07-13年广东高考数学理科数列真题(含答案)
2007年高考数学广东卷(理科)-带答案

2007 年高考数学广东卷(理科)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y xC .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。
13年广东高考理科数学试题及答案OK

正视图 俯视图侧视图图1绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式121(3V S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}R x x x x M ∈=+=,022 {}R x x x x N ∈=-=,022,则M N = ( )A 、{}0B 、{}2,0C 、{}0,2-D 、{}2,0,2-2、定义域为R 的四个函数3x y =,x y 2=,12+=x y ,x y sin 2=中,奇函数的个数是( )A 、4B 、3C 、2D 、1 3、若复数z 满足i iz 42+=,则在复平面内,z 对应的点的坐标是( )A 、)4,2(B 、)4,2(-C 、)2,4(-D 、)2,4( 4、已知离散型随机变量X 的分布列为则X 的数学期望=)(X E ( )5 )A 、4B 、314 C 、316D 、6D6、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是( ) A 、若m n αβαβ⊥⊂⊂,,, 则m n ⊥ B 、若m n αβαβ⊂⊂∥,,,则m n ∥ C 、若m n m n αβ⊥⊂⊂,,, 则αβ⊥ D 、若m m n n αβ⊥,∥,∥,则αβ⊥7、已知中心在原点的双曲线C 的右焦点为)0,3(F 离心率等于23,则C 的方程是( ) A 、15422=-y x B 、15422=-y x C 、15222=-y x D 、15222=-y x 8、设整数4≥n ,集合{}n X ,,3,2,1 =令集合{}(,,),,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若),,(),,(x w z z y x 和都在S中,则下列选项正确的是( )A 、S w y x S w z y ∉∈),,(,),,(B 、 S w y x S w z y ∈∈),,(,),,(C 、S w y x S w z y ∈∉),,(,),,(D 、 w y x S w z y ∉∉),,(,),,(二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20(一)必做题(9-13题)9、不等式022<-+x x 的解集为 .10、若曲线x kx y ln +=在点),1(k 处的切线平行于x 轴,则=k .11、执行图2所示的流程框图,若输入n 的值为4,则输出s 的值为 . 12.在等差数列{}n a 中,已知1083=+a a ,则=+753a a .13、给定区域⎪⎩⎪⎨⎧≥≤+≥+0444:x y x y x D ,令点集{}000000(,),,(,)D T x y D x y Z x y z x y =∈∈=+是在上取得最大值或最小值的点,则T 中的点共确定条不同的直线;(二)选做题(14-15题,考生只能从中选做一题) 14、(坐标系与参数方程选做题)已知曲线C 的参数方程为⎩⎨⎧==)(sin 2cos 2为参数t ty t x ,C 在点)1,1(处的切线为l ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则l 的极坐标方程为 . 15、(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D ,使BC =CD ,过C 作圆O 的切线交AD 于E ,若AB =6,DE =2,则BC = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数()),12f x x π=-x R ∈,(1)求()6f π-的值;(2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17、(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人? (3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.图4BC图6O18、(本小题满分14分)如图5,在等腰直角三角形ABC中,∠A 90=︒,6BC=,D,E分别是AC,AB上的点,CD BE== O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎'A BCDE-,其中'A O=(1)证明:'A O⊥平面BCDE;(2)求二面角'A CD B--平面角的余弦值.19、(本小题满分14分)设数列{}na的前n项和为nS,已知11a=,2*1212,33nnSa n n n Nn+=---∈,(1)求2a的值;(2)求数列{}na的通项公式;(3)证明:对一切正整数n,有1211174na a a++⋅⋅⋅+<.20、(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=,设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,B 为切点;(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB ;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值21、(本小题满分14分)设函数2()(1)()x f x x e kx k R =--∈,(1)当1k =时,求函数()f x 的单调区间; (2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M2013年普通高等学校招生全国统一考试(广东卷)答案数学(理科)一、选择题1-5:D 、C 、C 、A 、B ; 6-8:D 、B 、B ;二、填空题9、(-2,1) 10、-1 11、7 12、20 13、6 14、2)4(sin =+πθρ 15、32三、解答题16、(1)由题意1222)4cos(2)126cos(2)6(=⨯=-=--=-ππππf (2)∵)2,23(,53cos ππθθ∈=,∴54-sin =θ.∴252453)54(2cos sin 22sin ,2571)53(21-cos 22cos 22-=⨯-⨯==-=-⨯==θθθθθ∴)4sin 2sin 4cos 2(cos 2)42cos(2)1232cos(2)32(πθπθπθππθπθ-=+=-+=+f2517)2524(2572sin 2cos )2sin 222cos 22(2=---=-=-=θθθθ. 17、(1)样本均值为226302521201917=+++++=x . (2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为3162=,故12名员工中优秀员工人数为41231=⨯(人).