太阳能电池板及其工作原理
太阳能电池基本工作原理

太阳能电池基本工作原理
太阳能电池,又称太阳能光电池或光伏电池,是利用光电效应将太阳光转化为电能的装置。
其基本工作原理如下:
1. 光电效应:光电效应是指当光照射到物质表面时,光子能量被吸收,电子从物质中跃迁到导体能带中,产生电流的现象。
2. 半导体材料:太阳能电池一般采用半导体材料,如硅(Si)
或化合物半导体(如硒化铟镓,硒化铜铟锌等)。
半导体材料具有特殊的能带结构,当光照射到半导体上时,光子能量被吸收,激发半导体中的电子跃迁到导带中,产生电流。
3. P-N结构:太阳能电池一般采用P-N结构,即具有正(P型)和负(N型)电荷载体的区域。
在P-N结构中,阳极(P型)
富余电子,阴极(N型)富余空穴,形成电场。
光照射后,电子从P区跃迁到N区,被电场分离并产生电流。
4. 背电场:太阳能电池还有一个重要的设计是背电场结构。
在背电场结构中,阳极和阴极之间的电场将电子从阳极推向阴极,避免电子再次回到阳极,提高电池的效率。
5. 转化效率:太阳能电池的转化效率指光能转化为电能的比例。
转化效率受到多种因素的影响,如光照强度、光谱分布、温度等。
不同类型的太阳能电池具有不同的转化效率。
通过以上基本工作原理,太阳能电池将太阳能转化为直流电能,可以应用在太阳能发电系统、太阳能充电器等领域。
太阳能电池板原理

太阳能电池板原理太阳能电池板是一种能够将太阳能转化为电能的装置,它是太阳能发电系统中的核心部件。
太阳能电池板的原理是基于光伏效应,通过将光能转化为电能来实现太阳能的利用。
下面将详细介绍太阳能电池板的原理及其工作过程。
太阳能电池板的原理主要是基于光伏效应。
光伏效应是指当光线照射到半导体材料上时,会产生电子和正电子的对偶,从而产生电流。
太阳能电池板通常采用的半导体材料是硅,硅材料在受到光照后会产生电子-空穴对,而这些电子-空穴对在电场的作用下会产生电流,从而实现太阳能的转化。
在太阳能电池板中,硅材料被分成两层,一层富含电子,称为N型半导体,另一层富含正电子,称为P型半导体。
当光线照射到太阳能电池板上时,光子会激发硅材料中的电子,使其跃迁到导带中,形成电子-空穴对。
而这些电子-空穴对会在N型和P型半导体之间产生电势差,从而形成电场,使电子和正电子被分离并产生电流。
太阳能电池板在工作过程中,会将光能转化为直流电能,并输出到电路中供电使用。
一般情况下,太阳能电池板会通过并联或串联的方式组成太阳能电池阵列,以提高输出电压和电流,从而满足实际应用的需求。
总的来说,太阳能电池板的原理是基于光伏效应,通过光能转化为电能来实现太阳能的利用。
在太阳能电池板中,硅材料的光伏效应使得光子激发电子-空穴对,产生电势差和电场,最终形成电流输出。
太阳能电池板在实际应用中,可以通过并联或串联的方式组成太阳能电池阵列,以提高输出电压和电流,从而满足不同场合的需求。
通过对太阳能电池板原理的了解,我们可以更好地理解太阳能发电系统的工作原理,从而更好地应用和推广太阳能技术,实现可持续能源的利用和保护环境的目标。
太阳能电池板作为太阳能发电系统的核心部件,其原理的深入理解对于太阳能技术的发展具有重要意义。
太阳能电池板发电原理

