电源管理——德州仪器 (TI)
德州仪器(TI) BQ34Z100宽量程电量监测计说明书

BQ34Z100 采用 Impedance Track™ 技术的宽量程电量监测计1 特性•支持锂离子和磷酸铁锂化学物质•对电压为 3V 至 65V 的电池使用已获得专利的 Impedance Track™技术估算容量–老化补偿–自放电补偿•支持超过 65Ah 的电池容量•支持高于 32A 的充放电电流•外部负温度系数 (NTC) 热敏电阻支持•支持与主机系统的两线制 I2C 和 HDQ 单线制通信接口•SHA-1/HMAC 认证•一个或者四个 LED 直接显示控制•五个 LED 和通过端口扩展器的更多显示•节能模式(典型电池组运行范围条件)–正常工作:< 140µA 平均电流–睡眠:< 64µA 平均电流–全睡眠:< 19µA 平均电流•封装:14 引脚 TSSOP 2 应用•轻型电动车辆•医疗仪器•移动无线电•电动工具•不间断电源 (UPS)3 说明德州仪器 (TI) BQ34Z100 是独立于电池串联配置工作的电量监测计解决方案,支持各种锂离子和磷酸铁锂电池化学物质。
通过外部电压转换电路可支持 3V 至 65V 的电池,此电路可通过自动控制来降低系统功耗。
BQ34Z100 器件提供多个接口选项,其中包括一个 I2C 从接口、一个 HDQ 从接口、一个或四个直接 LED 接口以及一个警报输出引脚。
此外,BQ34Z100 还支持外部端口扩展器,连接四个以上的 LED。
(1)如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
简化版原理图Table of Contents1 特性...................................................................................12 应用...................................................................................13 说明...................................................................................14 Revision History ..............................................................25 Pin Configuration and Functions ...................................36 Specifications ..................................................................46.1 Absolute Maximum Ratings........................................46.2 ESD Ratings...............................................................46.3 Recommended Operating Conditions.........................46.4 Thermal Information....................................................56.5 Electrical Characteristics: Power-On Reset................56.6 Electrical Characteristics: LDO Regulator...................56.7 Electrical Characteristics: Internal TemperatureSensor Characteristics..................................................56.8 Electrical Characteristics: Low-FrequencyOscillator.......................................................................66.9 Electrical Characteristics: High-FrequencyOscillator.......................................................................66.10 Electrical Characteristics: Integrating ADC(Coulomb Counter) Characteristics...............................66.11 Electrical Characteristics: ADC (Temperatureand Cell Measurement) Characteristics........................66.12 Electrical Characteristics: Data Flash MemoryCharacteristics (7)6.13 Timing Requirements: HDQ Communication............76.14 Timing Requirements: I 2C-Compatible Interface......86.15 Typical Characteristics..............................................97 Detailed Description ......................................................107.1 Overview...................................................................107.2 Feature Description...................................................117.3 Device Functional Modes..........................................398 Application and Implementation ..................................408.1 Typical Applications..................................................409 Power Supply Recommendations ................................4910 Layout ...........................................................................5010.1 Layout Guidelines...................................................5010.2 Layout Example......................................................5011 Device and Documentation Support ..........................5311.1 Documentation Support..........................................5311.2 接收文档更新通知...................................................5311.3 支持资源..................................................................5311.4 Trademarks.............................................................5311.5 Electrostatic Discharge Caution..............................5311.6 术语表.....................................................................5312 Mechanical, Packaging, and OrderableInformation (53)4 Revision History注:以前版本的页码可能与当前版本的页码不同Changes from Revision B (December 2012) to Revision C (May 2021)Page•根据更新的德州仪器 (TI) 标准更改了文档格式并通篇更新了 SRP 和 SRN 引脚................................................1•Changed Ground System ................................................................................................................................50•Changed Board Offset Considerations ............................................................................................................51Changes from Revision A (September 2012) to Revision B (December 2012)Page•Changed Absolute Maximum Ratings ...............................................................................................................4•Changed 节 6.3 ..................................................................................................................................................4•Changed 