步进电机的西门子PLC控制

合集下载

西门子PLC运动控制之步进电机控制

西门子PLC运动控制之步进电机控制

步进电动机
步进驱动器 是一种能使步进电机运转的功率放大器,能把控制器 发来的脉冲信号转化为步进电机的角位移, 电机的转速与脉冲频率成正比,所以控制脉冲 频率可以精确调速,控制脉冲数就可以精确定位。
1.步进电动机
微步驱动 微步驱动技术是一种电流波形控制技术。 其基本思想是控制每相绕组电流的波形, 使其阶梯上升或下降,即在0和最大值之间给出多 个稳定的中间状态,定子磁场的旋转过程中也就有了 多个稳定的中间状态,对应于电机转子旋转的步数增多、 步距角减小。采用细分驱动技术可以大大提高步进电机的 步矩分辨率,减小转矩波动,避免低频共振及降低运行噪声
I/O分配及接线
1.步进电动机
步距角
P e V (r / s ) 360 m
控制系统每发一个步进脉冲信号,电机所转动的角度。
电机固有步 距角 0.9°/1.8° 0.9°/1.8° 0.9°/1.8° 所用驱动器类型及工作 电机运行时的真正 状态 步距角 驱动器工作在半步状态 驱动器工作在5细分状 态 驱动器工作在10细分状 态 0.9° 0.36° 0.18°
西门子PLC运动控制之步进电机控制
荆州职业技术学院
张华林
1. 步进电动机
2. 西门子PLC运动控制
3. Examples
1.步进电动机
步进电动机的定义
是一种专门用于速度和位置精确控制的 特种电机,它旋转是以固定的角度(称为步距角) 一步一步运行的,故称步进电机。
步进电动机构造 由转子(转子铁芯、永磁体、转轴、滚珠 轴承),定子(绕组、定子铁芯),前后端盖等组成。 最典型两相混合式步进电机的定子有8个大齿, 40个小齿,转子有50个小齿;三相电机的定子有9个 大齿,45个小齿,转子有50个小齿。

西门子s7-200PLC控制步进电机正反转

西门子s7-200PLC控制步进电机正反转

西门子s7-200PLC控制步进电机正反转用PTO怎么才能让步进电机走完一段距离后自动反转回来?外部没有开关答:1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(M0.X),当M.0X闭合,住程序中的反转开始运做.这样子就OK了。

2、用PTO指令让Q0.0ORQ0.1高速脉冲,另一个点如Q0.2做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。

3、程NETWORK1//用于单段脉冲串操作的主程序(PTO)//首次扫描时,将映像存放器位设为低//并调用子程序0LDSM0.1RQ0.01CALLSBR_0NETWORK1//子程序0开始LDSM0.0MOVB16#8DSMB67//设置控制字节://-选择PTO操作//-选择单段操作//-选择毫秒增加//-设置脉冲计数和周期数值//-启用PTO功能MOVW+500SMW68//将周期设为500毫秒。

MOVD+4SMD72//将脉冲计数设为4次脉冲。

ATCHINT_019//将中断例行程序0定义为//处理PTO完成中断的中断。

ENI//全局中断启用PLS0//激活PTO操作,PLS0=>Q0.0MOVB16#89SMB67//预载控制字节,用于随后的//周期改动。

NETWORK1//中断0开始//如果当前周期为500毫秒://将周期设为1000毫秒,并生成4次脉冲LDW=SMW68+500MOVW+1000SMW68PLS0CRETINETWORK2//如果当前周期为1000毫秒://将周期设为500毫秒,并生成4次脉冲LDW=SMW68+1000MOVW+500SMW68PLS0序注释。

基于西门子S7_200PLC控制步进电机的设计及应用

基于西门子S7_200PLC控制步进电机的设计及应用

工程技术 Project technique基于西门子S7-200PL C 控制步进电机的设计及应用徐 智 杜逸鸣 熊田忠 孙承志(三江学院电气系 210012)【摘 要】PLC 控制步进电机在许多工业控制中应用广泛,本文介绍了PL C (Programmable Logic Cont roller )通过发送脉冲和方向信号给步进电机的驱动器,由驱动器来控制步进电机工作的原理。

