海量数据挖掘的关键技术及应用现状
大数据时代的数据挖掘与应用

大数据时代的数据挖掘与应用摘要:随着社会经济水平的不断提高和信息时代的不断发展,数据挖掘在社会的各个领域中得到广泛的应用和普及,给人们的生活方式、学习方式和工作方式带来方便的同时,却引发了一系列的网络安全问题。
基于此,本文针对大数据和大数据时代的概念进行了概述,分析了数据挖掘应用的分析方法,在此基础上探讨了大数据时代数据的挖掘与应用。
关键词:大数据时代;数据挖掘;应用引言如今是一个数据时代,互联网的飞速发展使人们的各项信息都可以被数据化,所以数据挖掘技术有着十分重要的意义。
在经济发展的过程当中,数据挖掘技术是一种新的数据库技术,通过从生活当中存在的海量数据来挖掘一些相应的价值规则。
在不断发展的过程当中,高度重视数据挖掘技术,能够令人们在上网过程中得到更好地体验,同时提高人们上网的网络速度,减少人们浪费在互联网上的时间。
数据挖掘技术的出现令用户们利用网络的情况数据化,让用户们的上网体验感更好,以此提高用户体验感。
1大数据挖掘技术的重要性大数据时代的数据挖掘大数据的合理挖掘和整理,让经营者在海量的数据中提取出对经营的最有利的黄金数据,推动经营盈利的最大化是大数据背景中数据挖掘重要意义的体现,因此数据挖掘的本质就是对一系列数据的处理和分析,通过分析和处理找出对自己最有利的信息。
大数据时代是人类在信息上的一次历史性的颠覆,其对人民的生产生活有着深远的影响,拉近人与人之间的距离,世界联系得更加紧密。
相对于以前的种种实体资产的重要性,转换成对各类信息资源的重视性,大数据时代下的数据资源已成为人类的一种宝贵财富,而这些海量的数据资源就如一座堆积而成的宝藏山,需要人民采用科学合理的方法去挖掘,因此在大数据时代的潮流中,如何学会数据的挖掘和深加工是理财致富的一条重要途径。
2数据挖掘技术的分析方法2.1关联分析自然界中的事物具有一定得联系,借助这一特征在数据挖掘的过程中借助不同数据之间的联系区别,能够更好查找数据集合与对象集合之间的因果结构。
数据挖掘技术的发展现状与未来发展趋势

数据挖掘技术的发展现状与未来发展趋势随着信息时代的到来,数据的产生和积累变得越来越巨大。
如何从这海量的数据中挖掘出有价值的信息,成为了当今学术界和产业界的一大挑战。
数据挖掘技术的发展正助力着人类社会的进步,在各个领域发挥着越来越重要的作用。
数据挖掘技术(Data Mining)是一种从大量数据中提取出隐含其中的、以往并没有被人们注意到的、但却具有重要价值的信息和知识的技术手段。
它结合了统计学、人工智能、机器学习等多个领域的方法和理论,通过构建模型、分析和预测,帮助人们在各种应用领域中做出准确的决策。
近年来,数据挖掘技术得到了广泛的应用。
在商业领域,数据挖掘技术被用于市场调研、客户关系管理、销售预测等,帮助企业提高效益和竞争力。
在医学领域,数据挖掘技术被用于医疗诊断、疾病预测等,为医务人员提供更好的辅助决策工具。
在社交网络中,数据挖掘技术被用于推荐系统、广告定向投放等,为用户提供个性化的服务。
在生物信息学中,数据挖掘技术被用于基因表达、蛋白质结构预测等,帮助研究人员更好地理解生命现象。
当前,数据挖掘技术正面临一些挑战和问题。
首先是数据规模的增长。
随着互联网的快速发展,数据量以指数级增长,如何高效地处理这些巨量数据成为了数据挖掘技术亟待解决的问题。
其次是数据质量问题。
由于数据的多源和异构性,数据的准确性和完整性难以保证。
这需要研究人员在挖掘过程中采用有效的处理方法,从而提高数据的质量。
另外,隐私保护也是一个重要的问题。
尽管数据挖掘可以帮助人们获取有价值的信息,但也有可能侵犯个人隐私。
因此,数据挖掘技术需要与法律、伦理等其他领域进行深入的结合,确保数据隐私得到保护。
未来,数据挖掘技术的发展趋势依然十分广阔。
首先,数据挖掘技术将更加自动化。