(3)记事件A 为“抽取的工人中恰有一名为优秀员工”,由于优秀员工4人,非优秀员工为8人,故事件A 发生的概率为33166684)(2121814=⨯==C C C A P ,即抽取的工人中恰有一名为优秀员工的概率为3316.18、(1)折叠前连接OA 交DE 于F ,∵折叠前△ABC 为等腰直角三角形,且斜边BC =6, 所以OA ⊥BC ,OA=3,AC =BC =23 又2==BE CD∴BC ∥DE ,22==AE AD∴OA ⊥DE ,22==AE AD ∴AF =2,OF =1 折叠后DE ⊥OF ,DE ⊥A ′F ,OF ∩A ′F =F∴DE ⊥面A ′OF ,又OF A O A '⊂'面 ∴DE ⊥A ′O又A ′F =2,OF =1,A ′O =3∴△A ′OF 为直角三角形,且∠A ′OF =90° ∴A ′O ⊥OF , 又BCDE DE 面⊂,BCDE OF 面⊂,且DE ∩OF =F , ∴A ′O ⊥面BCDE .(2)过O 做OH ⊥交CD 的延长线于H ,连接H A ',∴OH =22AO =223,230)3()223(2222=+=+'='OH O A H A ∵∠A ′HO 即为二面角B CD A --'的平面角,故cos ∠A ′HO=5153023=='H A OH . 19、(1)令*21,32312N n n n a n S n n ∈---=+中n =1得,32131221---=a a ∴42212=+=a a(2)由*21,32312N n n n a n S n n ∈---=+;得)2)(1(612326121231++-=---=++n n n na n n n na S n n n∴)3)(2)(1(612)1(21+++-+=++n n n a n S n n两式相减得)2)(1(2122)1(121++--+=-+++n n na a n S S n n n n∴)2)(1(2122)1(121++--+=+++n n na a n a n n n∴)2)(1(212)2(2)1(12++++=+++n n a n a n n n∴11212++=+++n an a n n ,∴11212=+-+++n a n a n n又由(1)知112,22,111221=-==aa a a∴为公差的等差数列,为首相,是以11⎭⎬⎫⎩⎨⎧n a n ∴n na n =.∴)(*2N n n a n ∈=.(3)∵)1111(21)1)(1(111122+--=+-=-<n n n n n n∴)1111(21)4121(21)311(2111312111111222321+--++-+-+<++++=++++n n na a a a n 47)111(2147)111211(211<++-=+--++=n n n n 20、(1)依题意得0,22322>=--c c ,∴1=c .∴抛物线焦点坐标为(0,1),抛物线解析式为x 2=4y(2)设A (x 1,421x ),B (x 2,422x ),∴可设A 、B 中点坐标为M )82(222121x x x x ++, 所以直线PA :424)(22112111x x x x x x x y -=+-=,直线PB :424)(22222222x x x x x x x y -=+-=两式相减得)2(244202121212221x x x x x x x x x x +--=-+-= ∵21x x ≠,∴0221≠-x x ,0221=+-x x x∴2210x x x +=, ∴0212x x x =+将P (0x ,0x -2)带入PA :42211x x x y -=得4422221212110x x x x x x x =-+=-∴84021-=x x x∴2428168482)(8020020212212221+-=+-=-+=+x x x x x x x x x x ∴A 、B 中点坐标为M (0x ,242020+-x x )∴直线AB 的斜率24)(4021122122x x x x x x x k AB =+=--= 故直线AB 的方程为22242)(20002000+-=+-+-=x x x x x x x x y . (3)由于A 点到焦点F 的距离等于A 点到准线y =-1的距离,∴|AF |=1421+x ,|BF |=1422+x 29)23(2962142)2(14)4()14)(14(200200202022212212221+-=+-=++-+-=+++=++=⋅x x x x x x x x x x x x BF AF∴当230=x 时,BF AF ⋅取最小值29.21、(1)k =1时2)1()(x e x x f x --=∴)2(2)1()(-=--+='x x x e x x e x e x f当x <0时02<-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;0< x <ln2时02>-x e ,故0)2()(<-='x e x x f ,)(x f 单调递减; x>ln2时02>-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;综上,)(x f 的单调增区间为)0,(-∞和),2(ln +∞,单调减区间为)2ln ,0(. (2))2(2)1()(k e x kx e x e x f x x x -=--+='∵121≤<k ,∴221≤<k 由(1)可知)(x f 的在(0,ln2k )上单调递减,在(ln2k ,+∞)上单调递增设)121(,2ln )(≤<-=x x x x g ,则xx x g 11221)(-=-=' ∵121≤<x ,∴211<≤x ,∴0111≤-<-x∴x x x g 2ln )(-=在⎥⎦⎤⎝⎛121,上单调递减.∵121≤<k , ∴02ln 1)1()(>-=>g k g ∴02ln >-k k 即k k 2ln > ∴)(x f 的在(0,ln2k )上单调递减,在(ln2k ,k )上单调递增. ∴)(x f 的在[0,k ]上的最大值应在端点处取得. 而1)0(-=f ,1)1(2)1()(3-=<--=f k e k k f k ∴当x =0时)(x f 取最大值1-.。
2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题与答案解析2013年普通高等学校招生全国统一考试〔广东卷〕数学〔理科〕参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. DC CA BD BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. (-2,1) 10.k =-1 11. 7 12.20 13.614.sin 4πρθ⎛⎫+= ⎪⎝⎭15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.〔本小题满分12分〕[解析](Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.〔本小题满分12分〕[解析](Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.向量法图(Ⅲ) 设事件A:从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A=1148212C CC 1633=.18.