本设计采用PL C 和大功率晶体管实现步进电机的驱动和控制,结构简单,可靠性高,成本低,实用性强,具有较高的通用性和应用推广价值。

【关键词】步进电机;PLC ;驱动器1 引言PL C 是广泛应用于工业自动化领域的控制器,PL C 及其有关的设备,都按易于与工业控制系统连成一个整体、易于扩充功能的原则而设计。

现在,PL C 功能得到了很大的扩充和完善,比如为了配合步进电机的控制,许多PL C 都内置了脉冲输出功能,并设置了相应的控制指令,可以很好地对步进电机进行控制,实现和其它设备的通信等。

本文用SIEM ENS 公司CPU226晶体管输出型PL C 控制步进电机。

2 步进电机的控制方法步进电机控制方法框图如图1所示。

控制方案是通过上位机设定参数,利用S7-200PL C 的高速脉冲输出功能输出脉冲信号,送给大功率管组成的驱动电路,经过驱动器去控制步进电机实现位置控制。

其中本文中的PL C 为西门子公司的CPU226DC/DC/DC 、驱动器为某公司的SH -20403两相混合式步进电机细分驱动器、步进电机为42B YG 250B 型,步距角1.8°。

本文的控制过程为某运料小车在A —B 两地之间运行(如图2所示),装料及卸料,要求定位准确,运行平稳。

3 PL C 对步进电机的速度控制及定位步进电机在启动和停止时有一个加速及减速过程,且加速度越小则冲击越小,动作越平稳。

所以,步进电机工作时一般要经历这样—个变化过程:加速→恒速(高速)→减速→恒速(低速)→停止。

(整理)西门子200系列PLC直流步进电机控制方法

(整理)西门子200系列PLC直流步进电机控制方法

标签:PLC控制步进电机西门子200系列PLC直流步进电机控制方法注:本人非PLC专业人士,此文章只是简单介绍直流步进电机控制方法。

做此实验仅为单片机内嵌入软PLC做基础,证明PLC可以直接直接用来做步进电机控制。

直流步进电机plc控制方法系统功能概述:本系统采用PLC通过步进电机驱动模块控制步进电机运动。

当按下归零按键时,电机1和电机2回到零点(零点由传感器指示)。

当按下第一个电机运行按键时,第一个电机开始运行,直到运行完固定步数或到遇到零点停止。

当按下第二个电机运行按键时,第二个电机开始运行,运行完固定步数或遇到零点停止。

两电机均设置为按一次按键后方向反向。

电机运行时有升降速过程。

PLC输入点I0.0为归零按键,I0.1为第一个电机运行按键,I0.2为第二个电机运行按键,I0.3为第一个电机传感器信号反馈按键,I0.4为第二个电机传感器信号反馈按键。

PLC输出点Q0.0为第一个电机脉冲输出点,Q0.1为第二个电机脉冲输出点,Q0.2为第一个电机方向控制点,Q0.3为第二个电机方向控制点,Q0.4为电机使能控制点。

所用器材:PLC:西门子S7-224xpcn及USB下载电缆。

编程及仿真用软件为V4.0 STEP 7 MicroWIN SP3。

直流步进电机2个,微步电机驱动模块2个。

按键3个。

24V开关电源一个。

导线若干。

各模块连接方法:PLC与步进电机驱动模块的连接:驱动模块中EN+、DIR+、CP+口均先接3k电阻,然后接24V电源。

第一个驱动模块CP-接PLC的Q0.0,DIR-接PLC的Q0.2,EN-接PLC的Q0.4第二个驱动模块CP-接PLC的Q0.1,DIR-接PLC的Q0.3,EN-接PLC的Q0.4注意:1、PLC输出时电压为24V,故和驱动器模块连接时,接了3k电阻限流。