节 7.2.15.3 ........................................................................................................................................39•Changed SLEEP Mode ....................................................................................................................................39•Changed FULL SLEEP Mode ..........................................................................................................................39•Changed STEP 3 (44)BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 20215 Pin Configuration and FunctionsP2P3/SDA VEN P4/SCL P1P5/HDQ BAT P6/TS CE SRN REGIN SRP REG25VSSBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6 Specifications6.1 Absolute Maximum Ratings(1)(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.6.2 ESD Ratings(1)JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.6.3 Recommended Operating Conditions6.3 Recommended Operating Conditions (continued)6.4 Thermal Information(1)For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report , SPRA953.6.5 Electrical Characteristics: Power-On Reset6.6 Electrical Characteristics: LDO Regulator(1)(1)LDO output current, I OUT , is the sum of internal and external load currents.(2)Specified by design. Not production tested.6.7 Electrical Characteristics: Internal Temperature Sensor CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.8 Electrical Characteristics: Low-Frequency Oscillator(1)The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, T A = 25°C.(2)The frequency error is measured from 32.768 kHz.(3)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.9 Electrical Characteristics: High-Frequency Oscillator(1)The frequency error is measured from 2.097 MHz.(2)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.10 Electrical Characteristics: Integrating ADC (Coulomb Counter) Characteristics(1)Specified by design. Not tested in production.(2)Full-scale reference6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics (continued)(1)Specified by design. Not tested in production.6.12 Electrical Characteristics: Data Flash Memory Characteristics(1)Specified by design. Not tested in production.6.13 Timing Requirements: HDQ CommunicationT A = –40°C to 85°C, C REG = 1.0 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6 VBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021(a)Break and Break Recovery(c)Host Transmitted Bit(d)Gauge Transmitted Bit(b)HDQ line rise time图 6-1. Timing Diagrams6.14 Timing Requirements: I2C-Compatible InterfaceT A = –40°C to 85°C, C REG = 0.47 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6t SU(STA)SCLSDAt w(H)tw(L)t f tr t(BUF)t rt d(STA)REPEATEDSTARTt h(DAT)t su(DAT)t f t su(STOP)STOP START图 6-2. I2C-Compatible Interface Timing DiagramsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.15 Typical CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 7 Detailed Description7.1 OverviewThe BQ34Z100 device accurately predicts the battery capacity and other operational characteristics of a single cell or multiple rechargeable cell blocks, which are voltage balanced when resting. The device supports various Li-ion and LiFePO4 chemistries, and can be interrogated by a host processor to provide cell information, such as remaining capacity, full charge capacity, and average current.Information is accessed through a series of commands called Standard Data Commands (see 节7.2.1.1). Further capabilities are provided by the additional Extended Data Commands set (see 节 7.2.2). Both sets of commands, indicated by the general format Command(), are used to read and write information contained within the BQ34Z100 device’s control and status registers, as well as its data flash locations. Commands are sent from host to gauge using the BQ34Z100 serial communications engines, HDQ and I2C, and can be executed during application development, pack manufacture, or end-equipment operation.Cell information is stored in the BQ34Z100 in non-volatile flash memory. Many of these data flash locations are accessible during application development and pack manufacture. They cannot, generally, be accessed directly during end-equipment operation. Access to these locations is achieved by using the BQ34Z100 device’s companion evaluation software, through individual commands, or through a sequence of data-flash-access commands. To access a desired data flash location, the correct data flash subclass and offset must be known. The BQ34Z100 provides 32 bytes of user-programmable data flash memory. This data space is accessed through a data flash interface. For specifics on accessing the data flash, refer to 节 7.2.3.The key to the BQ34Z100 device’s high-accuracy gas gauging prediction