太阳能电池板发电原理太阳能电池板是一种利用太阳能进行发电的装置,它的发电原理主要是光伏效应。
光伏效应是指当一种材料暴露在光照下时,光子的能量会激发材料中的电子,从而产生电流。
太阳能电池板通常由大量的太阳能电池组成,这些太阳能电池是由半导体材料制成的。
常见的太阳能电池板材料包括单晶硅、多晶硅和非晶硅等,这些材料具有良好的光电转换性能。
当太阳光照射到太阳能电池板上时,光子的能量会激发半导体材料中的自由电子,使其跃迁到导带能级,形成电子-空穴对。
电子在导带中自由移动,而空穴在价带中自由移动,形成电流。
这种产生电流的过程就是光伏效应。
太阳能电池板中的太阳能电池会将光电转换的电能输出到外部电路中,供电器件使用。
为了增强太阳能电池板的发电效率,常常采用多个太阳能电池组成太阳能电池组。
太阳能电池组的连线方式有串联和并联两种,串联方式可以增加电压,而并联方式可以增加电流。
太阳能电池板的输出功率主要受到光照强度和光照角度的影响。
光照强度越大,太阳能电池板的发电效率越高。
而光照角度的改变也会影响太阳能电池板的发电效率,一般来说,光照垂直于太阳能电池板表面时,发电效率最高。
因此,太阳能电池板通常会安装在能够获得最大光照强度的位置,以提高发电效率。
此外,太阳能电池板还需要进行反射、散射和吸收等光学过程。
在太阳能电池板的表面上会覆盖一层防反射膜,用于减少反射损失,增加光的吸收量。
同时,太阳能电池板表面还会采用纹理结构,以增加光的散射,提高光电转换效率。
总之,太阳能电池板的发电原理主要是利用光伏效应,通过光子的能量激发半导体材料中的电子,产生电流。
太阳能电池板的发电效率受到光照强度和光照角度的影响,通过合理的安装和设计,可以提高太阳能电池板的发电效率,实现可持续的太阳能利用。
太阳能电池板及其工作原理

太阳能电池板及其工作原理性能及特点:太阳能电池分为单晶硅太阳电池〔坚固耐用,使用寿命一般可达20年。
光电转换效率为15%。
〕多晶硅太阳电池〔其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。
〕非晶硅太阳能电池〔其光电转换率为10%,成本低,重量轻,应用方便。
〕太阳能发电原理:太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。
直接传输适用于较短距离。
基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,到达用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用外表镀有高反射涂层的光导管,通过反射可以将阳光导入室内。
间接传输适用于各种不同距离。
将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。
太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。
当太阳光照射到半导体上时,其中一部分被外表反射掉,其余部分被半导体吸收或透过。
被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。
这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。
光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p 区之间的薄层产生所谓光生伏打电动势。
假设分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。
太阳能电池板工作方式

太阳能电池板工作方式太阳能电池板是一种利用光的能量来产生电能的装置,它是目前可再生能源领域中最为普及和应用广泛的一种技术。
太阳能电池板的工作方式正是基于光的电化学效应和光伏效应。
本文将详细介绍太阳能电池板的工作原理和工作过程。
一、太阳能电池板的工作原理太阳能电池板的工作原理是利用光伏效应将太阳能转化为电能。
光伏效应是指在半导体材料中,当光照射到材料表面时,光子与物质发生相互作用,导致电子从价带跃迁到导带,形成电子空穴对,并产生电流。
太阳能电池板是由具有光伏效应特性的半导体材料制成的。
光线通过太阳能电池板时,被散射或吸收,然后产生电流。
二、太阳能电池板的工作过程太阳能电池板的工作过程可以分为光的吸收、电子释放、电流产生和电能输出四个步骤。
1. 光的吸收:太阳能电池板表面的光伏材料能够吸收光线,特别是可见光和近红外光。
光线穿过太阳能电池板的保护玻璃层并被光敏材料吸收,并转化为光能。
2. 电子释放:光能被吸收后,光子与光敏材料中的原子发生相互作用,形成电子空穴对。
在此过程中,光能将电子从价带中激发到导带中,形成一个载流子。
3. 电流产生:通过半导体材料的特性,电子和空穴会因电场的存在而在材料中分离出来。
在太阳能电池板的结构中,一端被N型半导体材料覆盖,而另一端被P型半导体材料覆盖,形成PN结。
由于PN结两侧的载流子密度不同,会在结的附近形成电场。
这个电场将从PN结两侧分离的电子和空穴聚集起来,形成电流。
4. 电能输出:分离出的载流子通过电路连接输出,形成直流电流。
直流电流可用于直接驱动电器设备,也可以通过逆变器转换为交流电流用于日常用电。
三、太阳能电池板的应用太阳能电池板是一种清洁、可再生的能源装置,广泛应用于各个领域。
1. 太阳能发电:太阳能电池板可以将阳光转化为电能,用于发电系统。
在偏远地区或没有电力供应的地方,太阳能电池板可以提供可靠的电源。
2. 太阳能热水器:太阳能电池板也可以用于太阳能热水器,通过吸收阳光的热能来加热水。
太阳能电板工作原理