2、由于PLC处于PTO模式下只有在输出电流大于140mA时,才能正确的输出脉冲,故在输出端和地间接了200欧/2w下拉电阻,来产生此电流。

西门子S7-200系列PLC在步进电机定位控制中的应用

西门子S7-200系列PLC在步进电机定位控制中的应用

西门子S7-200系列PLC在步进电机定位控制中的应用
西门子S7-200系列PLC可以在步进电机定位控制中扮演关键
角色。

步进电机是一种常用于精确位置控制的电机,可以在不使用传感器的情况下实现准确的位置控制。

PLC可以通过控
制步进电机的驱动器,实现对步进电机的定位控制。

PLC可以接收外部输入信号,用于触发步进电机的运动。


些信号可以包括启动信号、停止信号、以及指令信号等。

PLC
可以根据不同的输入信号状态,控制步进电机的运动方向和速度。

PLC可以与步进电机控制器进行通信,以发送指令和接收状
态反馈。

PLC通过发送指令,控制步进电机按照指定的步进
角度或者位置移动。

同时,PLC可以接收步进电机控制器的
状态反馈信息,包括是否到达目标位置、是否超出限位等,以便进行适当的控制策略。

PLC可以与外部设备(例如传感器、触发器等)进行联动,
实现更加复杂的步进电机定位控制。

通过接收外部设备的信号,PLC可以根据具体的应用需求,进行逻辑判断和控制操作,
以实现更加灵活和精确的步进电机定位控制。

西门子S7-200系列PLC在步进电机定位控制中具有广泛的应用。

它可以根据各种输入信号状态,控制步进电机的运动方向和速度,实现精确的位置控制。

同时,PLC还可以与步进电
机控制器和外部设备进行通信和联动,实现更加复杂的控制策略。

浅谈西门子PLC对大量步进电动机的控制应用

浅谈西门子PLC对大量步进电动机的控制应用

浅谈西门子PLC对大量步进电动机的控制应用西门子PLC具有可靠性高、功能强大、使用方便、编程简单、抗干扰强等优点,在工业控制领域得到了广泛应用。

本文详细介绍了西门子PLC对大量步进电机的控制方法和编程技术,实现了西门子PLC对大量步进电机的控制和与主控系统进行高效率通信的功能。

在实验的基础上验证了该方案的可行性,并且并给出了硬件连接示例和完整的软件程序。

标签步进电机;软件程序;西门子;PLC步进电动机是控制系统中的执行单元,是一种利用电脉冲信号进行控制,并将电脉冲信号转换成相应的角位移或直线位移的执行电机。

由于计算机技术的发展,使得步进电动机获得了广泛的应用和普及,特别是数控机床、计算机外围设备、钟表、数字控制系统、程序控制系统以及许多航天工业装置中得到应用。

随着步进伺服驱动控制技术的发展,步进伺服驱动细分精度的提高以及电力电子器件的发展,逐步克服了震荡、失步和发热的不足,性价比大幅度提升,广泛应用于工业机械精密定位的控制。

当前用于工业控制的计算机控制系统主要有:PLC 控制系统、基于PC总线的工业控制计算机(IPC)系统、基于单片机的测控系统、集散控制系统DCS)和现场总线控制系统(FCS)。

而其中的PLC因为稳定可靠、结构简单、成本低廉、简单易学、功能强大和使用方便已经成为应用面最广、最广泛的通用工业控制装置,成为当代工业自动化的主要支柱之一。

但对于大量的步进电机,由于数量多,时序相对复杂,这使得控制难度增大。

一、硬件设计1、系统概述该系统为激光参数测量的电控系统,主要功能是完成对光束的控制、数据的采集、光路的准直等,控制特点是被控设备多而且分散,数据传输量大,因此硬件设计采用基于网络技术的分层分布式设计,使控制硬件系统形成一个有机整体,提高系统运行和维护的便捷性,并具有开放性、实用性、可靠性等综合能力。

控制系统有6个束组FEP,每一个束组FEP控制264个电机,该图只画出了两个步进电机。

分控计算机与1000M光纤网络连接,位于主控制室内,作为控制设备和测量设备的远程控制中心。

浅议西门子PLC在步进电机控制中的应用

浅议西门子PLC在步进电机控制中的应用

浅议西门子PLC在步进电机控制中的应用发布时间:2021-11-12T06:34:50.381Z 来源:《中国科技人才》2021年第22期作者:钟宜宏[导读] 西门子PLC是西门子公司近年来自主研发设计的高效自动可编程控制器,在我国坭兴陶、石油冶金、化工、出版印刷等行业得到广泛应用。

