基于UC3875的高频开关电源的设计
移相全桥

下文详解。
主电路分析这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
图1 1.2kw软开关直流电源电路结构简图其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。
通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。
基于UC3875全桥移相DCDC变换器

电气控制课程设计题目:基于UC3875全桥移相DC/DC变换电路设计作者班级08-1BF院系信息学院专业自动化学号 *********** 序号35指导老师荣军完成时间2011年12月目录摘要 (3)关键字 (3)1 概论 (3)2 电路原理和各工作模态分析 (3)2.1电路原理 (3)2.1.1 全桥移相(ZVS-PWM)变换器工作原理 (3)2.1.2 全桥移相(ZVZCS-PWM)变换器工作原理 (4)2.2模态分析 (6)3 开关变压器与功率器件选择 (6)3.1功率器件选择 (6)3.2变压器选择 (7)4 控制电路设计 (7)4.1UC3875芯片简介 (7)4.2外围电路设计 (8)4.3控制电路设计 (10)5 系统仿真 (11)6 心得与体会 (14)参考文献 (14)基于UC3875全桥移相DC/DC变换电路设计摘要:全桥移相PWM开关电源具有拓扑结构简单、输出功率大、功率变压器利用率高、易于实现软开关、功率开关器件电压电流应力小等一系列优点,在中大功率应用场合受到普遍重视。
而传统的全桥PWM开关电源,功率器件处于硬开关状态,在较大的电压、电流应力下实现开关,因此产生很大的开关损耗,降低了电源运行的可靠性。
在DC/DC变换器中,则多采用以全桥移相控制软开关PWM变换器,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率变换器应用场合。
用软开关技术实现的DC/DC变换器其效率可达90%以上,本文就由UC3875芯片组成3kWDC/DC变换器作了分析和研究。
关键字:UC3875,全桥移相,DC/DC变换,ZVS-PWM1 概论上世纪60年代开始起步的DC/DC-PWM功率变换技术出现了很大的发展。
但于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。
基于UC3875的双闭环控制稳流型开关电源

器采样总负载电流转换为电压信号 作为电流外环的反馈输
项目经济效益(100 万元),数据来源于广东省科技计划项目。
入,电流外环的输出接到 UC3875 的脚 EA+上,作为电压内环的 参考文献
基准电压。
[1]毛鸿,吴兆麟,沈琦.高精度开关稳压电源系统分析与设计[J].
(2)UC3875 内部的运放及R 、R 、R 、C 、C 、C 组成电压内 电力电子技术,1999,4:1-4。
路开环传递函数,即输出电压扰动量与占空比扰动量的传递
《PLC 技术应用 200 例》
邮局订阅号:82-946 360 元 / 年 - 127 -
电源技术
《微计算机信息》(测控自动化 )2009 年第 25 卷第 7-1 期
函数
环补偿网络,接于 UC3875 的脚 EA-、脚 E/AOUT 上,具体参数
=80 。电路具体接法见图 2。
的驱动信号。图 4 为该稳流源正常工作时,负载由 2 突变为
技
3.3 电流外环参数设计
2.7 时,输出电压与电流的对应关系。从该图中可以看出,所
本控制电路的电流反馈环采用单极点-单零点补偿网络。 设计的补偿网络较好的满足系统的快速性和稳定性。
其传递函数为
术
(4)
其中
,
大器的反相端与正相端的电流基准vref比较输出的误差送引言uc3875的运算放大器正相端作为电压基准和反相端的输出wm变换器是一种应用广泛适用于直流电压电压采样信号比较最后的输出送芯片内的比较器与三角波较高输出功率较大又需要将负载与电源隔离的变换器该拓进行比较得到占空比变化的方波从而控制全桥变换器
您的论文得到两院院士关注 文 章 编 号 :1008-0570(2009)07-1-0127-03
基于UC3875控制的电机车充电电源设计

收稿日期:2010202201基金项目:江苏省宿迁学院科研基金项目(编号:2010KY 11)作者简介:朱慧博(19792),女,江苏省宿迁市人,讲师,硕士,研究方向为高频功率电子变换技术,秦玉龙(19822),男,江苏省宿迁市人,讲师,研究生在读,主要研究方向为嵌入式系统研究。
文章编号:100923664(2010)0320037204设计应用基于UC 3875控制的电机车充电电源设计朱慧博,秦玉龙(宿迁学院计算机科学系,江苏宿迁223800) 摘要:文中设计了一种矿用电机车的高效自动充电电源,阐述了ZVZCS PWM 全桥变换电路的工作过程。
以UC 3875为控制芯片,设计了电源的控制和保护电路,并分析了控制和保护电路的工作原理。
最后给出了基于Saber 软件的电源仿真波形,验证了该充电电源具有恒流-恒压输出特性,是一种比较理想的蓄电池充电电源。
