°的两个角,余角是使两角和为90°的两个角,并能够运用基本的数学运算,计算出补角和余角的度数。
(二)过程与方法
1.通过直观演示和动手操作,培养学生观察、分析、比较的能力。
(三)学生小组讨论
在小组讨论环节,我会将学生分成若干小组,每个小组根据提供的材料(量角器、三角板、图形等)进行讨论。我会给每个小组分配不同的讨论主题,如“如何比较两个角的大小”、“补角和余角的计算方法”等。学生在小组内通过观察、讨论和实际操作,共同解决问题。在这个过程中,我会在各个小组间巡回指导,提供必要的帮助和提示。
-通过教师演示和小组合作,学生可以观察不同角的模型,分析角的性质,通过比较活动来加深对角概念的理解。
2.运用分类讨论的方法,提升学生解决问题的策略。
-在进行角的分类时,教师引导学生通过分类讨论的方法,将角按照大小和性质分类,培养学生面对复杂问题时采用逐步分析和解决的能力。
2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案

2023-2024学年沪科版七年级数学上册教案:4.5角的比较与补(余)角教案一. 教材分析本节课教材为沪科版七年级数学上册,主要内容是角的比较与补(余)角。
这部分内容是学生在学习了角的概念和分类的基础上,进一步探究角的性质和运算。
通过本节课的学习,学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
二. 学情分析七年级的学生已经掌握了角的概念和分类,对数学运算也有一定的理解。
但是,对于补角和余角的概念和运算,他们可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等方式,自主探索和发现补角和余角的性质和运算规律,从而达到理解掌握的目的。
三. 教学目标1.知识与技能:学生能够理解补角和余角的概念,掌握求补角和余角的方法,并能运用到实际问题中。
2.过程与方法:学生通过自主探索、合作交流,培养观察、思考、交流的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,培养对数学的兴趣。
四. 教学重难点1.重点:学生能够理解补角和余角的概念,掌握求补角和余角的方法。
2.难点:学生能够灵活运用补角和余角的性质和运算规律解决实际问题。
五. 教学方法采用自主探索、合作交流的教学方法,让学生在观察、操作、思考的过程中,发现补角和余角的性质和运算规律,培养学生的观察能力、思考能力和交流能力。
六. 教学准备教师准备PPT,内容包括角的比较与补(余)角的概念、性质和运算规律。
学生准备笔记本,用于记录学习过程中的思考和发现。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题:角的比较与补(余)角。
例如,一个直角三角形,其中一个角为30度,求另一个角的度数。
学生尝试解答,引发对补角和余角的思考。
2.呈现(10分钟)教师通过PPT呈现角的比较与补(余)角的概念、性质和运算规律。
学生认真听讲,记录学习内容。
3.操练(10分钟)教师给出一些练习题,学生独立完成。
沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计

沪科版数学七年级上册《4.5 角的比较与补(余)角》教学设计一. 教材分析本节课的内容是沪科版数学七年级上册《4.5 角的比较与补(余)角》,主要包括角的补角和余角的概念,以及它们的性质。
学生在学习本节课之前,已经掌握了角的基本概念,如锐角、直角、钝角等,同时也学习了平行线的性质。
本节课的内容是学生对角的概念的进一步拓展,对于提高学生的数学思维能力和解决实际问题具有重要意义。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于角的概念有一定的了解。
但是,对于角的补角和余角的概念,以及它们的性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题出发,通过观察、思考、操作、交流等活动,逐步理解和掌握角的补角和余角的概念和性质。
三. 教学目标1.知识与技能:能够理解角的补角和余角的概念,能够运用角的补角和余角的性质解决实际问题。
2.过程与方法:通过观察、思考、操作、交流等活动,培养学生的逻辑思维能力和抽象思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:角的补角和余角的概念,以及它们的性质。
2.教学难点:角的补角和余角的性质的应用。
五. 教学方法1.情境教学法:通过实际问题情境,引导学生观察、思考、操作、交流,从而理解和掌握角的补角和余角的概念和性质。
2.引导发现法:教师引导学生发现问题,引导学生通过自己的探索和发现,理解和掌握角的补角和余角的性质。
3.小组合作学习:学生分组进行讨论和交流,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作角的补角和余角的教学课件,包括角的补角和余角的概念,以及它们的性质。
2.教学素材:准备一些实际问题,用于引导学生理解和掌握角的补角和余角的概念和性质。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,如“一个角的补角是多少?”引导学生思考和讨论,激发学生的学习兴趣。