is Texas Instrument’s proprietary Impedance Track algorithm. This algorithm uses voltage measurements, characteristics, and properties to create state-of-charge predictions that can achieve accuracy with as little as 1% error across a wide variety of operating conditions.The BQ34Z100 measures charge/discharge activity by monitoring the voltage across a small-value series sense resistor connected in the low side of the battery circuit. When an application’s load is applied, cell impedance is measured by comparing its Open Circuit Voltage (OCV) with its measured voltage under loading conditions.The BQ34Z100 can use an NTC thermistor (default is Semitec 103AT or Mitsubishi BN35-3H103FB-50) for temperature measurement, or can also be configured to use its internal temperature sensor. The BQ34Z100 uses temperature to monitor the battery-pack environment, which is used for fuel gauging and cell protection functionality.To minimize power consumption, the BQ34Z100 has three power modes: NORMAL, SLEEP, and FULL SLEEP. The BQ34Z100 passes automatically between these modes, depending upon the occurrence of specific events. Multiple modes are available for configuring from one to 16 LEDs as an indicator of remaining state of charge. More than four LEDs require the use of one or two inexpensive SN74HC164 shift register expanders.A SHA-1/HMAC-based battery pack authentication feature is also implemented on the BQ34Z100. When the IC is in UNSEALED mode, authentication keys can be (re)assigned. A scratch pad area is used to receive challenge information from a host and to export SHA-1/HMAC encrypted responses. See 节 7.2.14.1 for further details.备注Formatting conventions in this document:Commands: italics with parentheses and no breaking spaces; for example, RemainingCapacity().Data Flash: italics, bold, and breaking spaces; for example, Design Capacity.Register Bits and Flags: brackets only; for example, [TDA] DataFlash Bits: italic and bold; for example, [LED1]Modes and states: ALL CAPITALS; for example, UNSEALED mode.7.2 Feature Description7.2.1 Data Commands7.2.1.1 Standard Data CommandsThe BQ34Z100 uses a series of 2-byte standard commands to enable host reading and writing of battery information. Each standard command has an associated command-code pair, as indicated in 表 7-1. Because each command consists of two bytes of data, two consecutive HDQ/I2C transmissions must be executed to initiate the command function and to read or write the corresponding two bytes of data. Standard commands are accessible in NORMAL operation. Also, two block commands are available to read Manufacturer Name and Device Chemistry. Read/Write permissions depend on the active access mode.7.2.1.2 Control(): 0x00/0x01Issuing a Control() command requires a subsequent two-byte subcommand. These additional bytes specify the particular control function desired. The Control()command allows the host to control specific features of the BQ34Z100 during normal operation, and additional features when the BQ34Z100 is in different access modes, as described in 表 7-2.7.2.1.2.1 CONTROL_STATUS: 0x0000Instructs the fuel gauge to return status information to Control addresses 0x00/0x01. The status word includes the following information.Legend: RSVD = ReservedFAS:Status bit that indicates the BQ34Z100 is in FULL ACCESS SEALED state. Active when set.SS:Status bit that indicates the BQ34Z100 is in the SEALED state. Active when set.CALMODE:Status bit that indicates the BQ34Z100 calibration function is active. True when set.Default is 0.CCA:Status bit that indicates the BQ34Z100 Coulomb Counter Calibration routine is active. Active when set.BCA:Status bit that indicates the BQ34Z100 Board Calibration routine is active. Active when set.CSV:Status bit that indicates a valid data flash checksum has been generated. Active when set.FULLSLEEP:Status bit that indicates the BQ34Z100 is in FULL SLEEP mode. True when set. The state can only be detected by monitoring the power used by the BQ34Z100 because any communication will automatically clear it.SLEEP:Status bit that indicates the BQ34Z100 is in SLEEP mode. True when set.LDMD:Status bit that indicates the BQ34Z100 Impedance Track algorithm using constant-power mode. True when set.Default is 0 (CONSTANT CURRENT mode).RUP_DIS:Status bit that indicates the BQ34Z100 Ra table updates are disabled. True when set.VOK:Status bit that indicates cell voltages are OK for Qmax updates. True when set.QEN:Status bit that indicates the BQ34Z100 Qmax updates are enabled. True when set.7.2.1.2.2 DEVICE TYPE: 0x0001Instructs the fuel gauge to return the device type to addresses 0x00/0x01.7.2.1.2.3 FW_VERSION: 0x0002Instructs the fuel gauge to