关键词:ZVZCS ;开关电源;UC 3875;蓄电池中图分类号:TN 86文献标识码:ADesign of Motor Vehicle Charging Power Supply Based on t he UC 3875ZHU Hui 2bo ,Q IN Yu 2long(Computer Science Department ,Suqian College ,Suqian 223800,China )Abstract :A high performance auto 2charging power supply on mine locomotive is designed in this paper.The working process of ZVZCS PWM f ull 2bridge conversion is also analyzed.The control and protection circuit is designed based on the UC 3875control chip and the working principle of the control systems and protection circuit is analyzed in this paper.Final 2ly ,the power waveform was given based on the Saber simulation software ,all of this verified that the power supply with the output characteristics of constant current 2constant voltage and the design is an ideal battery charging power supply.Key words :ZVZCS ;switching mode power supply ;UC 3875;storage battery 以动力蓄电池为能源的矿用电机车是煤矿主要机电设备之一,担负着矿井人员、设备、材料等运输任务,尤其是采区至掘进工作面的运输任务,将直接影响煤矿的安全生产和企业的经济效益。
应用集成芯片UC3845构成高频开关电源

第15卷 第2期上 海 工 程 技 术 大 学 学 报V ol.15N o.22001年6月 JOURNA L OF SH ANG H AI UNI VERSITY OF E NGI NEERI NG SCIE NCE Jun.2001收稿日期:2000-09-21应用集成芯片UC3845构成高频开关电源林蔚天 焦 斌(上海电机技术高等专科学校 上海 200240)摘 要 叙述单端反激式原理、电流控制型电路优点、UC3845芯片特点,提出了一个实用的高频开关电源。
关键词 开关电源 单端反激式 电流控制型中图分类号 T N 710.2文献标识码 A 近年来,电子电源技术不断向高频化、线路简单化和控制电路集成化方向发展。
80年代兴起的高频开关电源是电源技术领域的新课题。
特别是M OS 功率场效应晶体管及双极型晶体管的出现,使得电源的开关频率提高到100~700kH z 。
本文中提出的采用UC3845的开关电源,频率可达200kH z ,效率大为提高,而体积和重量大为减少。
1 单端反激式变换器图1 单端反激式变换器电路单端晶体管直流变换器具有线路简单的特点,它只用一只晶体管、一个变压器以及电容、二极管组成。
单端反激式变换器电路如图1所示。
当VT 1基极输入一脉冲信号驱动而导通时,输入电压V i 便加到变压器FT 的初级绕组N 1上,由于变压器对应端的极性,次级绕组N 2为下正上负,二级管VD 1截止,次级绕组N 2中没有电流流过。
当VT 1截止时,N 2绕组电压极性变为上正下负,二级管VD 1导通,此时VT 1导通期间储存在变压器中的能量便能过二级管VD 1向负载释放。
在工作过程中变压器起了储能用的电感作用。
2 电流控制型原理 早期开关电源的控制电路多采用电压控制方式,如SG 3525,T L494等。
电压控制型电路工作原理如图2所示,同相端接给定V g ,反相端反馈电压V f ,放大器输出误差电压V e 。
基于UC3875的全桥电路设计

输 出 A;5 : 出延迟 控制 ;6脚 : 率设 置端 , 1脚 输 1 频 该
脚 可与 地 之 间 接 电 阻 和 电 容 来 设 置 振 荡 频 率 ;7 1
脚 : 钟/ 时 同步 , 为输 入 , 脚提 供 一个 同步 点 , 作 该 作 为输出, 提供 时 钟 信 号 ; 8脚 : 度 , 脚 接 一 个 电 1 陡 该 阻 可形成斜 波 ;1 脚 : 9 该脚 可通 过外接 器件 实现 电
cr u ta d p w e r nsor e . ic i n o rt a f m r
Ke r s: wic we u pl f lbrd on r e ; we r n f r r y wo d s t h po r s p y; ul— i ge c ve t r po r t a s o me
21 0 2年 8月
舰 船 电 子 对 抗
