物理-磁场对运动带电粒子的作用-二
磁场对带电粒子的作用及其应用实例

磁场对带电粒子的作用及其应用实例磁场是一种力场,它对带电粒子有着显著的作用。
当一个带电粒子运动时,如果它在磁场中,磁场将产生力对粒子施加作用。
这种力称为洛伦兹力,它垂直于粒子的速度方向和磁场的方向。
磁场对带电粒子的作用是基于洛伦兹力的。
根据洛伦兹力的方向规律,当带电粒子的电荷和速度方向相互垂直时,洛伦兹力将会使粒子偏离原来的运动轨道。
这种偏转效应被广泛应用在物理实验和技术中。
磁场对带电粒子的应用广泛而多样。
下面将介绍一些具体的应用实例。
1. 电子束和阴极射线管:在电视、显示器和背景辐射设备中,阴极射线管使用磁场来控制电子束的偏转。
磁场使电子束在屏幕上形成各种亮点和彩色图像,从而实现图像的显示。
2. 电子加速器:在粒子物理学实验中,磁场常用于加速器中。
磁场通过对带电粒子施加的洛伦兹力来加速粒子,并使其沿着想要的轨道运动。
这种加速器可以产生高速带电粒子,用于研究基本粒子和物质结构。
3. 磁共振成像(MRI):医学领域使用磁场的重要应用是磁共振成像。
MRI利用强大的磁场和无害的射频波来生成人体内部的详细图像。
磁场对带电粒子的作用可以使人体内的氢原子核发生共振,产生与组织特性相关的信号,从而实现对人体组织的非侵入性成像。
4. 磁选机:磁选机是一种利用磁场对带电粒子进行分离和分选的装置。
在矿山和冶金行业中,磁选机广泛应用于矿石的提取和精矿的制备。
通过调节磁场的强弱和方向,不同磁性的矿物可以被分离出来,以提高矿石的质量和纯度。
5. 高能粒子物理实验:在高能物理实验中,如粒子对撞机和加速器实验,强大的磁场常用于轨道和动量的测量。
磁场对带电粒子运动的影响可以提供对粒子性质和相互作用的重要信息,从而加深对基本物理规律的理解。
总结起来,磁场对带电粒子的作用广泛应用于科学研究、医学技术和工业生产中。
无论是在电子技术的显示器中,还是在医学成像设备中,磁场的作用都发挥着关键的角色。
磁场对带电粒子的控制和分离为各个领域的发展提供了重要的手段和工具,促进了科学的进步和技术的应用。
磁力磁场对运动带电粒子的影响

磁力磁场对运动带电粒子的影响磁场是物理学中的重要概念,它对运动带电粒子的行为有着重要的影响。
本文将探讨磁力磁场对运动带电粒子的影响及其相关原理。
一、洛伦兹力洛伦兹力是描述带电粒子在磁场中受力的基本定律。
当带电粒子以速度v在磁场B中运动时,它将受到洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷q、速度v以及磁场B的关系可以通过以下公式表示:F = q(v×B)其中,F为洛伦兹力的大小,v×B表示向量的叉乘运算。
二、洛伦兹力的方向洛伦兹力的方向可以根据左手定则确定。
左手定则规定,当左手的拇指指向带电粒子的运动方向,食指指向磁场的方向时,中指的方向就是洛伦兹力的方向。
根据左手定则,洛伦兹力垂直于带电粒子的速度方向和磁场的方向。
三、运动轨迹的变化根据洛伦兹力的方向和大小,带电粒子在磁场中的运动轨迹将发生变化。
当带电粒子的速度与磁场的方向垂直时,洛伦兹力将使粒子绕磁场线做圆周运动。
当带电粒子速度不垂直于磁场时,洛伦兹力将同时作用于带电粒子的速度方向和磁场的方向,使其运动轨迹变为螺旋线。
四、磁强度与洛伦兹力的关系磁场的强弱由磁场强度B来表示,磁场强度越大,洛伦兹力对带电粒子的影响也越大。
磁场强度的单位是特斯拉(T),而洛伦兹力的单位是牛顿(N)。
五、荷质比的测量洛伦兹力的存在使得磁场可以被用来测量带电粒子的荷质比。
荷质比是指带电粒子的电荷与质量之比。
通过在磁场中观察带电粒子的轨迹,可以利用洛伦兹力的大小和带电粒子的速度等参数,推导出带电粒子的荷质比。
六、应用及意义磁场对运动带电粒子的影响在很多实际应用中都有着广泛的应用。
例如,在粒子加速器中,磁场被用于控制带电粒子的运动轨迹,以实现粒子加速和碰撞实验。
磁共振成像技术也是基于磁场对带电粒子的影响原理,通过对带电粒子在强磁场中的运动进行分析,得到图像信息。
总结:磁力磁场对运动带电粒子的影响主要通过洛伦兹力来实现。
洛伦兹力使带电粒子在磁场中的运动轨迹发生变化,且其方向与磁场的方向垂直。
磁场对带电粒子的作用