return the firmware version to addresses 0x00/0x01.7.2.1.2.4 HW_VERSION: 0x0003Instructs the fuel gauge to return the hardware version to addresses 0x00/0x01.7.2.1.2.5 RESET_DATA: 0x0005Instructs the fuel gauge to return the number of resets performed to addresses 0x00/0x01.7.2.1.2.6 PREV_MACWRITE: 0x0007Instructs the fuel gauge to return the previous command written to addresses 0x00/0x01. The value returned is limited to less than 0x0020.7.2.1.2.7 CHEM ID: 0x0008Instructs the fuel gauge to return the chemical identifier for the Impedance Track configuration to addresses 0x00/0x01.7.2.1.2.8 BOARD_OFFSET: 0x0009Instructs the fuel gauge to calibrate board offset. During board offset calibration the [BCA] bit is set.7.2.1.2.9 CC_OFFSET: 0x000AInstructs the fuel gauge to calibrate the coulomb counter offset. During calibration the [CCA] bit is set.7.2.1.2.10 CC_OFFSET_SAVE: 0x000BInstructs the fuel gauge to save the coulomb counter offset after calibration.7.2.1.2.11 DF_VERSION: 0x000CInstructs the fuel gauge to return the data flash version to addresses 0x00/0x01.7.2.1.2.12 SET_FULLSLEEP: 0x0010Instructs the fuel gauge to set the FULLSLEEP bit in the Control Status register to 1. This allows the gauge to enter the FULL SLEEP power mode after the transition to SLEEP power state is detected. In FULL SLEEP mode, less power is consumed by disabling an oscillator circuit used by the communication engines. For HDQ communication, one host message will be dropped. For I2C communications, the first I2C message will incur a 6-ms–8-ms clock stretch while the oscillator is started and stabilized. A communication to the device in FULL SLEEP will force the part back to the SLEEP mode.7.2.1.2.13 STATIC_CHEM_DF_CHKSUM: 0x0017Instructs the fuel gauge to calculate chemistry checksum as a 16-bit unsigned integer sum of all static chemistry data. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with the value stored in the data flash Static Chem DF Checksum. If the value matches, the MSB will be cleared to indicate a pass. If it does not match, the MSB will be set to indicate a failure.7.2.1.2.14 SEALED: 0x0020Instructs the fuel gauge to transition from UNSEALED state to SEALED state. The fuel gauge should always be set to SEALED state for use in customer’s end equipment.7.2.1.2.15 IT ENABLE: 0x0021Forces the fuel gauge to begin the Impedance Track algorithm, sets Bit 2 of UpdateStatus and causes the [VOK] and [QEN] flags to be set in the CONTROL STATUS register. [VOK] is cleared if the voltages are not suitable for a Qmax update. Once set, [QEN] cannot be cleared. This command is only available when the fuel gauge is UNSEALED and is typically enabled at the last step of production after the system test is completed.7.2.1.2.16 RESET: 0x0041Instructs the fuel gauge to perform a full reset. This command is only available when the fuel gauge is UNSEALED.7.2.1.2.17 EXIT_CAL: 0x0080Instructs the fuel gauge to exit CALIBRATION mode.7.2.1.2.18 ENTER_CAL: 0x0081Instructs the fuel gauge to enter CALIBRATION mode.7.2.1.2.19 OFFSET_CAL: 0x0082Instructs the fuel gauge to perform offset calibration.7.2.1.3 StateOfCharge(): 0x02/0x03This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of FullChargeCapacity() with a range of 0 to 100%.7.2.1.4 RemainingCapacity(): 0x04/0x05This read-only command pair returns the compensated battery capacity remaining. Unit is 1 mAh per bit.7.2.1.5 FullChargeCapacity(): 0x06/07This read-only command pair returns the compensated capacity of the battery when fully charged. Unit is 1 mAh per bit except if X10 mode is selected. In X10 mode, units are 10 mAh per bit. with units of 1 mAh per bit. . FullChargeCapacity() is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.1.6 Voltage(): 0x08/0x09This read-word function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of 0 V to 65535 mV.7.2.1.7 AverageCurrent(): 0x0A/0x0BThis read-only command pair returns a signed integer value that is the average current flowing through the sense resistor. It is updated every 1 second. Unit is 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit. with units of 1 mA per bit.7.2.1.8 Temperature(): 0x0C/0x0DThis read-word function returns an unsigned integer value of the temperature, in units of 0.1 K, measured by the gas gauge and has a range of 0 to 6553.5 K. The source of the measured temperature is configured by the [TEMPS] bit in the Pack Configuration register (see 节 7.2.2).7.2.1.9 Flags(): 0x0E/0x0FThis read-word function returns the contents of the Gas Gauge Status register, depicting current operation status.Legend: RSVD = ReservedOTC:Overtemperature in Charge condition is detected. True when setOTD:Overtemperature in