新人教七年级数学上册第二章整式的加减易错题训练
第 2 章 整式的加减(易错题)- 数学七年级上册-人教版

第2章整式的加减易错题易错大集合易错点一:单项式典例下列说法中正确的是()跟踪训练一2.写出一个含有字母x,y,系数为-8,次数为4的单项式___.3.某船顺水航行3小时,逆水航行2小时,已知轮船在静水中的速度为a千米/时,水流速度为b千米/时,轮船共航行_____ 千米.典例多项式2x2−3x+5是_____次_____项式.跟踪训练二1.在多项式 24532846z y x y +--中,最高次项的系数和常数项分别为( )A.6和−8B.−4和−8C.2和−8D.−4和82.m 、n 都是正整数,多项式 n m y x y x mn m ++++3的次数是( )A.3m+2nB.m 或nC.m+n+1D.m+1、n 中的较大者3.若多项式 kxy x 23-与xy y 42+的差不含xy 项,则k=_____.典例下面是小明同学做的四道题:①3m+2m=5m ;②5x −4x=1;③ 22232p p p -=--;④3+x=3x .你认为他做正确了( )A.1道B.2道C.3道D.4道跟踪训练三1.代数式13-n m y x 与 y x 34-的和是一个单项式,则n m 是多少?2.若单项式 m y x 22与 413y x n -可以合并成一项,则m n 是多少?3.若323y x m -与 n y x 22是同类项,则|m −n|的值是( )A.0B.1C.7D.−1易错点四:整式的加减典例计算2a-3(a-b )的结果是( )A.-a-3bB.a-3b C .a+3b D.-a+3b1.化简:-2a+(2a-1)的结果是( )A.-4a-1B.4a-1C.1D.-12.小刚在计算21+n 的时候,误将“+”看成“-”结果得−10,则21+n 的值为?3.小明同学在计算60−a 时,错把"−"看成是"+",结果得到−20,那么60−a 的正确结果应该是多少?易错点五:化简求值典例先化简再求值: ,y x xy y x xy y x 2224)(3)(2---+其中x=−1,y=2.1.先化简,再求值 : )3(3)23(22222b a ab ab b a +---其中 |a-1|+2)2(+b =0.2. 小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a −2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a −6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数3.某空调器销售商,今年四月份销出空调(a −1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.(1)用代数式表示该销售商今年第二季度共销售空调多少台?(2)若a=220,求第二季度销售的空调总数.4.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?5.现有甲、乙两家旅行社,报价均为500元/人,两家旅行社都对10人以上的团体推出了如下优惠方案:甲旅行社:每位游客给八折优惠.乙旅行社免一位大人,其余游客给九折优惠.(1)若参加旅游的人数为x(x>10)人,甲、乙两家旅行社各应缴费多少元?(2)若18人去旅游,则选哪家旅行社较优惠?请说明理由.6.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:备注:1.每月居民用水缴费包括实际用水的水费和污水处理费两部分.2.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.7.某超市在“十一”期间对顾客实行优惠购物的条款如下表:(1)甲顾客一次性购物800元,他实际付款________元.(2)乙顾客在该超市一次性购物x元,当200≤x<500时,他实际付款________元;当x≥500时,他实际付款________元;(用含x的代数式表示)(3)丙顾客两次购物货款合计为820元,第一次购物的货款为a元(200<a<300),试用a 的代数式表示丙顾客两次购物实际付款合计多少元?8.一辆出租车从A地出发,在一条东西走向的街道上行驶,若记向东为正,每次行驶的路程记录如下(x>9km).(1)求经过四次行驶后,这辆出租车所在的位置;(2)若x=12,这辆出租车一共行驶了多少路程?。
七年级上《第2章整式的加减》拔高题及易错题附答案

七年级上《第2章整式的加减》拔高题及易错题附答案(全卷总分150分)姓名得分一、多项选择题(每个子题4分,共40分)1.计算3a3+a3,结果正确的是()a、 3a6b.3a3c.4a6d.4a32.单项式?1a2n?12b4与3a2mb8m是同类项,则(1+n)100?(1?m)102=()a、 B.14c。
4D。
1无法计算3.已知a3bm+xn-1y3m-1-a1-sbn+1+x2m-5ys+3n的化简结果是单项式,那么mns=()a.6b.-6c.12d.-124.若a和b都是五次多项式,则()a、 a+B必须是多形式,B.a-B必须是单个术语c.a-b是次数不高于5的整式d.a+b是次数不低于5的整式5.A-B=5,则3A+7+5b-6(A+13b)等于()a.-7b.-8c.-9d.106.随着服装市场竞争的日益激烈,品牌服装店的一件服装将按原价降价一元,然后再打七折。
如果当前价格为B元,则原价为()a.a?10b7b.a?7b10c、 b?10a7d.b?7a107.如图,阴影部分的面积是()a、 112xyb。
132xyc.6xyd.3xy8.一个多项式a与多项式b=2x2-3xy-y2的和是多项式c=x2+xy+y2,则a等于()a、 x2-4xy-2y2b.-x2+4xy+2y2c.3x2-2xy-2y2d.3x2-2xy9.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()a.-16b.-8c.8d.1610.商品的购买价格为每件1元,按购买价格的25%加价出售。
后来,由于库存积压,价格降低,以销售价格的10%出售,每件都有利可图()a.0.125a元b.0.15a元c.0.25a元d.1.25a元二、填空题(每小题5分,共30分).单项式?23? 2ab4113的系数为,次数为12.已知单项式23xbyc与单项式12xm?2y2n?1的差是axn?3ym?1,则abc?.13、当x=1时,代数公式AX5+BX3+CX+ 1=2022。
新人教版数学七年级上 第二章整式的加减易错题

一、基本概念中的易错题
- 新世纪教育网 版权所有
1,单项式的定义 例1,下列各式子中,是单项式的有 ①、②、④、⑦ (填序号) ______________
1 2 x 1 x ①a; ② ; ③x y; ④xy; ⑤ ;⑥ ;⑦ ; 2 x 2
注意:1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式; 3,只用乘号把数字或字母连接在一起 的式子仍是单项式; 4,当式子中出现分母时,要留意分母里有 没有字母,有字母的就不是单项式,如 果分母没有字母的仍有可能是单项式 新世纪教育网 (注:“π”当作数字,而不是字母) 版权所有
- (1)(3) 新世纪教育网不是同类项; 答:(2)、(4)是同类项, 版权所有
例2 下列合并同类项的结果错误的 ①、②、③、④、⑤ 有_______________. 注意:1,合并同类项 ① 3a 2 2a 3 5a 5 ; 的法则是把同类项的系 ②2 x 4 x 6 x 2 ; 数相加,字母和字母的 ③ 7ab 2ab 5; 次数不变; ④ 3ab 2ab 1ab; 2,合并同类项 1 2 2 1 2 ⑤3 x x 2 x ; 后也要注意书写格式; 2 2 3,如果两个同 ⑥ ab2 b 2 a 0; 类项的系数互为相反数, 那么合并同类项后,结 果得____; 0
3 2 2 1 (1)解 : 原 式 = ( 3 x y yx ) ( 2 xy xy 2 ) 2 3 3 5 = x 2 y xy 2 2 3
版权所有
例6 王强班上有男生m人,女生比男生的一半多5 人,王强班上的总人数(用m表示)为______人。
1 易错点:结果不进行化简,直接写(m m 5). 2