沪科版数学七年级上册4.5《角的比较与补(余)角》教学设计2

沪科版数学七年级上册4.5《角的比较与补(余)角》教学设计2一. 教材分析《角的比较与补(余)角》这一节主要让学生了解和掌握补角和余角的概念,学会用角度来比较和计算补角和余角。
学生需要通过观察、操作、探究等活动,培养他们的空间观念和逻辑思维能力。
二. 学情分析学生在学习这一节之前,已经掌握了角的概念,对直线、射线也有了一定的理解。
但是,对于补角和余角的概念,他们可能是初次接触,因此需要通过实例来理解和掌握。
同时,学生可能对于角度的计算还不太熟悉,需要在教学中进行引导和训练。
三. 教学目标1.让学生了解补角和余角的概念,能正确找出一个角的补角和余角。
2.让学生掌握比较角的大小方法,能运用补角和余角的概念解决实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:补角和余角的概念,以及如何找出一个角的补角和余角。
2.难点:如何引导学生理解和掌握补角和余角的概念,以及如何运用补角和余角的概念解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、探究等活动,自主发现和总结补角和余角的概念。
2.采用案例分析法,让学生通过解决实际问题,巩固补角和余角的概念。
3.采用小组合作法,让学生在小组内进行讨论和交流,培养他们的团队协作能力。
六. 教学准备1.准备一些角度不同的卡片,用于让学生找出补角和余角。
2.准备一些实际问题,用于让学生运用补角和余角的概念解决。
七. 教学过程1.导入(5分钟)通过出示一些角度不同的卡片,让学生找出补角和余角,引发学生的兴趣,导入新课。
2.呈现(10分钟)讲解补角和余角的概念,让学生通过观察和操作,自主发现和总结补角和余角的概念。
3.操练(10分钟)让学生在小组内进行讨论和交流,找出卡片中各个角的补角和余角,培养他们的团队协作能力。
4.巩固(10分钟)出示一些实际问题,让学生运用补角和余角的概念解决,巩固所学知识。
5.拓展(10分钟)让学生举例说明补角和余角在实际生活中的应用,培养他们的实际应用能力。
沪科版七年级数学上册教学设计:4.5角的比较与补(余)角教学设计

沪科版七年级数学上册教学设计:4.5角的比较与补(余)角教学设计一. 教材分析《角的比较与补(余)角》是沪科版七年级数学上册的一章,主要介绍了角的概念,角的比较,以及补角和余角的概念。
本章内容是学生进一步学习几何知识的基础,对于学生形成完整的几何知识体系具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了角的初步知识,对实数有一定的了解,但对于角的比较和补(余)角的概念可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作和思考,逐步理解并掌握这些概念。
三. 教学目标1.了解角的概念,能够正确识别各种角。
2.能够进行角的比较,判断角的大小关系。
3.理解补角和余角的概念,能够找出两个角的补(余)角。
4.能够运用补(余)角的概念解决实际问题。
四. 教学重难点1.重点:角的比较方法,补角和余角的概念及应用。
2.难点:角的比较方法的灵活运用,补(余)角在实际问题中的运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探索和发现角的比较方法,以及补(余)角的概念。
2.利用多媒体和实物模型,直观展示角的比较和补(余)角的概念,帮助学生形象理解。
3.通过小组合作和讨论,培养学生团队合作精神和解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“在平面直角坐标系中,两个点的坐标分别为(2,3)和(4,1),求这两个点之间的角度”。
引导学生思考角的比较方法。
2.呈现(10分钟)利用多媒体和实物模型,呈现角的比较方法,以及补角和余角的概念。
讲解角的比较的原理,展示如何通过几何画板或者实物模型,来直观地比较角的大小。
3.操练(10分钟)学生分组,每组提供一个角,其他组找出这个角的补(余)角。
通过实际操作,让学生加深对补(余)角概念的理解。
4.巩固(10分钟)学生独立完成一些有关角的比较和补(余)角的练习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角的比较与补(余)角》教案(课时一)
教学目标
1、会比较两个角的大小,能够结合图形实际将一个角写成两个角的和、差的形式;
2、了解角平分线的意义,并能够用符号语言表示.
教学过程与方法
1、通过学生熟悉的数学知识导入,互相交流探究,发现比较角的大小的三种方法,通过对探究的新知识尝试应用,进一步学习几何语言说理的数学方法;
2、了解简单的推理论证的思想:“问题-分析-说理”的分析几何问题的方法.情感、态度与价值观:在操作、观察、思考、发现的过程中,体会学习几何知识的思想方法,培养学生之间的合作意识与探究精神.
教学重点
两个角大小的比较方法.
教学难点
用几何语言进行简单的说理.
教学过程
(一)创设情境,引入新知
操作:请三个同学上黑板分别画一个任意大小锐角、一个直角和一个任意大小钝角的几何图形.