〔本小题满分14分〕[解析](Ⅰ) 在图1中,易得3,OC AC AD===连结,OD OE,在OCD∆中,由余弦定理可得OD==由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O=,所以A O'⊥平面BCDE.(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O'⊥平面BCDE,所以A H CD'⊥,所以A HO'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cos5OHA HOA H'∠==',所以二面角A'的平面角的余弦值为.向量法:以O点为原点,建立空间直角坐标系O-则()0,0,3A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,则n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得yz=⎧⎪⎨=⎪⎩,令1x=,得(1,1,n=-由(Ⅰ) 知,()0,0,3OA'=为平面CDB的一个法向量,所以3cos,3n OAn OAn OA'⋅'==⋅'即二面角A CD B'--19.〔本小题满分14分〕[解析](Ⅰ) 依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ) 当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<.20.〔本小题满分14分〕[解析](Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设A (x 1,y 1), B (x 2,y 2) (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点P (x 0,y 0),所以1001220x x y y --=,2002220x x y y --= 所以(x 1,y 1),(x 2,y 2)为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点P (x 0,y 0)在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭ 所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.〔本小题满分14分〕 [解析](Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令f'(x )=0,得0x =,ln 2x = 当x 变化时, f'(x ), f (x )的变化如下表:f (x ) 极大值极小值右表可知,函数f (x )的递减区间为(0,ln2),递增区间为(-∞,0), (ln2,+∞). (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令f'(x )=0,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时, f'(x )<0;当()()ln 2,x k ∈+∞时, f'(x )>0;所以()(){}(){}3max 0,max 1,1kM f f k k e k ==--- 令()()311kh k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以φ(k )在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e e ϕϕ⎛⎫⎛⎫⋅=--< ⎪ ⎪⎝⎭⎝⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时, φ(k )>0, 当()0,1k x ∈时, φ(k )<0, 所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为1170228h e ⎛⎫=-+> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=〞.综上,函数f (x )在[0,k ]上的最大值()31kM k e k =--.。
07-13年广东高考数学理科概率统计真题(含答案)

17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(3×2.5+4×3+5×4+6×4.5=66.5)2008年广东高考文科卷17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图5 (1)求直方图中x 的值;(2)计算一年屮空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯)2010年广东高考文科卷17.(12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495】,(495,500】,……,(510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
高考广东理科数学试题及答案解析版

2013年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年广东,理1,5分】设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N =U ( )(A ){}0 (B ){}0,2 (C ){}2,0- (D ){}2,0,2- 【答案】D【解析】易得{}2,0M =-,{}0,2N =,所以M N =U {}2,0,2-,故选D .(2)【2013年广东,理2,5分】定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )(A )4 (B )3 (C )2 (D )1 【答案】C【解析】3y x =,2sin y x =为奇函数;21y x =+为偶函数;2x y =为非奇非偶函数.∴共有2个奇函数,故选C . (3)【2013年广东,理3,5分】若复数z 满足i 24i z =+,则在复平面内,z 对应的点的坐标是( )(A )()2,4 (B )()2,4- (C )()4,2- (D )()4,2 【答案】C【解析】由i 24i z =+,得24i (24i)(i)42i i i (i)z ++⋅-===-⋅-,故z 对应点的坐标为(4)2-,,故选C . (4)【2013年广东,理4,5X X1 2 3 P35310 110 则X 的数学期望EX = (A )32 (B )2 (C )52(D )3【答案】A【解析】33115312351010102EX =⨯+⨯+⨯==,故选A .(5)【2013年广东,理5,5分】某四棱台的三视图如图所示,则该四棱台的体积是( )(A )4 (B )143 (C )163(D )6【答案】B【解析】解法一:由三视图可知,原四棱台的直观图如图所示, 其中上、下底面分别是边长为1,2的正方 形,且1DD ⊥面ABCD ,上底面面积2111S ==,下底面面积2224S ==.