随着人工智能、机器学习等技术的进步,数据挖掘的算法和模型将越来越智能化,能够更好地适应各种复杂应用场景的需求。
其次,数据挖掘将与其他学科融合。
数据挖掘技术需要与统计学、数学、计算机科学等领域进行更密切的交叉合作,以获取更丰富的知识和信息。
数据挖掘技术的发展趋势

数据挖掘技术的发展趋势1. 机器研究与数据挖掘的结合机器研究是数据挖掘的关键组成部分,通过建立模型和算法来从数据中研究和预测。
近年来,机器研究技术发展迅速,为数据挖掘领域带来了许多创新。
未来,机器研究算法的改进和应用将继续推动数据挖掘技术的发展。
2. 大数据时代的数据挖掘随着互联网的普及和信息技术的快速发展,大数据时代已经到来。
海量的数据成为数据挖掘的新挑战和机遇。
数据挖掘技术在面对大数据时代需要适应更高的数据量、更复杂的数据结构和更高的算法效率。
因此,数据挖掘技术将继续发展和完善,以适应大数据时代的需求。
3. 数据挖掘在智能决策中的应用数据挖掘技术能够从大量的数据中发现隐藏的知识和模式,为决策提供支持和指导。
随着人工智能的发展和智能决策的需求增加,数据挖掘技术在智能决策中的应用前景广阔。
未来,数据挖掘技术将更加深入地与智能决策相结合,为各个领域的决策提供更准确、更可靠的支持。
4. 数据隐私和安全保护数据挖掘技术的发展也带来了一些挑战,其中之一是数据隐私和安全保护。
随着个人隐私意识的提高和相关法律法规的出台,数据挖掘技术在处理敏感信息时需要考虑隐私和安全保护问题。
未来,数据挖掘技术在隐私和安全方面的研究将成为一个重要的发展方向。
5. 跨领域合作和知识融合数据挖掘技术的应用已经渗透到各个领域,如医疗、金融、电子商务等。
在未来,数据挖掘技术将需要与其他学科和领域进行更紧密的合作,进行知识融合和交叉创新。
跨领域合作将为数据挖掘技术的发展带来更多的灵感和机遇。
综上所述,数据挖掘技术的发展趋势包括机器学习与数据挖掘的结合、大数据时代的数据挖掘、数据挖掘在智能决策中的应用、数据隐私和安全保护、以及跨领域合作和知识融合。
这些趋势将进一步推动数据挖掘技术的发展,为我们带来更多的机遇和挑战。
《2024年数据挖掘研究现状及发展趋势》范文

《数据挖掘研究现状及发展趋势》篇一一、引言随着信息技术的高速发展,大数据已经成为了新时代的基石。
数据挖掘技术作为从海量数据中提取有价值信息的重要手段,其在各行各业的应用愈发广泛。
本文旨在探讨数据挖掘的当前研究现状以及其未来的发展趋势。
二、数据挖掘研究现状1. 技术发展数据挖掘技术已经历了多年的发展,从传统的统计方法、机器学习算法,到现今的深度学习、人工智能算法,其技术手段不断更新迭代。
目前,数据挖掘技术已经能够处理结构化、半结构化乃至非结构化的数据,为各行业提供了强大的数据支持。
2. 应用领域数据挖掘的应用领域十分广泛,包括但不限于金融、医疗、教育、商业等领域。
在金融领域,数据挖掘被用于风险评估、股票预测等;在医疗领域,数据挖掘帮助实现疾病预测、基因分析等;在教育领域,数据挖掘为个性化教学、学生评估等提供了有力支持。
3. 研究挑战尽管数据挖掘技术取得了显著的进步,但仍面临一些挑战。
首先是数据的质量和数量问题,大数据环境下如何保证数据的准确性和有效性是一个亟待解决的问题。
其次,算法的复杂性和计算成本也是研究者们需要面对的挑战。
此外,数据隐私和安全问题也是阻碍数据挖掘技术发展的关键因素。
三、发展趋势1. 技术进步未来,随着人工智能、机器学习等技术的进一步发展,数据挖掘技术将更加成熟。
深度学习、强化学习等新兴算法将更深入地应用于数据挖掘中,使得数据处理的速度和准确性得到进一步提升。
2. 多源异构数据处理随着物联网、传感器等技术的发展,多源异构数据的处理将成为数据挖掘的重要方向。
如何从不同来源、不同格式的数据中提取有价值的信息,将是未来研究的重点。