北部湾职业技术学校广西钦州市 535000摘要:西门子PLC是西门子公司近年来自主研发设计的高效自动可编程控制器,在我国坭兴陶、石油冶金、化工、出版印刷等行业得到广泛应用。

它广泛应用于这些工业生产线,通过完成PLC自动采样数据输入、用户自动执行控制程序、采样输出文件刷新等三个操作阶段的复杂操作,实现对各种设备的有效过程控制。

对于现代工业生产来说,可以有效提高工业生产的工作效率和产品质量。

根据西门子PLC在步进电机设计和控制系统中的实际应用,加强了步进电机的设计控制和开发应用。

关键词:西门子PLC;步进电机;控制引言在目前我国现代工业机械领域中,步进电机作为一种非常重要的自动控制部件,能够自动将上位机的电脉冲控制信号转换为线性角位移或非线性角位移,从而自动控制电机的工作,在目前我国现代工业机械制造领域中起到了重要的引领作用。

然而,在步进电机的实际运行过程中,由于是机电一体化的集成工业产品,控制系统存在一定的技术难点,因此采用步进电机自动控制一直是其实际应用和发展过程中值得探讨的重要技术课题【1】。

PLC是近年来在我国迅速兴起的一种重要的可编程逻辑自动控制器。

具有工作可靠性强、逻辑控制功能强、体积小、可自动控制各种模拟传感器等优异的逻辑性能。

它在我国现代工业控制领域得到了广泛的应用。

广泛应用于各种步进驱动电机的逻辑控制中,能起到很好的实际应用和推广效果。

因此,在步进高压电机在我国自动控制中的应用中,可持续加强控制PLC的综合应用。

一、硬件设计1.1系统概述西门子PLC产品种类繁多,在实际控制过程中可以达到不同的控制效果【2】。

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列PLC控制步进电机进行正反转的方法
S系列PLC是西门子公司生产的一种工业自动化控制设备,可以用于
控制和监测各种电气设备,包括步进电机。