又∵12DD =,∴()1122111411()442333V S S S S h =++=+⨯+⨯=台,故选B .解法二:由四棱台的三视图,可知原四棱台的直观图如图所示.在四棱台1111ABCD A B C D -中,四边形ABCD 与四边形A 1B 1C 1D 1都为正方形,2AB =,111A B =,且1D D ⊥平面ABCD ,12D D =.分别延长四棱台各个侧棱交于点O ,设1OD x =,因为11OD C ODC ∆∆∽,所以111OD D C OD DC=, 即122x x =+,解得2x =.111111111114224112333ABCD A B C D O A A B B C O D CD V V V ---=⨯⨯⨯-⨯⨯⨯=-=棱锥棱锥,故选B . (6)【2013年广东,理6,5分】设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )(A )若αβ⊥,m α⊂,n β⊂,则m n ⊥ (B )若//αβ,m α⊂,n β⊂,则//m n (C )若m n ⊥,m α⊂,n β⊂,则αβ⊥ (D )若m α⊥,//m n ,//n β,则αβ⊥【解析】选项A 中,m 与n 还可能平行或异面,故不正确;选项B 中,m 与n 还可能异面,故不正确;选项C 中,α与β还可能平行或相交,故不正确;选项D 中,∵m α⊥,//m n ,n α∴⊥. 又//n β,αβ∴⊥,故选D .(7)【2013年广东,理7,5分】已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )(A)2214x = (B )22145x y -= (C )22125x y -= (D)2212x = 【答案】B【解析】由曲线C 的右焦点为0(3)F ,,知3c =.由离心率32e =,知32c a =,则2a =,故222945b c a =-=-=,所以双曲线C 的方程为22145x y-=,故选B .(8)【2013年广东,理8,5分】设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){,,|,,S x y z x y z X =∈且三条件x y z <<,,y z x z x y <<<<,}恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )(A )(),,y z w S ∈,(),,x y w S ∉ (B )(),,y z w S ∈,(),,x y w S ∈ (C )(),,y z w S ∉,(),,x y w S ∈ (D )(),,y z w S ∉,(),,x y w S ∈【答案】B【解析】解法一:特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B . 解法二:由()x y z S ∈,,,不妨取x y z <<,要使()z w x S ∈,,,则w x z <<或x z w <<.当w x z <<时,w x y z <<<,故()y z w S ∈,,,()x y w S ∈,,.当x z w <<时,x y z w <<<,故()y z w S ∈,,,()x y w S ∈,,. 综上可知,()y z w S ∈,,,()x y w S ∈,,,故选B .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13) (9)【2013年广东,理9,5分】不等式220x x +-<的解集为 . 【答案】()2,1-【解析】220x x +-<即()()210x x +-<,解得21x -<<,故原不等式的解集为1{|}2x x -<<. (10)【2013年广东,理10,5分】若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k = . 【答案】1-【解析】1y xk '=+.因为曲线在点(1)k ,处的切线平行于x 轴,所以切线斜率为零,由导数的几何意义得10|x y ='=,故10k +=,即1k =-.(11)【2013年广东,理11,5分】执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 . 【答案】7【解析】第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.(12)【2013年广东,理12,5分】在等差数列{}n a 中,已知3810a a +=,则573a a += .【答案】20【解析】依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=. 或:()57383220a a a a +=+=.(13)【2013年广东,理13,5分】给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y=+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.【解析】画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14-15题,考生只能从中选做一题)(14)【2013年广东,理14,5分】(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .【答案】sin 24πρθ⎛⎫+= ⎪⎝⎭【解析】曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 24πρθ⎛⎫+= ⎪⎝⎭. (15)【2013年广东,理15,5分】(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC = . 【答案】23【解析】依题意易知ABC CDE ∆∆:,所以AB BCCD DE=,又BC CD =,所以212BC AB DE =⋅=,从而23BC =. 三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2013年广东,理16,12分】已知函数()2cos 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(1)求6f π⎛⎫- ⎪⎝⎭的值;(2)若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.解:(1)2cos 2cos 2cos 1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)22cos 22cos 2cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos2cos sin 25θθθ=-=-,所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin2θθ=-72417252525⎛⎫=---= ⎪⎝⎭.(17)【2013年广东,理17,12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值为1719202125301322266+++++==.