SHI BOARD LEC P E TR0NI C C0UNTE RM E AS URE
A u .2 1 g 0 2
V0135 N o . .4
第 3 5卷第 4期
基 于 UC3 8 5的全 桥 电路 设 计 7
杨 明
sc一 2× × h 一 4 cT2 1I () 1
变 压器 体积 , 降低 磁滞 损耗 , 使变压 器 工作更稳 定 可
靠 。这 里选 用 P 4 C 0材质 的铁 氧体 磁芯 。
2 2 变 压 器 的 设 计 与 制 作 .
式 中 : 为磁 芯外 径 ; D d为磁 芯 内径 ; h为 磁芯 高度 。 变压 器初 级匝数 计算 公式 :
而 定 。
收 稿 日期 :2 1 0 2—0 4—0 g
48V25A直流高频开关电源设计_1

摘要目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展,本论文设计了一种通信系统常采用的48V/25A直流高频开关电源。
本论文首先对高频开关电源的主电路进行了设计,分析了零电压软开关技术在移相全桥电路中的应用,开关电源的软开关技术采用移相PWM控制,通过相移芯片UC3875产生具有一定相序的脉冲去触发MOSFET管。
在主电路设计中,进行了高频变压器的设计,并对输出整流电路进行了分析、研究与设计。
其次,对开关通信电源的控制电路进行了设计。
控制电路以UC3875芯片为控制核心,采用闭环控制模式,实现系统的稳压和限流。
另外,对控制系统的过电流保护、过压保护、过热保护电路等保护电路进行了设计。
最后,用SABER仿真软件对电路进行了系统仿真与验证,仿真结果表明了设计的正确性。
关键词:软开关,UC3875,移相控制AbstractAt present, the switching power supply developed high frequency, high reliability, low energy consumption, low noise, interference and modular direction. That is to develop the inverter power source controlled by microcomputer which adopts soft-switches .This researching task is put forward on the base of discussing the characteristics and virtues of the welding inverter. The phase-shift chip UC3875 is adopted phase-shift pulse width modulate. The design about high frequency transformer is given .The amplified circuit and the commuted circuit are designed. The paper mostly researches and designs the soft-switch control system.Secondly, the control circuit, the protect circuit of the power supply are analyzed and designed. Its control circuit is centered on UC3875, uses a control that based regulation to realize the function is composed of analog of voltage-stabilization and current-limited.In addition, the safeguard circuit that mainly consists of over current, over heat, over voltage and circuit are studied and designed in the paper.And the circuit is simulated by the SABER, Simulation results show that the design is correct.Key words: soft-switch, UC3875, phase-shift目录摘要 (I)Abstract (II)目录.......................................................................................................................... I II 第一章引言.. (1)1.1开关通信电源系统的介绍 (1)1.1.1通信设备对开关通信电源的要求 (1)1.1.2通信电源系统的组成 (2)1.2通信直流开关电源的发展现状和发展方向 (2)1.2.1开关电源的发展和趋势 (2)1.2.2软开关技术的发展 (3)1.3本文的主要工作 (4)第二章高频开关电源主电路的设计与实现 (6)2.1高频开关电源的技术指标 (6)2.2高频开关电源主电路的硬件设计 (6)2.2.1输入整流电路的设计 (6)2.2.2直流变换器的设计 (7)2.2.3输出整流电路的设计 (8)2.3移相全桥谐振软开关电路[2][3][7] (9)2.3.1移相全桥零电压PWM软开关电路的工作原理 (9)2.3.2移相零电压软开关电路存在问题的解决 (11)2.3.3 ZVS的实现及副边占空比丢失 (12)2.3.4 结论 (13)2.4主电路元件参数的选择 (14)2.4.1 输入电路参数的选择[8] (14)2.4.2高频变压器的设计[1] (15)2.4.3输出滤波电感的设计 (17)2.4.4输出滤波电容的选择 (17)2.4.5 吸收电路器件的选择 (18)2.4.6功率器件的选择 (19)2.5本章小结 (19)第三章高频开关电源控制电路的硬件设计与实现 (21)3.1移相控制芯片UC3875的概述 (21)3.3.1 UC3875电气特性 (21)3.1.2 UC3875外围电路的设计 (22)3.1.3 UC3875输出波形的分析 (25)3.1.4 光电耦合器 (26)3.2保护电路的设计 (26)3.2.1电压与电流的保护 (27)3.2.2过热保护电路 (28)3.3 辅助电源设计 (28)3.4 本章小结 (29)第四章电路的仿真及分析 (30)结论 (34)参考文献 (35)致谢 (36)附录 (37)第一章引言1.1开关通信电源系统的介绍开关通信电源是通信设备的重要组成部分之一,因此也被称为通信设备的“心脏”。
移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解2014-09-11 11:10 来源:电源网作者:铃铛移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。
如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。
主电路分析这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。
采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。
电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
图1 1.2kw软开关直流电源电路结构简图其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。
通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言
近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。
与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。
通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。
我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。
针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。
1.设计内容和方法
1.1主电路型式的选择
变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。
在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。
半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。
传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。
开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。
在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。
由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。
所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。
移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。
原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。
E为输入直流电压, T1~T4 为开关管,
D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。
以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。
图1 移相控制全桥变换电路原理图
