二叉树要求-数据结构
数据结构二叉树实验报告

一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。
(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。
(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(4)掌握二叉树的性质。
(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。
(6)重点掌握二叉树的基本运算和各种遍历算法的实现。
(7)掌握线索二叉树的概念和相关算法的实现。
(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。
(9)掌握并查集的相关概念和算法。
(10)灵活运用二叉树这种数据结构解决一些综合应用问题。
二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。
实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。
并对图7-123所示的二叉树b 给出求解结果。
b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。
数据结构-二叉排序树

二叉排序树操作一、设计步骤1)分析课程设计题目的要求2)写出详细设计说明3)编写程序代码,调试程序使其能正确运行4)设计完成的软件要便于操作和使用5)设计完成后提交课程设计报告(一)程序功能:1)创建二叉排序树2)输出二叉排序树3)在二叉排序树中插入新结点4)在二叉排序树中删除给定的值5)在二叉排序树中查找所给定的值(二)函数功能:1) struct BiTnode 定义二叉链表结点类型包含结点的信息2) class BT 二叉排序树类,以实现二叉排序树的相关操作3) InitBitree() 构造函数,使根节点指向空4) ~BT () 析构函数,释放结点空间5) void InsertBST(&t,key) 实现二叉排序树的插入功能6) int SearchBST(t,key) 实现二叉排序树的查找功能7) int DelBST(&t,key) 实现二叉排序树的删除功能8) void InorderBiTree (t) 实现二叉排序树的排序(输出功能)9) int main() 主函数,用来完成对二叉排序树类中各个函数的测试二、设计理论分析方法(一)二叉排序树定义首先,我们应该明确所谓二叉排序树是指满足下列条件的二叉树:(1)左子树上的所有结点值均小于根结点值;(2)右子数上的所有结点值均不小于根结点值;(3)左、右子数也满足上述两个条件。
根据对上述的理解和分析,我们就可以先创建出一个二叉链表结点的结构体类型(struct BiTNode)和一个二叉排序树类(class BT),以及类中的构造函数、析构函数和其他实现相关功能的函数。
(二)插入函数(void InsertBST(&t,key))首先定义一个与BiTNode<k> *BT同一类型的结点p,并为其申请空间,使p->data=key,p->lchild和p->rchild=NULL。
数据结构二叉排序树

05
13
19
21
37
56
64
75
80
88
92
low mid high 因为r[mid].key<k,所以向右找,令low:=mid+1=4 (3) low=4;high=5;mid=(4+5) div 2=4
05
13
19
low
21
37
56
64
75
80
88
92
mid high
因为r[mid].key=k,查找成功,所查元素在表中的序号为mid 的值
平均查找长度:为确定某元素在表中某位置所进行的比 较次数的期望值。 在长度为n的表中找某一元素,查找成功的平均查找长度:
ASL=∑PiCi
Pi :为查找表中第i个元素的概率 Ci :为查到表中第i个元素时已经进行的比较次数
在顺序查找时, Ci取决于所查元素在表中的位置, Ci =i,设每个元素的查找概率相等,即Pi=1/n,则:
RL型的第一次旋转(顺时针) 以 53 为轴心,把 37 从 53 的左上转到 53 的左下,使得 53 的左 是 37 ;右是 90 ,原 53 的左变成了 37 的右。 RL型的第二次旋转(逆时针)
一般情况下,假设由于二叉排序树上插入结点而失去 平衡的最小子树的根结点指针为a(即a是离插入结点最 近,且平衡因子绝对值超过1的祖先结点),则失去平衡 后进行调整的规律可归纳为下列四种情况: ⒈RR型平衡旋转: a -2 b -1 h-1 a1
2.查找关键字k=85 的情况 (1) low=1;high=11;mid=(1+11) / 2=6
05
13
19
21
数据结构——- 二叉树