Discharge condition is detected. True when setBATHI:Battery High bit that indicates a high battery voltage condition. Refer to the data flash BATTERY HIGH parameters for threshold settings.BATLOW:Battery Low bit that indicates a low battery voltage condition. Refer to the data flash BATTERY LOW parameters for threshold settings.CHG_INH:Charge Inhibit: unable to begin charging. Refer to the data flash [Charge Inhibit Temp Low, Charge Inhibit Temp High] . True when setXCHG:Charging not allowedRSVD:ReservedFC:Full charge is detected. FC is set when charge termination is reached and FC Set% = –1 (see 节 7.2.10 for details) or StateOfCharge() is larger than FC Set% and FC Set% is not –1. True when setCHG:(Fast) charging allowed. True when setOCVTAKEN:Cleared on entry to RELAX mode and set to 1 when OCV measurement is performed in RELAX mode.ISD:Internal Short is detected. True when set. TDD = Tab Disconnect is detected. True when setSOC1:State-of-Charge Threshold 1 reached. True when setSOCF:State-of-Charge Threshold Final reached. True when setDSG:Discharging detected. True when set7.2.2 Extended Data CommandsExtended commands offer additional functionality beyond the standard set of commands. They are used in the same manner; however, unlike standard commands, extended commands are not limited to 2-byte words. The number of command bytes for a given extended command ranges in size from single to multiple bytes, as specified in 表 7-6. For details on the SEALED and UNSEALED states, refer to 节 7.2.3.3.(1)SEALED and UNSEALED states are entered via commands to CNTL 0x00/0x01.(2)In SEALED mode, data flash cannot be accessed through commands 0x3E and 0x3F.7.2.2.1 AtRate(): 0X10/0x11The AtRate() read-/write-word function is the first half of a two-function call-set used to set the AtRate value used in calculations made by the AtRateTimeToEmpty() function. The AtRate() units are in mA.The AtRate() value is a signed integer and both positive and negative values will be interpreted as a discharge current value. The AtRateTimeToEmpty()function returns the predicted operating time at the AtRate value of discharge. The default value for AtRate() is zero and will force AtRate() to return 65535.7.2.2.2 AtRateTimeToEmpty(): 0x12/0x13This read-word function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicatesAtRate() = 0.The gas gauge updates AtRateTimeToEmpty() within 1s after the host sets the AtRate() value. The gas gauge automatically updates AtRateTimeToEmpty() based on the AtRate() value every 1 s.7.2.2.3 Current(): 0x10/0x11This read-only command pair returns a signed integer value that is the current flow through the sense resistor. It is updated every 1 second. Units are 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit.with units of 1mA. However, if PackConfiguration [SCALED]is set then the units have been scaled through the calibration process. The actual scale is not set in the device and SCALED is just an indicator flag.7.2.2.4 NominalAvailableCapacity(): 0x14/0x15This read-only command pair returns the uncompensated (no or light load) battery capacity remaining. Unit is 1 mAh per bit.7.2.2.5 FullAvailableCapacity(): 0x16/0x17This read-only command pair returns the uncompensated (no or light load) capacity of the battery when fully charged. Unit is 1 mAh per bit. FullAvailableCapacity()is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.2.6 TimeToEmpty(): 0x18/0x19This read-only function returns an unsigned integer value of the predicted remaining battery life at the present rate of discharge , in minutes. A value of 65535 indicates that the battery is not being discharged.This read-only function returns an unsigned integer value of predicted remaining time until the battery reaches full charge, in minutes, based upon AverageCurrent(). The computation should account for the taper current time extension from the linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.7.2.2.8 StandbyCurrent(): 0x1C/0x1DThis read-only function returns a signed integer value of the measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially, it reports the standby current programmed in Initial Standby, and after spending some time in standby, reports the measured standby current.The register value is updated every 1 second when the measured current is above the Deadband (3 mA default) and is less than or equal to 2 x Initial Standby. The first and last values that meet this criterion should not be averaged in, since they may not be stable values. To approximate a 1 minute time constant, each new StandbyCurrent() value is computed as follows:StandbyCurrent()NEW = (239/256) × StandbyCurrent()OLD + (17/256) × AverageCurrent()7.2.2.9 