步进电机是一种特殊的电机,
可以精确地控制位置和速度,广泛应用于工业自动化领域。

控制步进电机进行正反转可以使用以下步骤:
1.配置PLC软件:首先需要通过PLC软件配置相应的输入输出(I/O)模块。

根据实际情况,将步进电机的控制信号连接到PLC的输出模块上。

2.编写控制程序:使用PLC软件编写控制程序,控制步进电机的正反转。

PLC软件通常提供了图形化编程界面,可以通过拖拽和连接各种功能
块来搭建程序。

在程序中,可以通过设置输出信号的状态(如ON或OFF)来控制步进电机的正反转。

3.添加控制逻辑:根据步进电机的正反转逻辑,可以使用逻辑功能块
来实现控制。

比如,可以使用一个计时器来控制电机的转动时间,或者使
用一个翻转触点来实现电机的正反转切换。

4.设置步进电机的驱动器:步进电机通常需要配合驱动器使用。

驱动
器是一种电子设备,可以将PLC输出的信号转换为步进电机的工作推力。

根据具体的步进电机型号和驱动器型号,需要根据驱动器的相关规格设置
驱动工作方式,如设置电机的转动方向和步距等。

控制步进电机进行正反转的方法并不复杂,但需要确保PLC软件的配
置和编写程序的正确性。

此外,也需要根据具体的步进电机型号和驱动器
型号,了解其工作规格和特性,以便正确设置和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章绪论 (1)1.1 设计背景 (1)1.2 系统设计的任务 (3)1.3 本章小结 (3)第2章步进电机及PLC简介 (4)2.1 步进电机简介 (4)2.2 PLC的发展概述 (8)2.3 PLC技术在步进电机控制中的应用 (8)2.4 本章小结 (10)第3章PLC控制步进电机工作方式的选择 (11)3.1 常见的步进电机的工作方式 (11)3.2 步进电机控制原理 (12)3.3 PLC控制步进电机的方法 (12)3.4 PLC控制步进电机的设计思路 (13)3.5 本章小结 (15)第4章S7—300控制步进电机硬件设计 (16)4.1 S7—300的介绍 (16)4.2 步进电机的选择 (20)4.3 步进电机驱动电路设计 (21)4.4 PLC驱动步进电机 (22)4.5 本章小结 (23)第5章控制系统的软件设计 (24)5.1 STEP7概述 (24)5.2 STEP7项目的创建 (26)5.3 本设计相关指令介绍 (30)5.4 程序的编写 (33)5.5 程序设计的说明 (35)5.6 STEP7的硬件组态 (35)5.7 运用组态软件监视PLC系统 (40)5.8 本章小结 (41)结论 (42)参考文献 (43)致谢 (44)附录 (45)第1章绪论1.1 设计背景步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。

可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。

为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。

步进电动机的发展与计算机工业密切相关。

自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。

另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。

任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。

现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。

爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。

最典型的产品是二相8极50齿的电动机,步距角1.8°/0.9°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。

到目前,工业发达国家的磁阻式步进电动机已极少见[1]。

步进电动机最大的生产国是日本,如日本伺服公司、东方公司、SANYO DENKI 和MINEBEA及NPM公司等,特别是日本东方公司,无论是电动机性能和外观质量,还是生产手段,都堪称是世界上最好的。

现在日本步进电动机年产量(含国外独资公司)近2亿台,德国也是世界上步进电动机生产大国。

德国B.L.公司1994年五相混合式步进电动机专利期满后,推出了新的三相混合式步进电动机系列,为定子6极转子50齿结构,配套电流型驱动器,每转步数为200、400、1000、2000、4000、10000和20000,它具有通常的二相和五相步进电动机的分辨率,还可以在此基础上再10细分,分辨率提高10倍,这是一种很好的方案,充分运用了电流型驱动技术的功能,让三相电动机同时具有二相和五相电动机的性能。

与此同时,日本伺服公司也推出了他们的三相混合式步进电动机。

该公司阪正文博士研制了三种不同的永磁式三相步进电动机,即HB型(混合式)、RM性(定子和混合式相似,转子则同永磁式环形磁铁相似)和爪极PM型。

将三相步进电动机同二相步进电动机进行比较后得出:1)在获得小步距角方面,三相电动机比二相电动机要好。

2)三相电动机的两相励磁最大保持力矩为3T1(T1为单相励磁转矩),而二相电动机为2T1,所以三相电动机的合成力矩大。

3)三相电动机的转矩波动比二相电动机要小。

4)三相电动机连续2步用于半步的转矩差比二相电动机的要小。

5)三相电动机绕组可以星形连接,三个终端驱动,励磁电路晶体管6个;而二相电动机是8个。

6)连续运转时,由于三相步进电动机结构原因,磁通和电流的三次谐波被消除了,所以三相电动机的振动力矩比二相电动机的要小.结论是显而易见的[2]。

另外的结论是HB型电动机更适合于低速大转矩用途;RM型适用于平稳运行以及转速大于1000r/min的用途;而PM型成本低,在低转速时的振动和高转速时的大转矩方面,三相PM型电动机比两相电动机的性能要好。

因此,当前最有发展前景的当属混合式步进电动机,而混合式电动机又向以下四个方向发展:发展趋势一,随着电动机本身应用领域的拓宽以及各类整机的不断小型化,要求与之配套的电动机也必须越来越小,在57、42机座号的电动机应用了多年后,现在其机座号向39、35、30、25方向向下延伸。