《易错题》初中七年级数学上册第二章《整式的加减》(培优专题)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.下列代数式的书写,正确的是( ) A .5n B .n5C .1500÷tD .114x 2y A 解析:A 【分析】直接利用代数式书写方法分析得出答案. 【详解】解:A 、5n ,书写正确,符合题意; B 、n5,书写错误,不合题意; C 、1500÷t ,应为1500t,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意;故选:A . 【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C 解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义. 4.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义. 5.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.6.已知 2x6y2和﹣3x3m y n是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,根据代数式求值,可得答案.【详解】由题意,得3m=6,n=2.解得m=2,n=2.9m2﹣5mn﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线OA上B.射线OB上C.射线OC上D.射线OD上C解析:C【分析】由图可观察出负数在OC或OD射线上,在OC射线上的数为-4的奇数倍,在OD射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC或OD射线上,排除选项A,B,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + C 解析:C 【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2. 【详解】解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C . 【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1. 10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .nC .m n +D .m ,n 中较大者D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .12.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.13.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个 B .2个C .3个D .4个A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键. 14.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.1.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008 【解析】a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2, a 5=−|a 4+4|=−|−2+4|=−2, …,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n;a 2016=−20162=−1008. 故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.4.a-b,b-c,c-a三个多项式的和是____________0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.5.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可. 【详解】 这列数可以写为12,33,54,75, 因此,分母为从2开始的连续正整数,分子为从1开始的奇数, 故第n 个数为211n n -+. 故答案为:211n n -+. 【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键 解析:0.8π-【分析】根据单项式系数的定义进行求解即可. 【详解】单项式20.8a h π-的系数是0.8π- 故答案为:0.8π-. 【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+,∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 11.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.1.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 2.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;∴所挡的二次三项式为x2﹣8x+4.(2)当x=﹣2时,x2﹣8x+4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.3.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求a b﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b﹣m|﹣|a+m|=b﹣m+(a+m)=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.4.窗户的形状如图所示(图中长度单位:cm),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。
人教版七年级数学上册第2章整式的加减拔高题及易错题(Word版附答案)

人教版人教版七七年级数学年级数学 第2章 整式的加减整式的加减 拔高及易错拔高及易错题题精选精选((全卷总分150分) 姓名姓名 得分得分得分 一、选择题(每小题4分,共40分)1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.单项式 −21a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( )A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A. 6B. -6C. 12D. -12 4.若A 和B 都是五次多项式,则( )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .710b a +B .107ba +C .710a b +D .107ab +7.如图,阴影部分的面积是( )A. 211xyB. 213xy C .6xy D .3xy8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 211.单项式32423ab π−的系数是12.已知单项式23b cx y 与单项式13.当x=1时,代数式ax 5+bx 3+14.已知3a ba b−=+,代数式2(a a −15.已知a ,b ,c在数轴上的位16.平移小菱形◇可以得到美丽似“中国结”的图案,按图中规律三、解答题(共80分)17.(8分)已知数轴有A 、B 、C 三求4x+4y+30的值。
(易错题)人教版初中七年级数学上册第二章《整式的加减》模拟检测题(含答案解析)

一、选择题1.(0分)[ID :68038]如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次2.(0分)[ID :68037]若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±83.(0分)[ID :68036]某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元 C .(1+15%)(1-20%)a元D .(1+20%)15%a 元4.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差D .1除以a 与b 的差5.(0分)[ID :68043]下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .856.(0分)[ID :68016]一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- 7.(0分)[ID :68007]已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣18.(0分)[ID :67995]若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .09.(0分)[ID :67993]将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202210.(0分)[ID :67986]古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3111.(0分)[ID :67975]式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是12.(0分)[ID :67974]若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数 13.(0分)[ID :67972]﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c 14.