3. 隐私保护与安全随着数据安全意识的提高,如何在保护个人隐私的前提下进行数据挖掘将是未来的一个重要发展方向。
通过采用加密技术、隐私保护算法等手段,实现数据的匿名化和加密处理,同时确保数据的完整性和准确性。
4. 跨界融合与应用创新随着各行业的数字化转型,数据挖掘将与其他领域的技术进行深度融合,如与区块链、云计算等技术的结合,将进一步推动各行业的创新发展。
大数据分析与挖掘的关键技术

大数据分析与挖掘的关键技术第一章:引言随着互联网技术的发展,数据量以指数级别增长。
更多的人们开始关注如何从海量数据中发现潜在的信息和价值,从而为决策和业务发展提供依据。
大数据分析与挖掘成为人们关注的焦点,深受企业和政府机构的青睐。
本文将介绍大数据分析与挖掘的关键技术。
第二章:数据预处理数据预处理是大数据分析与挖掘的第一步,也是最关键的一步。
它主要包括数据清洗、数据集成、数据变换、数据规约等步骤。
其中,数据清洗是重点,因为大数据常常包含大量垃圾数据和异常数据,这会影响到后续分析的准确性和效率。
在进行数据清洗时,需要采用多种技术,例如数据去重、数据缺失值填充、异常值处理等。
第三章:数据挖掘算法数据挖掘算法是大数据分析的核心和灵魂。
目前,常用的数据挖掘算法主要包括分类、聚类、关联规则挖掘、异常检测等。
分类是指对样本数据进行分类,从而找出不同类别之间的差异和特征。
聚类是指将相似的样本数据归为同一类别,从而找出不同类别之间的相似性。
关联规则挖掘是指找出不同数据之间的关联关系,从而发现隐藏在数据中的潜在关联。
异常检测是指检测数据中的异常值和离群点,从而发现数据中的异常情况。
第四章:数据可视化数据可视化是将大数据分析结果以图形化的方式呈现出来,使人们更容易理解和使用。
数据可视化的设计需要考虑到不同人群的需求和习惯,采用适当的图表和颜色,同时遵循数据可视化的原则,如比例关系、层次关系、时间序列等。
在实际使用中,数据可视化的技术也在不断地发展和创新。
第五章:机器学习机器学习是当前大数据分析与挖掘领域的一个热点技术。
它通过基于数据的学习算法,让计算机自动识别数据中的规律和模式。
机器学习的主要方法包括监督学习、无监督学习和强化学习。
监督学习是指通过已有的标注数据来训练计算机模型,从而实现对新数据的分类、预测等。
无监督学习是指对未标注数据进行学习,从而寻找数据中的规律和模式。
强化学习是指通过和环境的交互,从而获得最优策略和行为。
大数据处理的数据挖掘和计算技术

大数据处理的数据挖掘和计算技术随着信息时代的到来,大数据正日益成为各行各业的新宠儿。
然而,大数据的处理面临着巨大的挑战,其中最重要的一项就是数据挖掘和计算技术。
本文将探讨大数据处理中的数据挖掘和计算技术,并介绍其应用和发展前景。
1. 数据挖掘技术的概念及应用数据挖掘是指从大量的数据中提取出有用的信息和模式的过程。
它通过应用统计学、机器学习和人工智能等技术方法,对大数据进行深入的分析和挖掘,从而帮助企业和组织做出决策,并发现潜在的商机。
数据挖掘技术广泛应用于各个领域。
在市场营销领域,通过分析用户的消费行为和兴趣偏好,企业可以制定精准的营销策略,提高广告投放的精准度。
在金融领域,通过分析客户的信用记录和消费行为,银行可以评估客户的信用风险,从而进行更好的风险管理。
此外,数据挖掘还应用于医疗、交通、能源等众多领域,为决策提供支持。
2. 大数据处理的计算技术大数据的处理离不开强大的计算能力,而计算技术在大数据处理中起着至关重要的作用。
计算技术主要包括高性能计算、分布式计算和云计算。
高性能计算通过提高计算机硬件和软件的性能,实现对大规模数据的高效处理。
它采用并行计算和向量计算等技术,可以快速处理海量数据,提高数据处理的效率。
分布式计算是将大数据分散存储在多台计算机上,并通过网络进行协同计算的技术。
它将数据分成多个部分,并在多台计算机上同时进行计算,从而提高大数据的处理速度和可靠性。