StandbyTimeToEmpty(): 0x1E/0x1FThis read-only function returns an unsigned integer value of the predicted remaining battery life at the standby rate of discharge, in minutes. The computation should use Nominal Available Capacity (NAC), the uncompensated remaining capacity, for this computation. A value of 65535 indicates battery is not being discharged.7.2.2.10 MaxLoadCurrent(): 0x20/0x21This read-only function returns a signed integer value, in units of mA, of the maximum load conditions. The MaxLoadCurrent()is an adaptive measurement which is initially it reports the maximum load current programmed in Initial Max Load Current. If the measured current is ever greater than Initial Max Load Current, then MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and Initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC less than 50%. This prevents the reported value from maintaining an unusually high value.7.2.2.11 MaxLoadTimeToEmpty(): 0x22/0x23This read-only function returns an unsigned integer value of the predicted remaining battery life at the maximum load current discharge rate, in minutes. A value of 65535 indicates that the battery is not being discharged.7.2.2.12 AvailableEnergy(): 0x24/0x25This read-only function returns an unsigned integer value of the predicted charge or energy remaining in the battery. The value is reported in units of mWh.7.2.2.13 AveragePower(): 0x26/0x27This read-word function returns an unsigned integer value of the average power of the current discharge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.7.2.2.14 TimeToEmptyAtConstantPower(): 0x28/0x29This read-only function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AveragePower() value in minutes. A value of 65535 indicates AveragePower() = 0. The gas gauge automatically updates TimeToEmptyatContantPower() based on the AveragePower() value every 1s.7.2.2.15 InternalTemp(): 0x2A/0x2BThis read-only function returns an unsigned integer value of the measured internal temperature of the device, in units of 0.1 K, measured by the fuel gauge.。
德州仪器的核心管理措施

德州仪器的核心管理措施
德州仪器(Texas Instruments)是一家全球领先的半导体技术和解决方案提供商。
以下是德州仪器采取的核心管理措施:
1.以员工为中心:德州仪器注重对员工的关怀和培养,建立了以员工为中心的管理理念。
公司提供包括培训、发展、福利和平衡工作与生活等方面的支持,鼓励员工充分发挥自己的潜力。
2.激励和奖励制度:德州仪器实行激励和奖励制度,根据员工的贡献和绩效进行评估,并给予相应的奖励或晋升机会。
这激励了员工的积极性和创造力,推动了公司的发展。
3.持续的创新和研发:德州仪器致力于持续创新和研发,不断推出具有市场竞争力的新产品和解决方案。
公司重视技术创新和知识产权保护,不断提升自身竞争力。
4.高效的供应链管理:德州仪器建立了高效的供应链管理系统,确保原材料供应的稳定性和成本控制。
公司通过合理的库存管理和供应商合作,优化供应链流程,提供高质量的产品和服务。
5.质量和可持续发展:德州仪器将质量作为管理的核心,推行严格的质量控制和认证体系,确保产品和解决方案的可靠性和稳定性。
同时,公司致力于可持续发展,关注环境保护和社会责任,推动可持续的商业实践。
6.客户导向:德州仪器始终以客户为中心,关注客户需求,并提供定制化的解决方案和优质的客户服务。
公司积极倾听和回应客户反馈,不断提升客户满意度,保持良好的客户关系。
ti半导体芯片基础知识

ti半导体芯片基础知识TI,即德州仪器(Texas Instruments),是一家全球领先的半导体制造商,提供广泛的模拟和数字芯片产品。
以下是一些与TI半导体芯片相关的基础知识:1. **模拟芯片和数字芯片:** TI生产的芯片涵盖了模拟和数字两个主要领域。
模拟芯片处理连续信号,例如声音和光线,而数字芯片处理离散信号,如二进制数据。
2. **微控制器和处理器:** TI生产了许多嵌入式系统的关键组件,包括微控制器和数字信号处理器(DSP)。
这些芯片用于各种应用,从家用电器到工业自动化。
3. **功放芯片:** TI的功放芯片广泛用于音频应用,包括音响系统、耳机和汽车音响。
4. **模拟运算放大器(Op-Amp):** TI提供了各种用于模拟电路设计的运算放大器,用于放大信号、滤波和其他模拟电路应用。
5. **功率管理芯片:** TI的功率管理芯片用于提供电源管理解决方案,包括DC-DC转换器、电源管理IC和电池管理IC等。
6. **通信芯片:** TI提供通信芯片,包括无线通信和有线通信的解决方案,用于手机、网络设备、工业通信等领域。
7. **传感器:** TI生产各种传感器,例如温度传感器、压力传感器和光传感器,用于测量环境参数。
8. **电源管理和电池管理:** TI的芯片在电源管理和电池管理方面有广泛的应用,用于延长电池寿命、提高功效性能等。
9. **无线射频(RF)芯片:** TI的RF芯片用于实现各种无线通信标准,如蓝牙、Wi-Fi和射频识别(RFID)等。
10. **工业自动化芯片:** TI提供了广泛用于工业控制和自动化系统的芯片,包括PLC(可编程逻辑控制器)和工业通信解决方案。
这些是TI半导体芯片的一些基础知识。
TI一直在推动技术的创新,提供广泛的解决方案,覆盖了许多不同的应用领域。
德州仪器(TI)bq78350锂离子和磷酸铁锂电池管理控制器与bq769x0系列模拟前端(AFE)保

ProductFolderSample &BuyTechnicalDocumentsTools &SoftwareSupport &Communitybq78350ZHCSCR2–JULY2014 bq78350补偿放电终点电压(CEDV)锂离子电量监测计和电池管理控制器(与bq769x0电池监控模拟前端(AFE)配套)1特性•补偿放电终点电压(CEDV)电量计量算法•提供安全散列算法(SHA-1)认证•支持SMBus主机通信2应用•可灵活配置3到5节(bq76920)、6到10节•轻型电动车辆(LEV):电动自行车(eBike)、电动踏(bq76930)以及9到15节(bq76940)锂离子和磷板车(eScooter)、脚踏电动自行车(Pedelec)和踏酸铁锂电池板辅助自行车•支持高达320Ahr的电池配置•电动和园艺工具•支持高达320A的充放电电流•备用电池和不间断电源(UPS)系统•通过配套AFE支持外部负温度系数(NTC)热敏电•无线基站后备系统阻•电信电源系统•可编程保护特性的完全阵列–电压3说明–电流德州仪器(TI)bq78350锂离子和磷酸铁锂电池管理控–温度制器与bq769x0系列模拟前端(AFE)保护器件配套,–系统元件可提供全套电池管理系统(BMS)子系统,有助于加快•使用寿命的数据记录产品开发、缩短上市时间。
•支持CC-CV充电,包括预充电、充电禁止和充电暂停器件信息(1)•为多达八个不同的总线地址提供一个可选电阻器可部件号封装封装尺寸(标称值)编程SMBus从地址bq78350TSSOP(30)7.80mm x6.40mm •最多可驱动一个5段LED或LCD显示屏,以指示(1)要了解所有可用封装,请见数据表末尾的可订购产品附录。