证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4
数据结构:第9章 查找2-二叉树和平衡二叉树

return(NULL); else
{if(t->data==x) return(t);
if(x<(t->data) return(search(t->lchild,x));
else return(search(t->lchild,x)); } }
——这种既查找又插入的过程称为动态查找。 二叉排序树既有类似于折半查找的特性,又采用了链表存储, 它是动态查找表的一种适宜表示。
注:若数据元素的输入顺序不同,则得到的二叉排序树形态 也不同!
讨论1:二叉排序树的插入和查找操作 例:输入待查找的关键字序列=(45,24,53,45,12,24,90)
二叉排序树的建立 对于已给定一待排序的数据序列,通常采用逐步插入结点的方 法来构造二叉排序树,即只要反复调用二叉排序树的插入算法 即可,算法描述为: BiTree *Creat (int n) //建立含有n个结点的二叉排序树 { BiTree *BST= NULL;
for ( int i=1; i<=n; i++) { scanf(“%d”,&x); //输入关键字序列
– 法2:令*s代替*p
将S的左子树成为S的双亲Q的右子树,用S取代p 。 若C无右子树,用C取代p。
例:请从下面的二叉排序树中删除结点P。
F P
法1:
F
P
C
PR
C
PR
CL Q
CL QL
Q SL
S PR
QL S
SL
法2:
F
PS
C
PR
CL Q
QL SL S SL
数据结构:二叉树、平衡二叉树、红黑树详解

数据结构:⼆叉树、平衡⼆叉树、红⿊树详解⼀、⼆叉树(binary tree)指每个节点最多含有两个⼦树的树结构。
时间复杂度为O(log N),在退化成链表的情况下时间复杂度为O(N)。
特点:1.所有节点最多拥有两个⼦节点;2.节点的左⼦树只包含⼩于当前根节点的数,节点的右⼦树只包含⼤于当前根节点的数。
缺点:只会以我们第⼀次添加的节点为根节点,如果后⾯添加的节点值都⼤于或⼩于根节点的值,在这种情况下会退化成链表。
⼆、平衡⼆叉树(Balanced Binary Tree)⼜称为AVL树,具有⼆叉树的全部特性,解决⼆叉树退化成链表情况的问题,每个节点的左⼦树和右⼦树的⾼度之差不会超过1,AVL树是严格的平衡⼆叉树,追求完全平衡,⽐较严格。
缺点:由于要求每个节点的左⼦树和右⼦树⾼度之差不超过1,这个要求⾮常严格,追求完全平衡,这就导致了在频繁插⼊和删除的场景中,可能就会导致AVL树失去平衡,AVL树就需要频繁的通过左旋右旋使其重新达到平衡,这时就会时得其性能⼤打折扣。
三、红⿊树和AVL树相⽐,红⿊树放弃追求完全平衡,⽽是追求⼤致平衡,保证每次插⼊节点最多只需要三次旋转就能达到平衡,维持平衡的耗时较少,实现起来也更为简单,它的旋转次数较少,对于频繁插⼊和删除操作的场景,相⽐AVL树,红⿊树更具优势。
特征:1.红⿊树是也是平衡⼆叉树实现的⼀种⽅式2.节点只能是⿊⾊或者红⾊,root根节点⼀定是⿊⾊3.新增时默认新增的节点是红⾊,不允许两个红⾊节点相连4.红⾊节点的两个⼦节点⼀定是⿊⾊红⿊树变换规则三种规则:1.改变节点颜⾊2.左旋转3.右旋转变⾊的情况:当前节点的⽗亲节点是红⾊,并且它的祖⽗节点的另外⼀个⼦节点(叔叔节点)也是红⾊:以当前节点为指针进⾏操作1.将⽗亲节点变为⿊⾊2.将叔叔节点变为⿊⾊3.将祖⽗节点变为红⾊4.再把指针定义到祖⽗节点进⾏旋转操作左旋转:当⽗亲节点为红⾊情况,叔叔节点为⿊⾊情况,且当前节点是右⼦树,左旋转以⽗节点作为左旋。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
数据结构详细教案——树与二叉树