云计算是将计算和存储等资源通过互联网进行共享和交付的一种计算模式。
它通过虚拟化技术,将计算机资源划分成多个虚拟机,可以根据需要动态分配和释放资源,提高计算的弹性和效率。
3. 数据挖掘与计算的结合应用数据挖掘和计算技术的结合可以提升大数据处理的能力和效果。
首先,计算技术为数据挖掘提供了强大的计算能力和存储能力,使得数据挖掘可以处理更大规模的数据和更复杂的模型。
其次,数据挖掘可以帮助计算技术发现数据中的规律和模式,从而提高计算的精确度和效率。
什么是数据挖掘技术及其应用前景

什么是数据挖掘技术及其应用前景在当今数字化的时代,数据如同深埋在地下的宝藏,而数据挖掘技术就是那把能够开启宝藏之门的神奇钥匙。
那么,究竟什么是数据挖掘技术呢?简单来说,数据挖掘技术就是从大量的数据中,通过各种方法和手段,发现隐藏在其中有价值的信息和知识的过程。
想象一下,一个大型的超市,每天都会产生海量的销售数据,包括商品的种类、销售的数量、时间、地点等等。
如果只是简单地存储这些数据,而不加以分析和利用,那么它们就只是一堆毫无意义的数字。
但是,通过数据挖掘技术,我们可以发现一些有趣的模式和规律。
比如,哪些商品经常被一起购买,哪些商品在特定的季节或时间段销量特别好,哪些顾客是常客并且消费习惯是怎样的。
这些发现对于超市的经营决策非常有帮助,比如可以优化商品的摆放位置、制定更有针对性的促销策略、更好地管理库存等等。
数据挖掘技术并不是一项单一的技术,而是融合了多种学科和方法的综合性技术。
它涉及到统计学、数据库技术、机器学习、人工智能、模式识别等多个领域的知识和方法。
从技术层面来看,数据挖掘通常包括数据预处理、数据挖掘算法的应用以及结果的评估和解释等几个主要步骤。
数据预处理是非常重要的一步,因为原始数据往往是不完整、有噪声或者不一致的。
在这个阶段,我们需要对数据进行清理、集成、转换和规约等操作,以确保数据的质量和可用性。
接下来,就是应用各种数据挖掘算法,比如分类算法(如决策树、朴素贝叶斯等)、聚类算法(如 KMeans 算法、层次聚类等)、关联规则挖掘算法(如 Apriori 算法)等等,从数据中发现潜在的模式和规律。
最后,对挖掘出来的结果进行评估和解释,判断其是否有实际的价值和意义,并将其转化为可以指导决策的有用信息。
数据挖掘技术在各个领域都有着广泛的应用前景。
在商业领域,数据挖掘可以帮助企业更好地了解市场和客户需求,从而制定更加精准的营销策略。
比如,电商平台可以通过分析用户的浏览和购买行为,为用户推荐个性化的商品;银行可以通过分析客户的信用记录和交易数据,评估客户的信用风险,从而决定是否给予贷款以及贷款的额度和利率;电信运营商可以通过分析用户的通话和流量使用情况,为用户提供更适合的套餐服务。
挖掘与分析海量数据的技术和方法

挖掘与分析海量数据的技术和方法随着互联网的普及和信息化进程的不断发展,海量数据已成为当今社会普遍存在的一个现象。
海量数据来源广泛,包括互联网、物联网、传感器技术等等,这些数据蕴含着大量有价值的信息和知识,如果能够挖掘和分析这些数据,将会有很多的商业和社会价值。
因此,挖掘和分析海量数据的技术和方法正在被广泛关注和应用。
一、海量数据的挖掘和分析方法海量数据挖掘和分析方法可以分为三类:基于统计学的方法、基于机器学习的方法和基于深度学习的方法。
1.基于统计学的方法基于统计学的方法主要是通过概率分布、假设检验、回归分析、聚类分析等方法进行数据分析,例如对数据分布的探索分析、预测分析、异常检测等。
2.基于机器学习的方法基于机器学习的方法是使用机器学习算法从数据中发现潜在的规律和模式,例如分类、聚类、回归、神经网络等方法。
其中,聚类算法常常被用于无监督学习,而回归算法常常被用于有监督学习。
3.基于深度学习的方法基于深度学习的方法是在人工神经网络的基础上发展而来的,它通过对神经网络架构和参数的优化,可以对海量数据进行高效的识别和分类。