(0分)[ID :67964]已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5B .1C .5D .﹣115.(0分)[ID :67962]多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式二、填空题16.(0分)[ID :68150]已知等式:222 2233+=⨯,2333388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 17.(0分)[ID :68144]将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.18.(0分)[ID :68140]一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______. 19.(0分)[ID :68135]在多项式422315x xx x 中,同类项有_________________;20.(0分)[ID :68121]将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.21.(0分)[ID :68117]礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.22.(0分)[ID :68113]将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.23.(0分)[ID :68104]在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.24.(0分)[ID :68091]如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).25.(0分)[ID :68076]多项式234324x x x -+-按x 的降幂排列为______. 26.(0分)[ID :68066]在整式:32x y -,98b -,336b y-,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.27.(0分)[ID :68063]观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.三、解答题28.(0分)[ID :67789]观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现:(1)系数的规律有两条: 系数的符号规律是 系数的绝对值规律是 (2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .29.(0分)[ID :67783]先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-.30.(0分)[ID :67781]国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.D3.A4.C5.D6.A7.D8.B9.A10.C11.C12.A13.B14.A15.D二、填空题16.【分析】先根据已知代数式归纳出(n为正整数)然后令n=10求得ab最后求和即可【详解】解:由已知代数式可归纳出(n为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案17.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn的值然后即可得到m+n的值【详解】解:∵将正偶数按照如下规律进行18.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键19.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义20.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本21.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n22.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到23.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当24.2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab﹣b2b时a+b﹣b+2b=a+2b;当投中的目标区域内的单项式为﹣a2a02b时﹣a+2a+0+2b=a+2b故25.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或26.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型27.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n个单项式为即第2019个单项式为故答案为:【点睛】本题考三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数. 【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格, 如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.D解析:D 【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8m x y 与36n x y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.3.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.4.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.5.D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D . 【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.6.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.D解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】 解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0, 解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.9.A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】式子5xx分母中含有未知数,因而不是整式,故A、B错误,是代数式,故C正确.故选:C.【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.12.A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.13.B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 15.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关二、填空题16.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案解析:109【分析】 先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可.【详解】 解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10∴a+b=10+99=109.故答案为109.【点睛】 本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键. 17.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.18.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x,2(1)79y . 故答案为-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 19.-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.20.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.21.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n+-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.22.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.23.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.24.2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.25.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.26.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 27.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.三、解答题28.(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.29.2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+--22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.30.(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.。