(2)由(1)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=. (18)【2013年广东,理18,14分】如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,2CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中3A O '=.(1)证明:A O '⊥平面BCDE ; (2)求二面角D AF E --的余弦值.解:(1)在图1中,易得3,32,22OC AC AD ===,连结,OD OE ,在OCD ∆中,由余弦定理可得222cos 455OD OC CD OC CD =+-⋅︒=,由翻折不变性可知22A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =I ,所以A O '⊥平面BCDE . (2)解法一:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ',因为A O '⊥平面BCDE ,所以A H CD '⊥,A HO '∴∠为二面角A CD B '--的平面角.由图1可知,H 为AC 中点,故32OH =,2230A H OH OA ''=+=, 所以15cos OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为15. 解法二:以O 点为原点,建立空间直角坐标系O xyz -如图所示,则()0,0,3A ',()0,3,0C -,()1,2,0D -,所以()0,3,3CA '=u u u r ,()1,2,3DA '=-u u u u r,设(),,n x y z =r 为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩r u u u rr u u u u r,即330230y z x y z ⎧+=⎪⎨-++=⎪⎩,解得3y x z x =-⎧⎪⎨=⎪⎩,令1x =,得()1,1,3n =-r 由(1)知,()0,0,3OA '=u u u r 为平面CDB 的一个法向量,所以15cos ,35n OA n OA n OA '⋅'==='⋅r u u u rr u u u r r u u u r , 即二面角A CD B '--的平面角的余弦值为15. (19)【2013年广东,理19,14分】设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++<L . 解:(1)依题意,12122133S a =---,又111S a ==,所以24a =.(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------,两式相减得()()()2112213312133n n n a na n a n n n +=----+---,整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a -=,故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111n an n n=+-⨯=,所以2n a n =.(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n =<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L L 11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<L .(20)【2013年广东,理20,14分】已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为32.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1)求抛物线C 的方程;(2)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求AF BF ⋅的最小值.解:(1)依题意,设抛物线C 的方程为24x cy ==结合0c >,解得1c =. 所以抛物线C 的方程为24x y =.(2)抛物线C 的方程为24x y =,即214y x =,求导得12y x '=,设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=,同理可得切线PB 的方程为22220x x y y --=,因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --=,所以()()1122,,,x y x y为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=.(3)由抛物线定义可知11AF y =+,21BF y =+,所以()()()121212111AF BF y y y y y y ⋅=++=+++,联立方程0022204x x y y x y--=⎧⎪⎨=⎪⎩,消去x 整理得()22200020y y x y y +-+=,由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =,所以()221212000121AF BF y y y y y x y ⋅=+++=+-+,又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭,所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.(21)【2013年广东,理21,14分】设函数()()21x f x x e kx =--(其中k ∈R ).(1)当1k =时,求函数()f x 的单调区间;(2)当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .解:(1)当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-, 令()0f x '=,得0x =,ln 2x =,当x 变化时,,f x f x '的变化如下表:(2)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈,所以当()()0,ln 2x k ∈时, ()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---,令()()311k h k k e k =--+,则()()3k h k k e k '=-,令()3k k e k ϕ=-,则()330k k e e ϕ'=-<-<,所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭,所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x上单调递减.17028h ⎛⎫=> ⎪⎝⎭,()10h =,()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”. 综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.。