(一)太阳能电池是如何工作的?晶体硅n/p型太阳电池的工作原理:当p型半导体与n型半导体紧密结合连成一块时,在两者的交界面处就形成p-n结。
当光电池被太阳光照射时,在p-n结两侧形成了正、负电荷的积累,产生了光生电压,形成了内建电场,这就是“光生伏打效应”。
从理论上讲,此时,若在内建电场的两侧面引出电极并接上适当负载,就会形成电流,负载上就会得到功率。
太阳能电池组件就是利用半导体材料的电子学特性实现P-V转换的固体装置。
(二)太阳能系统基本组成如上图所示,太阳能发电系统由太阳能电池组件、太阳能控制器、蓄电池(组)组成。
如输出电源为交流220V或110V,还需要配置逆变器。
(三)各部分的作用为:太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。
其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,合格的控制器还应具备温度补偿的功能。
其他附加功能如光控开关、时控开关都应当是控制器的可选项。
蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。
其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。
逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。
为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC 逆变器。
效率是选购逆变器时的重要标准之一。
效率越高,意味着在将光电组件产生的直流电转换成交流电的过程中产生的电量损耗就越少。
可以这样说,逆变器的质量决定了发电系统的效益,它是太阳能发电系统的核心。
(四)太阳能发电系统的设计需要考虑的主要因素:太阳能发电系统在哪里使用?该地日光辐射情况如何?系统的负载功率多大?系统的输出电压和频率是多少,直流还是交流?系统每天需要工作多少小时?如遇到没有日光照射的阴雨天气,系统需连续供电多少天?负载的情况,电阻性、电容性还是电感性,启动电流多大?<strong>答案补充</strong>把风能转变为电能是风能利用中最基本的一种方式。
太阳能电池板结构和工作原理

太阳能电池板结构和工作原理
太阳能电池板是一种转换太阳光能为电能的设备,它主要由多个
晶体硅片组成,每个硅片都是一个光电二极管,能将光能转化成电能。
下面,我们详细介绍太阳能电池板的结构和工作原理。
太阳能电池板的结构
太阳能电池板一般由多个晶体硅片组成,每个硅片周围都有一条
电子流通通道,这些通道连接在一起就形成了一个电池。
为了防止晶
体硅片的表面被污染,太阳能电池板会在表面上涂覆一层光电池面板
玻璃,同时还有一个防反射的镀膜。
太阳能电池板的工作原理
太阳能电池板的工作原理实际上是基于光电效应。
当光照到太阳
能电池板上时,光子会激发晶体硅中的电子进入导电状态,从而产生
电流。
晶体硅片上的电子会在电池表面形成正负极,通过连接器将电
流输出。
这个过程就是太阳能电池板转换太阳光能为电能的机制。
太阳能电池板的应用
由于太阳能电池板可以将太阳能转化为电能,因此它被广泛应用
于太阳能光伏发电系统和太阳能热水器系统。
其中,太阳能光伏发电
系统是将太阳能光线转化为电能,通过逆变器转换成为家庭用电。
而
太阳能热水器系统则是利用太阳能板的热传导特性将太阳辐射转化为
热能,从而加热水的系统。
此外,在一些农村地区,太阳能电池板还
被用来照明、充电等方面,转换成为电能,为人们的生活提供了便利。
总之,太阳能电池板作为一种绿色环保的新型能源技术,其结构
和工作原理也非常简单明了。
随着技术的不断进步,太阳能电池板在
人们生产生活中的应用前景将会越来越广阔。
太阳能电池板工作原理及转换效率影响因素解析