深度学习方法被广泛应用于图片处理、自然语言处理、语音识别等领域。
二、海量数据的挖掘和分析技术1.数据预处理技术数据预处理技术是挖掘和分析海量数据的重要步骤,其目的是为了清洗和优化数据。
数据预处理方法包括去重、缺失值填充、异常值处理、数据统一格式化等。
2.数据的可视化技术数据可视化技术是将数据经过处理后用图表、曲线等方式表现出来,以便更好地理解和分析数据。
常用的数据可视化技术包括分布图、直方图、散点图、折线图等。
3.数据挖掘和分析工具现在市场上的数据挖掘和分析工具比较多,包括SPSS、R、Python等等,这些工具提供了很多数据挖掘和分析算法以及数据可视化的方法,使用这些工具可以大大提高数据挖掘和分析效率。
三、海量数据挖掘和分析的应用海量数据的挖掘和分析对人类社会的发展有着重要的推动作用,在很多领域有着广泛的应用,如商业、医疗、生产等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络化时代信息膨胀成为必然,如何准确、高效地从丰富而膨胀的数据中筛选出对经营决策有用的信息已经成为企业和机构迫切需要解决的问题,针对于此,海量数据挖掘技术应运而生,并显示出强大的解决能力。
Gartner的报告指出,数据挖掘会成为未来10年内重要的技术之一。
一、海量数据挖掘关键技术随时代而变化
所谓海量数据挖掘,是指应用一定的算法,从海量的数据中发现有用的信息和知识。
海量数据挖掘关键技术主要包括海量数据存储、云计算、并行数据挖掘技术、面向数据挖掘的隐私保护技术和数据挖掘集成技术。
1.海量数据存储
海量存储系统的关键技术包括并行存储体系架构、高性能对象存储技术、并行I/O访问技术、海量存储系统高可用技术、嵌入式64位存储操作系统、数据保护与安全体系、绿色存储等。
海量数据存储系统为云计算、物联网等新一代高新技术产业提供核心的存储基础设施;为我国的一系列重大工程如平安工程等起到了核心支撑和保障作用;海量存储系统已经使用到石油、气象、金融、电信等国家重要行业与部门。
发展具有自主知识产权、达到国际先进水平的海量数据存储系统不仅能够填补国内在高端数据存储系统领域的空白,而且可以满足国内许多重大行业快速增长的海量数据存储需要,并创造巨大的经济效益。
2.云计算
目前云计算的相关应用主要有云物联、云安全、云存储。
云存储是在云计算(cloud computing)概念上延伸和发展出来的新概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。
当云计算系统运算和处理的核心是大量数据的存储和管理时,云计算系统中就需要配置大量的存储设备,那么云计算系统就转变成为一个云存储系统,所以云存储是一个以数据存储和管理为核心的云计算系统。
3.并行数据挖掘技术
高效率的数据挖掘是人们所期望的,但当数据挖掘的对象是一个庞大的数据集或是许多广泛分布的数据源时,效率就成为数据挖掘的瓶颈。
随着并行处理技术的快速发展,用并行处理的方法来提高数据挖掘效率的需求越来越大。
并行数据挖掘涉及到了一系列体系结构和算法方面的技术,如硬件平台的选择(共享内存的或者分布式的)、并行的策略(任务并行、数据并行或者任务并行与数据并行结合)、负载平衡的策略(静态负载平衡或者动态负载平衡)、数据划分的方式(横向的或者纵向的)等。
处理并行数据挖掘的策略主要涉及三种算法:并行关联规则挖掘算法、并行聚类算法和并行分类算法。
4.面向数据挖掘的隐私保护技术
数据挖掘在产生财富的同时也随之出现了隐私泄露的问题。
如何在防止隐私泄露的前提下进行数据挖掘,是信息化时代各行业现实迫切的需求。
基于隐私保护的数据挖掘是指采用数据扰乱、数据重构、密码学等技术手段,能够在保证足够精度和准确度的前提下,使数据挖掘者在不触及实际隐私数据的同时,仍能进行有效的挖掘工作。