2013年全国普通高等学校招生统一考试理科数学(广东卷带解析)

绝密★启用前 2013-2014学年度 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N =U ( ) A.{}0 B .{}0,2 C .{}2,0- D .{}2,0,2- 2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( ) A . 4 B .3 C .2 D .1 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A . ()2,4 B .()2,4- C .()4,2- D .()4,2 则的数学期望 ( ) A . 32 B .2 C .52 D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4 B.143C .163 D .66.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x -=B .22145x y -= C .22125x y -= D .2212x =8.设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){},,|,,,,,S x y z x y z X x y z yz x z x y =∈<<<<<<且三条件恰有一个成立 若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈正视图 俯视图 侧视图第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)9.不等式20x x+-<的解集为___________.10.若曲线lny kx x=+在点()1,k处的切线平行于x轴,则k=______.11.执行如图所示的程序框图,若输入n的值为4,则输出s的值为______.12.在等差数列{}n a中,已知3810a a+=,则573a a+=_____.13.给定区域D:,令点集()()000000{,|,,,T x y D x y Z x y=∈∈是z x y=+在D上取得最大值或最小值的点},则T中的点共确定______条不同的直线.14.已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t为参数),C在点()1,1处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为_____________.15.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC CD=,过C作圆O 的切线交AD于E.若6AB=,2ED=,则BC=_________..AEDCBO三、解答题(题型注释) 16.已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R . (Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭. 17.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值.19.设数列{}n a 的前n 项和为n S .已知11a =,2121233nn S a n n n +=---,*n ∈N .(Ⅰ) 求2a 的值;. C O B D EA CD O BE'A图1 图2 1 7 92 0 1 53 0(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<L . 20.已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程; (Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 21.设函数()()21x f x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .参考答案1.D【解析】因{}2,0M =-,{}0,2N =,所以M N =U {}2,0,2-,故选D .【考点定位】集合的运算、二次方程的解法2.C【解析】奇函数的为3y x =与2sin y x =,21y x =+和2xy =为非奇非偶函数,故选C . 【考点定位】基本初等函数和奇函数的概念3.C 【解析】2442i z i i+==-对应的点的坐标是()4,2-,故选C . 【考点定位】复数运算和复数的几何意义.4.A 【解析】33115312351010102EX =⨯+⨯+⨯==,故选A . 【考点定位】离散型随机变量的期望5.B【解析】由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =⨯=,故选B . 【考点定位】三视图与四棱台的体积6.D【解析】选项A 中,m 与n 还可能平行或者异面,故错;B 中,m 与n 还可能异面,故错;C 中,,αβ还有可能平行或者相交,故错; D 中,,,,m m n n n ααβαβ⊥∴⊥∴⊥Q Q ∥∥,,故D 正确.【考点定位】考查线面的位置关系7.B【解析】依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B . 【考点定位】考查双曲线方程。
2013年高考理科数学广东卷-答案

M N=-{2,0,2}z①,x②,y③三个式子中恰有一个成立;x④,z⑤,w⑥+=条不同的直线.故可确定51612AB DE=,【提示】观察图形,根据已知条件,利用圆的性质,通过相似三角形求距离.cos45OC CD︒=,所以OD OE O⊥交CDCD-的平面角.CD B中点,故OH5A H'5所以(0,3,CA '=,(1,2,DA '=-设(,,)n x y z =00n CA n DA ⎧'=⎪⎨'=⎪⎩,即⎩,得(1,1,n =-由(Ⅰ)知,(0,0,OA '=315,5||||35n OA n OA n OA ''==='22211111111111111434423341n a n n n ⎛⎫⎛⎫⎛⎫++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭14244n n =++-=-< 174n a ++<项的关系式和首项,求第二项;根据题设条件,利用递推公式求通项公1(AF BF y =联立方程24x y⎨=⎪⎩12|||AF BF y y =02y =+,|||AF BF 取得最小值,且最小值为根据两直线的交点,联立两直线求直线方程;由直线与抛物线的位置关系得到关系式,求最小值.ln 21ln ≤-=k <,所以(0,ln(2))k 时,),)k +∞时,max{(0),f f 3e 30-<(1)e ϕ⎫⎛=⎪ ⎭⎝所以存在01,12x ⎛∈ ⎝【考点】利用导数求函数的单调区间,利用函数单调性求最值。
2013年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)

设数列 an 的前 n 项和为 Sn . 已知 a1
(1)求 a2 的值 (2)求数列{ an}的通项公式 a1
2 Sn 1, n
an 1
1 n2 3
n
2 3, n
N* .