思考1:你能说明这三个角的大小关系吗?理由?
钝角大于直角,直角大于锐角.因为钝角度数大于900,直角度数等于900,锐角度数小于900,所以从角的度数大小可以比较这三个角的大小关系.
思考2:你还能用别的方法说明这三个角的大小关系吗?
演示:认真观察老师用叠合法比较每两个角,你能说出老师操作的动作要求吗?(二)合作交流,探索新知
观察:把∠DEF移动,使它的顶点E移到和∠ABC的顶点B重合,一边ED和BA重合,另一边EF和BC落在BA的同旁.(①顶点重合;②一边重合;③另一边在同旁),请认真观察下面的演示,分别说出角的大小.
观察图形,你能得出什么结论?
(1)如果EF和BC重合,那么∠DEF=∠ABC;
(2)如果EF落在∠ABC内部,那么∠DEF﹤∠ABC;
(3)如果EF落在∠ABC外部,那么∠DEF﹥∠ABC.
观察:下面图形中有多少个角?请写出来、除了我们能比较它们的大小关系外,还发现
它们还有什么数量关系?
(三)合作交流,应用新知
例1:如图,求解下列问题:
(1)比较∠AOC与∠BOC,∠BOD与∠COD的大小;
(2)将∠AOC写成两个角的和与两个角的差的形式.
(四)合作交流,再探新知
操作:在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线、请尝试画出符合要求的几何图形、结合角平分线定义和图形,请尝试写成几何符号语言形式.
(五)小试牛刀,再用新知
例2:如图,已知OC平分∠BOD,∠AOD=1100,∠COD=350,求∠AOB,∠AOC 的度数、
例3:如图,∠COB=2∠AOC,OD平分
∠ AOB,且∠COD=190,求∠AOB的度数.
(教材151页第5题)
(六)随堂练习,巩固新知
1、教材149页第1题.
2、将第1题改为:
按下列要求画图,并解答问题:
(1)画∠AOB=900;
(2)再画∠BOC=300;
(3)求∠AOC的度数.
3、如图,∠AOB=∠BOC
=∠COD=∠DOE,请写出图中所有的角平分线.
(七)师生互动,小结新知
一、比较角的大小两种方法:叠合法(顶点重合;一边重合;另一边在同旁)和度量法;
二、角的和、差;
三、角平分线;
四、注意几何问题的表达方式:文字语言、几何图形和几何符号语言之间的联系与转化;
五、应用这些知识解答问题.
(八)布置作业,深化新知
教材150页习题4.5第1、2、3、4题.
《角的比较与补(余)角》教案(课时二)
知识与技能
(1)理解余角、补角的概念;
(2)理解掌握余角和补角的性质.
过程与方法
(1)经历观察、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;
(2)求某角的度数,使学生初步会用简单的代数思想一方程来处理图形的数量关系.
教学重点
余角和补角的概念及其性质.
教学难点
余角和补角的性质应用,培养学生的推理能力和有条理的表达能力.
教学设计
一、余角教学
1、课程探究
比萨斜塔的底部是石块堆积而成,量角器无法伸入斜塔底部测量,如何得到斜塔偏离竖直方向的角度?
由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=90°,所以∠1=90°-∠2.
2、实验操作
拿出一张用硬纸板做的直角,然后将其任意剪成两个角,分别标上∠1,∠2,问这两个角的和为多少度?(∠1+∠2=90°,我们把具有这种关系的∠1、∠2称为互余.)
3、互余的概念
如果两个锐角的和是一个直角,我们就说这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角.如右图中,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角.
互余的数量关系:∠1+∠2=90°∠1的余角=90°—∠1
4、注意要点:
(1)移动剪纸后的∠1和∠2,是这两个角处于不同的平面,提问:∠1和∠2还互余吗?(仍然互余,因为概念中没有对角的位置做要求)
(2)把∠2剪成∠2和∠3,那么我们可以说∠1,∠2和∠3互余吗?(不能,因为概念中互余是对相对两个角而言的,不能扩展到三个角)
二、补角教学
1、课程探究
水库大坝的底部是石块堆积而成,量角器无法伸入大坝底部测量,如何得到大坝的坡度?由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=180°,所以∠1=180°-∠2.
2、实验探究
拿出一张用硬纸板做的平角,然后将其任意剪成两个角,分别标上∠1,∠2,问这两个角的和为多少度?(∠1+∠2=1800°,我们把具有这种关系的∠1、∠2称为互补)
3、自主探究
以同桌为一个小组,类比两角互余的概念,一起探讨两角互补的概念及特点.。