瑞士ESCAP公司最近还研制出外径仅10mm的步进电动机。

发展趋势之二,是改圆形电动机为方形电动机。

由于电动机采用方型结构,使得转子有可能设计得比圆形大,因而其力矩体积比将大为提高。

同样机座号的电动机,方形的力矩比圆形的将提高30%~40%发展趋势之三,对电动机进行综合设计。

即把转子位置传感器,减速齿轮等和电动机本体综合设计在一起,这样使其能方便地组成一个闭环系统,因而具有更加优越的控制性能。

发展趋势之四,向五相和三相电动机方向发展。

目前广泛应用的二相和四相电动机,其振动和噪声较大,而五相和三相电动机具有优势性。

而就这两种电动机而言,五相电动机的驱动电路比三相电动机复杂,因此三相电动机系统的性能价格比要比五相电动机更好一些。

我国的情况有所不同,直到20世纪80年代,一直是磁阻式步进电动机占统治地位,混合式步进电动机是80年代后期才开始发展,至今仍然是二种结构类型同时并存。

尽管新的混合式步进电动机完全可能替代磁阻式电动机,但磁阻式电动机的整机获得了长期应用,对于它的技术也较为熟悉,特别是典型的混合式步进电动机的步距角(0.9°/1.8°)与典型的磁阻式电动机的步距角(0.75°/1.5°)不一样,用户改变这种产品结构不是很容易的,这就使得两种机型并存的局面难以在较短时间内改变。

这种现状对步进电动机的发展是不利的。

1.2 系统设计的任务步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。

步进电机是一种将电脉冲信号转换成直线位移或角位移的执行元件。

步进电机具有转子惯量低、定位精度高、无累积误差、控制简单等特点,已成为运动控制领域的主要执行元件之一。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个行业的控制领域都将有广泛应用。

而现在的可编程控制器(通常称PLC) 是一种工业控制计算机,具有模块化结构、配置灵活、高速的处理速度、精确的数据处理能力、多种控制功能、网络技术和优越的性价比等性能,能充分适应工业环境,简单易懂,操作方便,可靠性高,是目前广泛应用的控制装置之一。

本设计是采用是S7—300控制三相六拍的反应步式步进电机,通过软件设计移位脉冲频率来控制步进电机的慢速、中速、快速。

移位寄存器指令MW0的低八位按照三相六拍的步进顺序进行赋值来控制步进动机的转动。

围绕这两个主要方面,可提出具体的控制要求如下:1)可正转起动或反转起动;2)运行过程中,正反转可随时不停机切换;3)步进速度可分为高速(0. 05 s) 、中速(0. 1s) 、低速(0. 5 s) 三档,并可随时手控变速;4)停止时,应对移位寄存器清零,使每次起动均从A 相开始。

1.3 本章小结本章阐述了此次设计的背景,即步进电机的发展状况,和步进电机在工业自动化生产中的重大作用。

提出了本次设计的设计任务,用PLC控制步进电机以不同的方式运行。

第2章步进电机及PLC简介2.1 步进电机简介步进电动机是一种将数字脉冲信号转换成机械角位移或者线位移的数模转换元件。

在经历了一个大的发展阶段后,目前其发展趋于平缓。

然而,由于电动机的工作原理和其它电动机有很大的差别,具有其它电动机所没有的特性。

因此,沿着小型、高效、低价的方向发展。

步进电动机由此而得名。

步进电动机的运行是在专用的脉冲电源供电下进行的,其转子走过的步数,或者说转子的角位移量,与输入脉冲数严格成正比。

另外,步进电动机动态响应快,控制性能好,只要改变输入脉冲的顺序,就能方便地改变其旋转方向。

这些特点使得步进电动机与其它电动机有很大的差别。

因此,步进电动机的上述特点,使得由它和驱动控制器组成的开环数控系统,既具有较高的控制精度,良好的控制性能,又能稳定可靠地工作。

因此,在数字控制系统出现之初,步进电动机经历过一个大的发展阶段[3]。

2.1.1 步进电机的分类1)永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。

2)反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。

3)混合式步进电机是指混合了永磁式和反应式的优点,它又分为两相和五相。

两相步进角一般分为1.8度而五相步进角一般为0.72度,这种步进电机的应用最为广泛。

三相反应式步进电机的结构如图所示。

定子、转子是用硅钢片或其他软磁材料制成的。

定子的每对极上都绕有一对绕组,构成一相绕组,共三相称为A、B、C相。

相关文档
最新文档