《易错题》七年级数学上册第二单元《整式加减》-选择题专项经典复习题(含答案)(1)

一、选择题1.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A.本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.3.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.4.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2 C .0 D .4A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解. 【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2. 故选:A . 【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.5.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D.此题考查的是整式的加减,列式是关键,注意括号的运用. 6.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 7.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C解析:C 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值. 【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C . 【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 8.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 9.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误;故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键. 11.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.12.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y3-4y-6-(3y2-2y-5)= 5y3-4y-6-3y2+2y+5= 5y3-3y2-2y-1.故答案为D.【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.13.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m的值是()A.38 B.52 C.74 D.66 C解析:C【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n .∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 15.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 16.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个 B .3个C .4个D .5个C解析:C 【分析】单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.17.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键. 18.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 19.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4b C .-a -4b D .-7a +10b A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.20.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.3x y﹣是同类项,得3m x y和22nm=2,n=3,所以B选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.21.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.2x2﹣5x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.8x2+13x﹣1A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.22.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )A.﹣4 B.﹣5 C.﹣6 D.﹣7A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.23.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.本题考查了列代数式,正确理解增长率以及下降率的定义是关键. 24.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 25.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码.【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj .故选:D .【点睛】 本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.26.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 27.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒28.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.29.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.30.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A 解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章整式的加减易错题练习
一.选择题
1.下列说法正确的是( )
A . b 的指数是0
B . b 没有系数
C . -3是一次单项式
D . -3是单项式
2.多项式632234267x y x y x x -+--的次数是( )
A . 15次
B . 6次
C . 5次
D . 4次 3.下列式子中正确的是( )
A . 527a b ab +=
B . 770ab ba -=
C . 22245x y xy x y -=-
D . 235358x x x += 4.把多项式233524x x x +--按x 的降幂排列后,它的第三项为( ) A . -4 B . 4x C . -4x D . -2x 3 5.整式---[()]a b c 去括号应为( ) A . --+a b c
B . -+-a b c
C . -++a b c
D . ---a b c
6.当k 取( )时,多项式2213383
x kxy y xy --+-中不含xy 项
A . 0
B .