充电状态4简化电路原理图bq78350ZHCSCR2–目录8.13Typical Characteristics (11)1特性 (1)9Detailed Description (12)2应用 (1)9.1Overview (12)3说明 (1)9.2Functional Block Diagram (12)4简化电路原理图 (1)9.3Feature Description (12)5修订历史记录 (2)9.4Device Functional Modes (14)6说明(续) (3)9.5Programming (15)7Pin Configuration and Functions (4)10Application and Implementation (16)8Specifications (6)10.1Application Information (16)8.1Absolute Maximum Ratings (6)10.2Typical Applications (16)8.2Handling Ratings (6)11Power Supply Recommendations (25)8.3Recommended Operating Conditions (6)12Layout (26)8.4Thermal Information (7)12.1Layout Guidelines (26)8.5Electrical Characteristics:Supply Current (7)12.2Layout Example (27)8.6Electrical Characteristics:I/O (7)13器件和文档支持 (28)8.7Electrical Characteristics:ADC (8)13.1相关文档 (28)8.8Electrical Characteristics:Power-On Reset (8)13.2商标 (28)8.9Electrical Characteristics:Oscillator (8)13.3静电放电警告 (28)8.10Electrical Characteristics:Data Flash Memory (8)13.4术语表 (28)8.11Electrical Characteristics:Register Backup (9)14机械封装和可订购信息 (28)8.12SMBus Timing Specifications (10)5修订历史记录日期修订版本注释2014年7月*最初发布版本bq78350 ZHCSCR2–JULY20146说明(续)bq78350控制器和bq769x0AFE支持3节到15节电池应用。
TI开关电源基础知识

TI开关电源基础知识目录1. 内容概览 (3)1.1 电源的重要性 (4)1.2 开关电源的概述 (5)2. 开关电源的工作原理 (6)2.1 开关型转换器的基本结构 (7)2.2 电流连续和电压连续型转换器 (8)2.3 开关频率的选择 (10)3. 开关电源的类型 (11)3.1 反激式转换器 (12)3.2 正激式转换器 (14)3.3 桥式转换器 (14)3.4 半桥转换器 (16)3.5 推挽转换器 (17)4. 开关电源的设计流程 (18)4.1 系统级设计 (19)4.2 输入和输出电压的选择 (20)4.3 开关频率和占空比的确定 (21)4.4 主开关和滤波器的选择 (22)5. 关键组件和工作原理 (24)5.1 主开关 (26)5.2 次级侧整流二极管 (27)5.3 输入和输出滤波电感 (28)5.4 输出滤波电容器 (29)5.5 反馈网络 (31)6. 设计举例与案例分析 (31)6.1 反激式转换器设计实例 (33)6.2 正激式转换器设计实例 (34)6.3 桥式转换器设计实例 (35)6.4 半桥转换器设计实例 (37)6.5 推挽转换器设计实例 (39)7. 电源效率与负载调整率 (40)7.1 效率计算 (42)7.2 负载调整率 (43)8. 开关电源的设计注意事项 (43)8.1 EMI抑制措施 (45)8.2 热管理 (46)8.3 电磁兼容性与安全 (47)8.4 封装与稳定 (49)9. 现代开关电源技术 (50)9.1 软开关技术 (52)9.2 多相电源 (53)9.3 高频转换器技术 (54)9.4 变频技术 (55)9.5 数字控制技术 (56)10. 测试与调试 (58)10.1 工作频率和占空比的测试 (59)10.2 输出电压和波形的测试 (60)10.3 效率和负载调整率的测试 (61)10.4 EMI和噪声测试 (63)11. 结论与展望 (64)11.1 开关电源的发展趋势 (65)11.2 未来研究方向 (66)1. 内容概览开关电源作为现代电子设备中不可或缺的组成部分,以其高效、节能、小巧等特点赢得了广泛的应用。
TI电源管理选择指南

PWM Controllers
(Page 16)
Backplane
MOSFET Drivers (Page 22)
Hot Swap and
Power-over-Ethernet (Page 51)
Non-Isolated Plug-In Modules
POLA™
(Page 25)
+
–
48-V
48-V or 24-V DC Input
Audio Supply
Noise-Sensitive RF Circuitry
Step-Up DC/DC Converters (Page 34)
Inductorless DC/DC Regulators
(Charge Pumps) (Page 39)
Battery Management
DC Inputs
Secondary Side Control (Page 16, 22)
PWM UC3849 UCC3839
Drivers TPS2811-15 TPS28225 TPS28226 TPS2829-29 UCC27423/4/5 UCC37321/2 UCC37323/4/5 UCD7100 UCD7201
USB
Battery Charge Management
(Page 46)
Lithium-Ion Protection and Authentication
for Batteries (Pages 50, 51)
Rechargeable Battery
Battery Fuel Gauges
(Page 48)
Isolated Plug-In Modules (Page 25)
TI推新一代电源管理IC bq25504

TI推新一代电源管理IC bq25504
日前,德州仪器(TI) 宣布推出适用于能量采集的新一代电源管理集成电路(IC)。
支持纳米(超低)级电能采集的高效率升压充电器不但可管理太阳能、热电、电磁以及振动等各种能源产生的微瓦至毫瓦级电源,而且可将采集到的能量存储在包括锂离子电池与超级电容器在内的各种存储设备中。
此外,该bq25504 还具有保护能量存储设备不受过压或欠压影响的电路,能够在电池深度放电情况下启动系统。
例如,对于在室内光照条件下为手持设备供电的太阳能面板而言,最新升压充电器与线性稳压器相比,可将收集的可用能量提升30% 至70%。
这种效率有助于设计人员减少设计方案中的太阳能面板数量,缩减其尺寸,降低整体解决方案成本。
该器件可为无线传感器网络(WSN) 带来极大优势,不仅支持区域、工业、水/废弃物以及结构监控,而且充分满足消费类、高可靠性以及医疗应用的需求。
TI 电源管理业务部高级副总裁Sami Kiriaki 指出:无线传感器网络相关传感器节点中的电池维护与替换成本导致其一直难以广泛推广。
随着
bq25504 升压充电器的推出,节点自动供电,降低运营成本,使超低功耗无线传感器网络在更多应用中实现低成本,满足危险或限制区域的工业监控等应用需求。
TI针对电源管理推出的impedance track技术

TI针对电源管理推出Impedance Track™技术(华强电子世界网讯)日前,德州仪器 (TI) 凭借其在电池管理方面雄厚的研发实力宣布推出一款功能独特的“电量监测计”技术,能够在电池整个寿命周期内以高达 99% 的精确度计算锂电池组的剩余电量。
新型Impedance Track™ 技术使便携式医疗设备、工业设备以及笔记本的设计人员和用户能够延长电池使用寿命,并始终能了解电池内剩余的可用能量。
TI 的创新型阻抗跟踪技术可精确监测阻抗改变或由电池老化、温度以及循环模式造成的电阻,从而准确预计双节池组、三节电池组和四节电池组的运行时间。
该技术集成在TI 基于闪存的 bq20z8x 电量监测计芯片组中,在电池组处于静止状态时,通过在相应的温度下关联电池组的空载电压和充电状态可以分析出准确的电荷状态。
该技术能够从静态电压中明确得出准确的“起始和终止位置”,并从相应的容量差中得出总容量,从而消除了完全充电与放电的必要。
对于如心脏起搏器等特定应用或用于电信系统(从不完全放电)中的电池组而言,阻抗跟踪将确保我们始终能够实时获得准确的电量信息。
阻抗跟踪依靠动态建模算法得知电池随着老化、温度或使用产生了多少衰减,并关联电池电解槽中阳极/阴极的典型化学属性,而跟电池属于何种品牌无关。
事实上,阻抗跟踪允许在同一电池组中混合使用来自不同制造商的电池,这就实现了电源的灵活性与持续性。
目前许多电量监测计集成电路技术均依赖静态而不可靠的建模技术,要求创建大型数据库才能测量数百种可用电池参数的具体属性。
而即将获得专利的阻抗跟踪技术能够显著降低 OED 及 OEM 厂商所需的开发与实施设置时间,可保证获得正确的特性,因为我们再也不需要什么数据库了。
双芯片 bq20z8x 电量监测计通过系统管理总线 (SMBus) 接口向系统主机控制器报告电量信息。
诸如 TMS320C55x 数字信号处理器等主机控制器管理剩余电池电量的目的在于进一步延长系统的运行时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
78 DC/DC Iout Vin Vin Vout Vout Iq (max) (min) (max) (min) (max) (typ) (A) (V) (V) (V) (V) (mA) Switch Current Limit (typ) (A) Switching Frequency (max) (kHz) Pin/Package Approx. Regulated Price Outputs (US$) (#)
PD
F -X C h a n ge
O W !
w
.d o
c u -tr a c k
Part Number c
m
o
.
Description 5.5V 36V 500kHz 5A
Design Software
Iout Vin Vin Vout Vout Iq (max) (min) (max) (min) (max) (typ) (A) (V) (V) (V) (V) (mA) 5 5 2.5 5.5 8 4.5 36 40 42 1.22 1.23 0.8 31 37 7 3 4.2
1
o
m
w
w
w
w
PD
F -X C h a n ge
PD
F -X C h a n ge
O W !
bu
to
k
lic
w
o
.d o
c u -tr a c k
.c
.d o
c u -tr a c k
.c
LM5005 TPS5420 LM22680
2.5 A 5.5V 36V 500kHz 2A
2.5 2 2
7 5.5 4.5
| DC/DC | PWM
| DC/DC
|
2
24
Part Number TLV70450* TPS7A4700*
Description 150mA IQ (3 Vrms) 1A
Iout (max) (A) 0.15 1
Vin (min) (V) 2.5 3
Vin (max) (V) 24 35
Vout (min) (V) 5 1.4
C lic k to bu y N
C
lic
k
to
bu
y
N
O W !