受数据挖掘技术多样性的影响,隐私保护的数据挖掘方法呈现多样性。
基于隐私保护的数据挖掘技术可从4个层面进行分类:从数据的分布情况,可以分为原始数据集中式和分布式两大类隐私保护技术;从原始数据的隐藏情况,可以分为对原始数据进行扰动、替换和匿名隐藏等隐私保护技术;从数据挖掘技术层面,可以分为针对分类挖掘、聚类挖掘、关联规则挖掘等隐私保护技术;从隐藏内容层面,可以分为原始数据隐藏、模式隐藏。
5.数据挖掘集成技术
数据挖掘体系框架由三部分组成:数据准备体系、建模与挖掘体系、结果解释与评价体系。
其中最为核心的部分是建模与挖掘体系,它主要是根据挖掘主题和目标,通过挖掘算法和相关技术(如统计学、人工智能、数据库、相关软件技术等),对数据进行分析,挖掘出数据之间内在的联系和潜在的规律。
大体上,数据挖掘应用集成可分为几类:数据挖掘算法的集成、数据挖掘与数据库的集成、数据挖掘与数据仓库的集成、数据挖掘与相关软件技术的集成、数据挖掘与人工智能技术的集成等。
二、海量数据挖掘应用广泛但深度不足
2011年中国数据挖掘软件市场规模达接近2亿元,2012-2014年还将快速增长。
从数据挖掘应用行业上看,国内大多数的用户都来自电信、银行、保险、税务、政府等领域。
应用主题主要包含:消费者行为分析、信用评分与风险管理、欺诈行为侦测、购物篮分析等方面。
目前,国内数据挖掘应用仍停留在初级阶段,行业企业大规模的运用数据挖掘技术尚需时日。
1.国内数据挖掘应用可分为3个层次
从数据挖掘应用层次上看,大体可以分为三个层次:第一层次是把挖掘工具当作单独的工具来用,不用专门建设系统;第二层次则是把数据挖掘模块嵌入到系统中,成为部门级应用;第三层次是企业级应用,相当于把挖掘系统作为整个企业运营的中央处理器。
目前,国内的数据挖掘应用的企业基本处于第一层次,偶尔某些企业用户能够做到第二层次。
2.国内有代表性的数据挖掘行业应用情况简评
(1)通信业:国内应用数据挖掘的企业还是以通信企业(移动、联通、电信)为首,应用的深度和广度都处于领先地位。
(2)互联网企业:随着电子商务的普及,各大商务网站已经大规模使用数据挖掘技术,
并且迅速从中取得商业价值。
例如,国内很多网上商城已经开始使用数据挖掘技术进行客户
聚类或者商品关联推广。
另外,搜索引擎企业使用数据挖掘技术的需求也非常迫切。
(3)政府部门:我国政府部门中使用数据挖掘技术比较领先的是税务系统。
数据挖掘
在电子政务中的应用,更多的涉及到报表填制、数据统计。
(4)国内金融行业:操作型数据挖掘应用在国内金融行业应用广泛,尤其是信贷评审
领域。
中小型银行数据挖掘需求将是未来金融行业数据挖掘市场的主要增长点。
未来5年时
间里,数据挖掘应用在金融行业仍将高速发展。
(5)国内零售业:跟国外相比,国内零售业对数据挖掘的应用并不太热衷,这可能与
客户信息的完整性有关。
但是在一些大型的超市、百货、电器等销售企业,数据挖掘技术已
经应用,未来还有进一步的应用空间。
(6)现代工业:制造业将是未来数据挖掘新的增长点。
目前,作为现代化生产主力的
工业部门国内的数据挖掘技术应用却不多,只在电力部门火力发电方向有一些系统的应用,其他领域只有少数零散的应用。
数据共享关键技术:
元数据:描述信息资源或数据对象的数据,其使用目的在于识别资源、评价资源和追踪资源在使用过程中的变化,实现信息资源的发现、查找、一体化组织和对资源的有效管理。
数据转换:不同企业具有不同的数据库,构成异构数据库,把其他格式的数据经过专门的数据转换程序进行转换,变成本系统的数据格式,从而实现对数据资源的利用。
数据互操作技术:在异构数据库和分布式计算的情况下,两个或多个实体之间通过协调、通信、合作来共同完成一个较复杂的功能。
数据共享步骤:
数据采集、数据转换、数据存储(数据类型、范围)、数据访问、。