13
C . 19
D . 19
-
7.若A 与B 都是二次多项式,则A -B :(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。
上述结论中,不正确的有( ) A . 2个 B . 3个 C . 4个 D . 5个 8.在()()[()][()]a b c a b c a a -++-=+-的括号内填入的代数式是( ) A . c b c b --, B . b c b c ++, C . b c b c +-, D . c b c b -+,
9.下列整式中,不是同类项的是( ) A . 2
2
133
x y yx -
和
B . 1与-2
C . 2m n 与22
310nm ⨯
D .
2
2
113
3
a b b a 与
10. 下列式子中,二次三项式是( ) A .
2
2
1223xy y x
++
B . 22x x -
C . 222x xy y -+
D . 43x y +-
11. 下列说法正确的是( ) A . 35a -的项是35a 和
B . 2
2
238a c a ab b +++与是多项式 C . 22333x y xy z ++是三次多项式
D .
1188
16
x xy x
+
+和都是整式
12. --x x 合并同类项得( ) A . -2x B . 0 C . -2x 2 D . -2 13. 下列运算正确的是( ) A . 22232a a a -= B . 22321a a -= C . 2233a a -= D . 2232a a a -= 14. ()a b c -+的相反数是( )
A . ()a b c +-
B . ()a b c --
C . ()
-+-a b c
D . ()a b c ++
15. 已知关于x 的多项式ax 2-abx +b 与bx 2+abx +2a 的和是一个单项式,则a 、b 的关系是( )
A . a =b
B . a = -b 或b = -2a
C . a =0或b =0
D . ab =1
16. 多项式9x 2-6x -5与10x 2
-2x -7的差为( ) A . x 2-4x -2 B . -x 2-4x +2 C . x 2+4x +2 D . - x 2+4x +2 二.填空题
17.单项式-2πab 4x 6,-2x 2y 2z ,-x 的次数分别为: ;系数分别为: .
18.多项式2x 3-3xy 3+25
是 次 项式.
19. 一个三位数,百位、十位、个位上的数字分别为a 、b 、c ,则这个三位数是: . 20. 已知-x +2y =6,则5(x -2y )2-3(x -2y )-60的值为: .
21. 已知多项式x 2+2axy -xy 2与多项式3xy -axy 2-y 3的和不含xy 项,则其和为: . 22. 当a <3时,|a ﹣3|+a = _________ .
23. 有理数a ,b 满足a <0<b ,且|a |>|b |,则代数式|a +b |+|2a ﹣b |化简后结果为 _________ . 24.小明从报社以每份0.6元的价格购进了a 份报纸,以每份1.0元的价格出售了b 份,剩下的以0.3元/份退回报社,则小明卖报纸收入 元。
25.荆门出租车的收费标准是:起步价(2千米以内)为5元,多于2千米的部分每千米1.4元,若某人乘坐了x 千米(x ﹥2)的路程。
请写出你应支付费用的式子是 。
如果他花了19元,那么他乘坐了 千米的路程。
26.一个多项式a 8﹣a 7b +a 6b 2﹣a 5b 3
+…,则它一共有 项,其中第8、9项分别是 . 三.解答题
27. 一个铁丝长a 米,第一次用去它的一半少2米,第二次用去剩下的
23
还多1米.
⑴用代数式表示这根铁丝还剩多少米?⑵当a =600时,这根铁丝还剩多少米?(精确到0.1)
28.已知x =-32
,求()1
111x x ⎛
⎫+
+ ⎪+⎝
⎭
的值. 29.已知2x +x 2y =2,求-3x 2
y -6x +7的值.
30.要使多项式mx 3+3nxy 2+2x 3-xy 2+y 不含三次项,求2m +3n 的值.
31.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1,且3A +6B 的值与x 无关,求y 的值.
32.已知p -q =3,用M 表示p -2,p +2的平均数,N 表示q -2,q +5,q +6的平均数,试比较M 与N 的大小.
33.化简求值:8ab -{4a -3[6ab +5(ab +a -b )-7a ]-2},其中a =1,b = -1.。