SIMPLE SWITCHER 5A SIMPLE SWITCHER® 1MHz 2.5A 3A SIMPLE SWITCHER® 75V 1.5A SMD 42V 2A SIMPLE SWITCHER® SIMPLE SWITCHER® 42V 3A 42V 3A SIMPLE SWITCHER
7 2.7
2.20 | 1ku 2.10 | 1ku 2.10 | 1ku 2.05 | 1ku 1000 2.00 | 1ku
1 1
LM3102
LM26003 LM5575
3 1.5
3 6
38 75
1.25 1.23
35 70
0.04 1
4.7 2.1
1 1
LMR24220
2
4.5
42
0.8
24
0.7
Switch Current Limit (typ) (A)
TPS5450 LM2678
Switching Approx. Regulated Frequency Price Outputs (max) Pin/Package (US$) (#) w .c .d o (kHz) c u -tr a c k 6 8SO 2.25 | 1 PowerPAD 1ku
75
1.23
70 37
1 1
42 1.285
LM22678
5A SIMPLE SWITCHER
5
4.5
42 1.285
37
7.1
1
LM22679 5A SIMPLE SWITCHER TPS54260 60V LM2677 SWITCHER LM2679 SIMPLE SWITCHER 5A Eco-Mode 2.5A 3.5V
1
36V
3 3 3
5.5 8 4.5
36 40
1.23 1.23
31 37 37
3 4.2
4 4.5 4.2
1 1 1
SIMPLE SWITCHER 3A 3A SIMPLE SWITCHER
42 1.285
Part Number TPS54240
Description 42V Eco-Mode 2.5A Eco-Mode 0.5A Eco-Mode 3.5V
Approx. Regulated Price Outputs (US$) (#) 1.80 | 1ku 1.75 | 1ku 1.75 | 1
TPS54060A 60V TPS54060
3.5
0.5
3.5
60
0.8
58
0.116
0.6
2500
1
3.5V
0.5
3.5
60
0.8
58
0.116
0.6
2500
Switch Current Limit (typ) (A) 1.8
Switching Frequency (max) (kHz) Pin/Package 2500 10MSOPPowerPAD 10SON 10MSOPPowerPAD
Approx. Regulated Price Outputs (US$) (#) 1.90 | 1ku 1.90 | 1ku 1.85 | 1ku 1.85 | 1ku 1.85 | 1ku 1
75 36
1.23 1.23
70 31 37 3 3 2.8 8SOIC
1.75 | 1ku 1.70 | 1ku 1.70 | 1ku 1000 1100 8SON 1.65 | 1ku 1.65 | 1ku 1.65 | 1ku Switching Frequency (max) (kHz) Pin/Package
1
6
42
0.8
6
11.90 | 100u
1
Part Number TPS54160A
Description 60V Eco-Mode 1.5A Eco-Mode 1.5A 3.5
Design Software
Iout Vin Vin Vout Vout Iq (max) (min) (max) (min) (max) (typ) (A) (V) (V) (V) (V) (mA) 1.5 3.5 60 0.8 58
1
6.5
40
1.23
37
2.5
1.55
1
LM22672
1
4.5
42 1.285
37
1.5
1
TPS5410 LM5010A LM5574
1 1 0.5
5.5 6 6
36 75 75
1.23 2.5 1.23
31 70 70
3
1.2 1.25 1000
8SOIC
1.60 | 1ku 1.55 | 1ku 1.55 | 1ku 1.55 | 1ku 1.55 | 1ku
0.5
6.5
40
1.23
37
2.5
1.55
1
Part Number LM25575
Description SIMPLE SWITCHER® 42V 1.5A Eco-Mode 1.5A Eco-Mode 1.5A 3.5V
Design Software
Iout Vin Vin Vout Vout Iq (max) (min) (max) (min) (max) (typ) (A) (V) (V) (V) (V) (mA) 1.5 6 42 1.23 40
3
6
42
0.8
6
8.50 | 1ku 6.75 | 1ku 5.85 | 1ku 1 4.2 7.1 2.60 | 1ku 2.50 | 1ku 2.45 | 1ku 2.40 | 1ku
1
LMZ14202
2
6
42
0.8
6
1
LMZ14201
1
6
42
0.8
6
1
LM5576 LM22677
3 5
6 4.5
Vout (max) (V) 5 18
Vout Adj (min) (V) 5 1.4
Vout Adj (max) (V) 5 18
Iq (typ) (mA) 0.003 0.36
Pin/Package 5SOT-23 20VQFN
Approx. Price (US$) 0.25 | 1ku 2.10 | 1ku
Part Number
Description
Design Software
LMZ14203
42V 3A SIMPLE SWITCHER 42V 2A SIMPLE SWITCHER 42V 1A SIMPLE SWITCHER® SIMPLE SWITCHER® 75V 3A 5A SIMPLE SWITCHER
1.60 | 1ku 1.60 | 1ku 1.60 | 1ku 1.60 | 1ku
1
3.5
1.5
3.5
42
0.8
39
1.8
2500
1
SIMPLE SWITCHER 1A 1A SIMPLE SWITCHER® 2A Swift(TM) 1A SIMPLE SWITCHER® 75V 0.5A SIMPLE SWITCHER® 1MHz 0.75A 1A SIMPLE SWITCHER