11
17
证明 : 对一切正整数 n , 有 a1 a2
an 4 .
20.( 本小题满分 14 分 ) 已知抛物线 c 的顶点为原点,其焦点 F(0,c)( c>0)到直线 L:x-y-2=0 的距离为 . 设
1
a2
,又 2
a1 1
1
故数列
an n
a1 是首项为 1
1 , 公差为 1的等差数列 ,
an 1 所以 n
n1
1
n
,
所以
an
n2 .
1
7
11
15
1
1
(3) 当 n 1 时 , a1
4 ;当 n 2时 , a1 a2
44
11 当 n 3时, an n2
1
11
n 1 n n 1 n , 此时
11 a1 a2
三、解答题:本大题共 6 小题,满分 80 分,解答需写出文字说明。证明过程和演算步骤。 16. (本小题满分 12 分)
f ( x) 2 cos( x )
已知函数
12 , x R
(1)求 f ( - )的值;
(2)若 cosθ = , θE( , 2π),求 f ( 2θ + )。 17.(本小题满分 12 分)
∵ A’ O⊥平面 BCDE,CD 平面 BCDE, ∴CD⊥ A’O
∵ OM A’O=O, ∴ CD⊥平面 A’ OM
∵ A’ M 平面 A’ OM∴ CD⊥ A’ M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07-13年广东高考数学理科数列真题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN5.已知数列{a n }的前n 项和29n S n n =-,第k 项满足58k a <<,则k = A. 9 B. 8 C. 7 D. 621.(本小题满分14分)已知函数2()1, f x x x αβ=+-、是方程()0f x =的两个根()αβ>,()f x '是()f x 的导数.设11()1,(1,2,)()n n n n f a a a a n f a +==-=', (1)求αβ、的值;(2)证明:对任意的正整数n ,都有n a α>; (3)记ln(1,2,)n n n a b n a βα-==-,求数列{}n b 的前n 项和n S .2.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( )A .16B .24C .36D .4821.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .4.巳知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A.(21)n n - B.2(1)n + C.2n D.2(1)n -21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nxx x x x y -⋅⋅⋅⋅<<4.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=, 且4a 与72a 的等差中项为54,则5S =A.35B.33C.31D.292011年广东高考理科卷11. 等差数列{}n a 前9项的和等于前4项的和. 若141,0k a a a =+=,则k=____________.20.(本小题共14分) 设b>0,数列{}n a 满足a 1=b ,11(2)22n n n nba a n a n --=≥+-.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,11 1.2n n n b a ++≤+11.已知递增的等差数列{}n a 满足21321,4a a a ==-,则n a =_____________19. (本小题满分14分)设数列{a n }的前n 项和为S n ,满足2S n =an+1-2n+1,n ∈N ﹡,且a 1,a 2+5,a 3成等差数列。
求a 1的值;求数列{a n }的通项公式。
证明:对一切正整数n ,有121113 (2)n a a a +++<.答案解析2007年广东高考理科卷5. 答案为:B解析:由29n S n n =-,可根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.解得210n a n =-.再根据5<2k -10<8,解得7.5<k <9,∴k =8.21.解:(1) 由 210x x +-=得12x -±=α∴=β= (2)(数学归纳法)①当1n =时,11a =>命题成立; ②假设当*(1,)n k k k N =≥∈时命题成立,即k a >21511118221212222k kk k k a a a a a α+++∴==+-≥=++,又等号成立时k a=k a ∴>时,1k a β+>1n k ∴=+时命题成立; 由①②知对任意*n N ∈均有n a α>.(3) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+∴=-=++ 1n a β+∴-=22221()(1)()212121n n n n n n a a a a a a βββββ+--+---==+++ 同理 1n a α+∴-=2()21n n a a α-+21111()ln 2ln n n n n n n n n a a a a a a a a ββββαααα++++----∴=∴=---- ∴ 12n n b b += 又1111ln4ln2a b a βα-===-∴数列{}n b 是一个首项为4ln公比为2的等比数列; ∴)()14ln12242112n n n S +-==--.2008年广东高考理科卷2.