数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要求
了解 掌握 掌握 基本掌握 掌握 基本掌握
查找 要求:
内容
顺序查找的方法 二分查找的方法 顺序查找、二分查找的算法 计算顺序查找、二分查找的平均查找长度 分析顺序查找、二分查找的时间复杂度 静态查找树表 二叉排序树的概念 二叉排序树插入节点的方法 二叉排序树删除节点的方法 二叉排序树的查找方法和算法 插入二叉排序树中结点的算法 删除二叉排序树中结点的算法
二叉树的先序、中序、后序遍历的递归算法
熟练掌握
二叉树的层次遍历算法(自学)
熟练掌握
二叉树遍历的非递归算法
了解
运用遍历算法实现二叉树的其它操作(求树高、叶子总数等) 熟练掌握
线索二叉树的概念
基本掌握
线索化二叉树的方法
了解
二叉树 要求(续):
内容
树、森林与二叉树的转换方法 树与森林的常用遍历方法 最优二叉树(哈夫曼树)的概念的特性 建立最优树和哈夫曼编码的方法 哈夫曼树和哈夫曼码的构造算法 利用二叉树的中序和先序(或后序)构造二叉树的方法 利用二叉树的中序和先序(或后序)构造二叉树的算法 链式二叉树的递归创建方法 树的双亲表示法(可用来快速解决简单问题)
要求
熟练掌握 基本掌握
掌握 熟练掌握
熟练掌握 掌握 掌握 掌握 掌握
课外阅读
栈和队列 要求:
内容
栈和队列的概念和结构特点 栈和队列的抽象数据类型定义 栈的顺序存储方式的实现 栈的链式存储方式的实现 链式队列和循环队列的实现 栈的应用(进制转换,括号匹配) 栈与递归(递归实现回溯法) 队列的应用(事件模拟) 利用STL中的stack,queue解决问题
要求
掌握 掌握 掌握 熟练掌握 熟练掌握 基本掌握 了解
要求
掌握 掌握 课外了解 掌握 掌握 熟练掌握 熟练掌握 基本掌握
排序 要求:
内容
排序的有关概念 对常用排序算法的时间复杂度、空间复杂度进行分析 常用排序算法的时间复杂度、空间复杂度的结论 直接插入排序、冒泡排序、简单选择排序的方法、算法 快速排序、堆排序、归并排序的方法 希尔排序、基数排序的方法 折半插入排序
特殊矩阵的压缩存储 广义表的概念 求广义表的表头、表尾、长度、深度
掌握 基本掌握 基本掌握
掌握 掌握 掌握 熟练掌握
了解 掌握 熟练掌握
二叉树 要求:
内容
要求
树的定义和基本术语
掌握
树的各种存储结构 二叉树的定义和性质 完全二叉树的顺序存储表示
了解 熟练掌握 基本掌握
二叉树的二叉链表存储表示
熟练掌握
要求
掌握 熟练掌握 熟练掌握 熟练掌握
掌握 课外了解 熟练掌握 熟练掌握 基本掌握 熟练掌握 基本掌握
了解
查找 要求(续)
内容
平衡二叉树的的概念 平衡化二叉树的方法 B树、B+树、键树 哈希查找的概念 常用的哈希函数的构造方法 用线性探测法和链地址法解决冲突的方法 计算线性探测法和链地址法的平均查找长度(含查找失败) 哈希表的查找算法和插入算法(开放定址)
数据结构知识点
计算机13级 201302学期
线性表 要求:
内容
线性表的概念和特点 线性表的抽象数据类型定义
顺序表和链表的定义和组织形式 线性表的顺序存储方式的实现
线性表(单链表、循环链表)的链式存储方式的实现 线性表(双向链表)的链式存储方式的实现 比较顺序表与链表的优缺点,掌握其各自适用的场合 应用线性结构解决基本的问题 利用STL中的vector,list解决基本的问题 一元多项式的表示和相加
要求
掌握 熟练掌握 熟练掌握 熟练掌握 基本掌握
了解 熟练掌握
掌握 了解 掌握 掌握
图 要求(续):
内容
图的拓扑排序的算法(采用邻接表) 图的最短路径的概念 求图的单源最短路径的Dijkstra方法 图的单源最短路径的Dijkstra算法 AOE网和关键路径的概念以及求关键路径方法 图的任意两个顶点间最短路径的Floyd方法及算法
要求
熟练掌握 掌握
熟练掌握 基本掌握 熟练掌握 熟练掌握
掌握 基本掌握
掌握
串,数组和广义表 要求:
内容
要求
串的概念 串的抽象数据类型定义 串的基本操作及模式匹配BF算法 利用STL中的解决基本的问题
数组的定义,如何理解它们是线性表的扩展 多维数组的结构特点和在内存中的两种顺序存储方式
多维数组中某数组元素的Location求解(按行存储或按列 存储):给出数组元素的首元素地址和每个元素占用 的地址空间,并给出多维数组的维数,要求出该数组 中的某个元素所在的位置
要求
基本掌握 基本掌握 基本掌握 熟练掌握 基本掌握 熟练掌握
了解
基本掌握 基本掌握
图 要求:
内容
图的定义和基本术语 图的邻接矩阵存储方法 图的邻接表存储方法 图的深度优先搜索与广度优先搜索的方法 图的深度优先搜索与广度优先搜索的算法 求图的连通分量的方法 构造图的最小生成树的2种方法 图的最小生成树Prim算法 (采用邻接矩阵) 图的最小生成树Kruscal算法实现 AOV网和拓扑排序的概念 图的拓扑排序的方法