太阳能电池板工作原理及转换效率影响因素解析随着环保意识的不断增强和可再生能源的重要性日益凸显,太阳能作为清洁、无污染的能源来源,逐渐成为人们关注的焦点之一。
而太阳能电池板作为太阳能的主要收集器,其工作原理和转换效率的影响因素成为人们关注的重点之一。
一、太阳能电池板的工作原理1. 光伏效应当光线照射到太阳能电池板上时,光子会转化成电子,从而产生电流。
这种现象被称为光伏效应。
太阳能电池板内部的P-N结构能够将光子转化成电子-空穴对,从而产生电流。
2. 光生电荷分离在太阳能电池板的P-N结构中,当光子进入P-N结后,会激发电子跃迁至导带,同时留下空穴。
由于P-N结的内建电场作用,导致电子和空穴分别向P区和N区移动,从而产生电压。
3. 电荷收集经过光生电荷分离后,电子和空穴被迫向两端移动,形成电流,从而产生输出功率。
二、太阳能电池板转换效率影响因素1. 光照强度光照强度是影响太阳能电池板转换效率的关键因素之一。
光照强度越大,太阳能电池板吸收的光子就越多,从而产生更多的电子-空穴对,提高转换效率。
2. 温度温度的变化也会影响太阳能电池板的转换效率。
一般情况下,太阳能电池板的工作温度越低,其转换效率就会越高。
在实际应用中,需要考虑太阳能电池板的散热和降温措施。
3. 表面反射太阳能电池板的表面反射也会影响其转换效率。
在太阳能电池板的生产和安装过程中,需要考虑表面反射的控制,以提高光的吸收率,从而提高转换效率。
4. 材料特性太阳能电池板的材料特性也会影响其转换效率。
目前主要的太阳能电池板材料包括单晶硅、多晶硅、非晶硅等,不同材料的吸收光谱、光伏效率等特性不同,因此也会影响太阳能电池板的转换效率。
5. 光伏电池布局在太阳能电池板的布局中,需要考虑电池板的倾斜角、朝向等因素,以最大限度地吸收光能,提高转换效率。
结语太阳能电池板的工作原理是基于光伏效应、光生电荷分离和电荷收集等原理,并受到光照强度、温度、表面反射、材料特性和光伏电池布局等因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池板及其工作原理太阳能电池板及其工作原理性能及特点:太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。
光电转换效率为15%。
)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。
)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。
)太阳能发电原理:太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。
直接传输适用于较短距离。
基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反射涂层的光导管,通过反射可以将阳光导入室内。
间接传输适用于各种不同距离。
将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。
太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。
当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。
被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。
这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。
光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。
若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。
如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。
太阳能发电原理图如下:教你制作太阳能电池第一步:制作二氧化钛膜(1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨(2)接着用玻璃棒缓慢地在导电玻璃上进行涂膜(3)把二氧化钛膜放入酒精灯下烧结10~15分钟,然后冷却第二步:利用天然染料为二氧化钛着色如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。
第三步:制作正电极由染料着色的TiO2为电子流出的一极(即负极)。
正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的哪一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。
如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨。
第四步:加入电解质利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。
如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。
第五步:组装电池把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。
把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。
这样,你的太阳能电池就做成了。
第六步:电池的测试在室外太阳光下,检测你的太阳能电池是否可以产生电流。
多晶硅太阳能电池制作工艺众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳能电池的光电转换效率,降低生产成本应该是我们追求的最大目标。
从目前国际太阳能电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为: [1]可供应太阳能电池的头尾料愈来愈少;[2]对太阳能电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。
据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%,利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。
下面从两个方面对多晶硅电池的工艺技术进行讨论:1. 实验室高效电池工艺实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。
1.1关于光的吸收对于光吸收主要是:(1)降低表面反射;(2)改变光在电池体内的路径;(3)采用背面反射。
对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。
但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法:[1]激光刻槽用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~90 0nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当,而在(100)面单晶硅化学制作绒面的反射率为11%。
用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。
激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。
该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。
[2]化学刻槽应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。
据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。
但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。
应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。
掩膜层也可用丝网印刷的方法形成。
[3]反应离子腐蚀(RIE)该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在45 0~1000微米光谱范围的反射率可小于2%。
仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。
[4]制作减反射膜层对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积Si3N3等,ZnO导电膜也可作为减反材料。
1.2金属化技术在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。
实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。
工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。
[1]电子束蒸发和电镀通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米),缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高。
因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。
另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高,工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。
另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like 状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。
目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。
1.3 PN结的形成技术[1]发射区形成和磷吸杂对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。
扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺,目前采用选择扩散,150mm×150mm电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω。
对于Mc-Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc-Si的少子扩散长度提高两个数量级。
在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv, 转换效率超过17%。
[2]背表面场的形成及铝吸杂技术在Mc-Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。
其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc-Si产生不利的影响。
到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。
[3]双面Mc-Si电池Mc-Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。
背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。
1.4 表面和体钝化技术对于Mc-Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面,在氢气氛中退火可使钝化效果更加明显。