答案为: D【解析】20624=+=d S ,3=∴d ,故481536=+=d S21.解:(1)由求根公式,不妨设<αβ,得αβ∴+==p αβ,==q αβ(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得,+=⎧⎨=⎩s t pst q ,消去t ,得20-+=s ps q ,∴s 是方程20x px q -+=的根,由题意可知,12,==s s αβ ①当≠αβ时,此时方程组+=⎧⎨=⎩s t pst q的解记为1212==⎧⎧⎨⎨==⎩⎩s s t t ααββ或 112(),---∴-=-n n n n x x x x αβα112(),----=-n n n n x x x x βαβ即{}11--n n x t x 、{}21--n n x t x 分别是公比为1=s α、2=s β的等比数列, 由等比数列性质可得2121()---=-n n n x x x x ααβ,2121()---=-n n n x x x x ββα, 两式相减,得2212121()()()----=---n n n x x x x x βααββα221,=-=x p q x p ,222∴=++x αβαβ,1=+x αβ 22221()--∴-==n n n x x αββββ,22221()---==n n n x x βαααα1()-∴-=-nnn x βαβα,即1--∴=-n n n x βαβα,11++-∴=-n n n x βαβα②当=αβ时,即方程20x px q -+=有重根,240∴-=p q , 即2()40+-=s t st ,得2()0,-=∴=s t s t ,不妨设==s t α,由①可知2121()---=-n n n x x x x ααβ,=αβ,2121()--∴-=-=n n n n x x x x αααα即1-∴=+n n n x x αα,等式两边同时除以n α,得111--=+nn nn x x αα,即111---=nn nn x x αα∴数列{}nn x α是以1为公差的等差数列,12(1)111∴=+-⨯=+-=+n nx x n n n αααα∴=+n n n x n αα,综上所述,11,(),()++⎧-≠⎪=-⎨⎪+=⎩n n n n n x n βααββααααβ (3)把1p =,14q =代入20x px q -+=,得2104-+=x x ,解得12==αβ 11()()22∴=+n n n x n ,232311111111()()()...()()2()3()...()22222222n n n S n ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭ 23111111()()2()3()...()22222n n n ⎛⎫=-+++++ ⎪⎝⎭111111()2()()3(3)()2222n n n n n n -=-+--=-+.2009年广东高考理科卷4. 答案为: C解:在25252(3)n n a a n -⋅=≥中,令n=5,得251025)2(2==a ,令n=3,得6152=⋅a a ,又0,1,2,n a n >=,所以552=a ,21=a ,从而解得,公比2=q ,n n a 2=,12122--=n n a ,12log 122-=-n a n ,所以2123221log log log n a a a -+++=1+3+…+(2n-1)=22)121(n n n =-+21.(1)解:曲线22:20(1,2,)n C x nx y n -+==可化为222)(n y n x =+-, 所以,它表示以)0,(n C n 为圆心,以n 为半径的圆,切线n l 的方程为)1(+=x k y n ,联立⎩⎨⎧=+-+=02)1(22y nx x x k y n ,消去y 整理,得0)22()1(2222=+-++n n n k x n k x k ,① 222222)12(44)1(4)22(n n n n k n n k k n k +-=+--=∆,0>n k 令0=∆,解得1222+=n n k n, 12+=n nk n此时,方程①化为012)2122()121(2222=++-++++n n x n n n x n n整理,得[]0)1(2=-+n x n ,解得1+=n nx x , 所以 121)11(12++=+++=n n n n n n ny n ,∴数列}{n x 的通项公式为1+=n n x x ,数列}{n y 的通项公式为121++=n n ny n 。
(2)证明:∵121111111+=+++-=+-n n n n n x x n n ,121214)12(4)12(2122222+-=--<-=-n n n n n n n n ∴121275533121265432112531+-⨯⨯⨯⨯<-⨯⨯⨯⨯=⋅⋅⋅⋅-n n n n x x x x n=121+n =n n x x +-11, ∵121+=n y x n n =n n x x +-11,又4311210π<≤+<n 令x y x n n =,则40π<<x ,要证明n n n n y x y x sin 2<, 只需证明当40π<<x 时,x x sin 2<恒成立即可。