1.2 控制方式
控制方式是指变换器控制电路通过何种途径控制主电路实现自动控制目的,达到自动稳压或稳流的要求。
传统的PWM型电子开关开通和关断开关上同时存在电压、电流,损耗比较大,零电压开关-脉宽调制变换器(ZVS-PWM)是电子开关在两端电压为零时导通电流为零时关断,开通、关断损耗理想值为零。
在此选用典型的UC3875构成的移相控制全桥零电压开关-脉宽调制变换电路。
1.2.1 UC3875控制芯片
UC3875是美国UNITRODE公司针对移相控制方案推出的专用芯片。
UC3875可对全桥开关的相位进行相位移动,实现定频脉宽调制控制。
UC3875其外型有20引脚封装和28引脚封装,在此以20引脚为例介绍一下该器件。
1.2.1.1内部结构方框图和管脚功能
内部结构方框图如下图所示:
图2 UC3875内部结构方框图
管脚功能如下:1脚(Vref),基准电压;2脚(E/A OUT),误差放大器的反相输出;3脚(E/A-)误差放大器的反相输入;4脚(E/A+)误差放大器的同相输入;5脚(C/S+)电流检测;6脚(SOFRSTART)软起动;7脚(DELAY SET C/D)输出延迟控制;8脚(OUT D)输出D;9脚(OUT C)输出C;10脚(Vcc )电源电压;11脚( Vin)芯片供电电源;12脚(PWR GND)电源地;13脚(OUTB)输出B;14脚(OUTA)输出A;15脚(DELAY SETA/B)输出延迟控制;16脚(FREQ SET)频率设置端;17脚(CLOCK/SYNC)时钟/同步;18脚(SLOPE)陡度;19脚(斜波)20脚(信号地)。
1.2.1.2 UC3875的工作
1脚输出+5V基准电压,可作为内部或外部电路的其他元件的电源。
2脚作为电压反馈控制端,当引输出信号高到一定值时,由内部RS触发器及门电路作用使C输出与A输出反相,即A、C输出信号移相180度;同样,当引脚2输出信号低于1V时,通过内部RS 触发器及门电路作用使C输出与A输出同相,即A、C输出信号移相0度。
可见通过控制引脚2端的输出可以控制A、C间相位在0~180度之间变化。
B、D的工作原理与A、C相似。
3脚作为误差放大器的反相输入端,通常利用分压电阻检测输出电源电压。
4脚作为误差放大器的同相输入端,和1脚基准电压相连,检测3脚的输出电源电压。
5脚作为电流检测端,其基准设置为内部固定2.5V(由分压),当电压超过2.5V时输出即被关断,软起动6脚复位,即可实现过流保护。
7脚和15脚作为输出延迟控制端,通过设置该脚对地之间的电流来设置死区,加在同一桥臂两管驱动脉冲之间,以实现零电压开通时的瞬态时间。
8、9、
13、14脚作为输出端,可驱动MOSFET和变压器。
10脚作为电源电压端,为输出级提供所需电源。
11脚作为芯片供电电源,为芯片内部数字、模拟电路部分提供电源,内部有欠压锁定电路,其开启阈值为10.75V,关闭阈值为9.25V。
开启和关闭之间有1.5V的回差,可有效防止电路在阈值电压附近工作时的跳动。
16脚作为频率设置端,需外接电阻和电容来设置振荡频率。
17脚作为输出时,提供时钟信号;作为输入,提供同步点。
18脚作为陡度端,需外接一个电阻以产生斜波。
19脚作为斜波端,需外接电容到地。
20脚作为信号地,是所有电压的参考基准。
1.2.2控制电路
控制电路的原理图主要部分如图3所示。
图3控制电路原理图
UC3875的核心是相位调制器,其13脚B输出信号与14脚A输出信号反相, 9脚C输出信号与8脚D输出信号反相,这四个驱动信号经扩流后由驱动变压器去驱动~MOS管。
相位控制的特点体现在UC3875的四个输出端具有相同的驱动脉冲分别驱动A/B、C/D两个半桥,通过移相错位控制有源时间,使全桥的四个开关轮流导通。
每个输出级导通前都有一个死区,而且可以调整死区时间。
在该死区时间内确保下一个功率开关器件的输出电容放电完毕,为即将导通的开关器件提供电压开通条件。
因此,每对输出级(A/B,C/D)的谐振开关作用时间,可以单独控制。
在全桥变换拓扑模式下,移相控制的优点得到最充分的体现。
UC3875在电压模式和电流模式下均可工作,并具有过电流关断以实现故障的快速保护。
图4为移相控制全桥电路的控制波形。
图4移相控制全桥电路的控制波形
移相控制全桥电路的控制方式有以下几个特点:
(1)在同一开关周期Ts 内,每一个开关的导通的时间略小于Ts /2,而关断时间都略大于 Ts/2。
(2)同一个半桥中上下两个开关不能同时处于通态,每一个开关关断到另一个开关开通都要经过一定的死区时间。
(3)比较互为对角的两对开关T1 、T2 和 T3、T4 开关函数波形, T1的波形比T2 超前0~Ts /2时间,而T3 的波形比 T4超前0~ Ts/2时间,因此 T1和T3 称为超前桥臂,而 T2和 T4称为滞后桥臂。
2.结束语
本文介绍了由UC3875芯片作为控制电路的2KW移相控制全桥变换(PSC FB ZVS-PWM)软开关电源,由于开关管在ZVS条件下运行,可实现高频化,而且控制简单,性能可靠,适用于大功率场合。
且能保持恒频运行,就不会同时出现大电压、大电流,减少了开关所受的应力,实现了高效化。
大大减小了电源的体积。