磁场对带电粒子的作用磁场是指存在磁力的区域,而磁力是一种物理力量,能够对带电粒子产生影响。
本文将探讨磁场对带电粒子的作用及其相关原理。
一、洛伦兹力磁场对带电粒子的主要作用是产生洛伦兹力。
洛伦兹力是由磁场和粒子运动速度的向量积所引起的,其大小和方向都与带电粒子的电荷、速度以及磁场的强度和方向有关。
当带电粒子以一定速度穿过磁场时,洛伦兹力垂直于速度方向和磁场方向,并遵循右手定则。
若带电粒子的电荷正负性与速度方向一致,则洛伦兹力垂直于速度和磁场方向向内;若电荷正负性与速度方向相反,则洛伦兹力垂直于速度和磁场方向向外。
洛伦兹力的大小与磁场强度成正比,与带电粒子的电荷量和速度的乘积成正比。
这意味着,在相同的磁场中,电荷量越大或速度越快的粒子所受到的洛伦兹力越大。
二、磁场对运动轨迹的影响由于洛伦兹力的存在,磁场可以改变带电粒子的运动轨迹。
当带电粒子运动速度与磁场相垂直时,洛伦兹力的作用会使粒子偏离原来的直线运动轨迹,进而形成一个圆形轨迹。
这种轨迹称为磁场中的回旋轨道。
回旋轨道的半径与粒子的电荷量、速度以及磁场的强度成正比。
当磁场强度增加时,回旋轨道的半径也会增加;当速度增加时,回旋轨道的半径亦会增加。
需要注意的是,磁场只能改变粒子的运动轨迹,而不能改变粒子的速度。
当粒子进入磁场后,其速度大小保持不变,仅改变方向。
三、粒子在磁场中的稳定性带电粒子在磁场中的稳定性主要取决于洛伦兹力和离心力之间的平衡情况。
洛伦兹力试图将粒子推向轨迹的中心,而离心力试图将粒子推离轨迹的中心。
当洛伦兹力和离心力相等时,粒子将保持在磁场中心的回旋轨道上,保持稳定。
若洛伦兹力大于离心力,粒子将向轨迹中心靠拢;若洛伦兹力小于离心力,粒子将离开回旋轨道。
四、应用与实际意义磁场对带电粒子的作用在物理学研究、电子技术和医学等领域具有广泛的应用和实际意义。
在物理学研究领域,磁场的作用有助于科学家们对带电粒子的运动进行研究,揭示微观世界的奥秘。
在电子技术中,磁场可用于电子设备的控制和操纵。
磁场中的运动粒子

磁场中的运动粒子磁场中的运动粒子是物理学中的一个重要研究领域,涉及到磁场与运动粒子的相互作用、粒子在磁场中的轨迹以及其相关的物理现象等。
本文将详细探讨磁场对运动粒子的影响及其相关的研究内容。
一、磁场与运动粒子的相互作用磁场是由带电粒子运动而产生的,因此,当带电粒子进入磁场中时,会受到磁场力的作用。
这种力被称为洛伦兹力,是带电粒子在磁场中运动所必经的基本力。
洛伦兹力的方向垂直于带电粒子的运动速度和磁场方向,根据洛伦兹力的定律,带电粒子将受到一个向圆心的力,从而使其做圆周运动。
在这种情况下,磁场可用来控制和操纵带电粒子的运动轨迹,进而实现对粒子的加速或减速等操作。
二、粒子在磁场中的轨迹根据洛伦兹力的定律,粒子在磁场中做圆周运动的半径与粒子的质量、电量和速度有关。
当粒子的质量和电量固定时,其在磁场中的运动轨迹是一个确定的圆周。
然而,在某些情况下,粒子的轨迹并不一定是完全的圆周运动。
当粒子的运动速度不够高或磁场不够强时,粒子将偏离圆周轨迹,呈现出其他形状的轨迹,比如螺旋线。
这些不同形状的轨迹使得磁场对于粒子运动的控制更加复杂和多样化,同时也给研究者带来了更多的挑战和机遇。
三、磁场中的粒子动力学效应除了影响粒子的运动轨迹外,磁场还对粒子的运动动力学产生了一系列重要影响。
其中最有代表性的效应是磁偏转和磁共振。
磁偏转是指粒子在磁场中由于洛伦兹力的作用而改变运动方向的现象。
这一现象广泛应用于粒子加速器和磁共振成像等领域,极大地推动了科学技术的发展。
磁共振则是指由于磁场与粒子的自旋相互作用而导致的特殊现象。
在医学影像学中,磁共振成像利用磁场和粒子自旋共振的原理来获取人体内部的详细结构信息,成为一项重要的无创检测手段。
四、应用领域及前景展望研究磁场中的运动粒子对于理解物质结构、电磁场相互作用及其在科学技术领域中的应用具有重要意义。
在核能领域,粒子在磁场中的运动和控制是核聚变实验的关键技术。
在材料科学领域,粒子在磁场中的行为对于材料性能的改变和调控有着重要影响。
磁场对运动带电粒子的力与加速度的影响

磁场对运动带电粒子的力与加速度的影响磁场是物理学中一个非常重要的概念,它对于运动中的带电粒子产生了重要的力和加速度影响。
在理解这一点之前,我们首先需要了解磁场的基本原理。
磁场是由电场和电荷运动产生的。
当电荷运动时,会在其周围产生一个磁场。
而带电粒子也是带电荷的,当它们运动时,就会产生磁场。
这个磁场会与外部磁场相互作用,从而产生力和加速度的影响。
那么,磁场对运动带电粒子的力与加速度有何影响呢?首先,磁场可以对带电粒子施加一个力,这就是所谓的洛伦兹力。
洛伦兹力的大小与带电粒子的电荷、速度以及磁场的强度和方向有关。
当带电粒子运动方向与磁场方向垂直时,洛伦兹力的大小达到最大值。
这个力会使带电粒子发生偏转,类似于一个弯曲的路径。
其次,磁场的作用还表现在带电粒子的加速度上。
根据洛伦兹力的方向,我们可以看出,当磁场垂直于速度方向时,带电粒子将会发生向心加速度。
这意味着带电粒子在磁场中的路径将会是圆弧形,并且不断维持着向心加速度,使得带电粒子保持着稳定的圆周运动。
除了圆周运动之外,带电粒子在磁场中也可以发生螺旋运动。
当磁场与带电粒子的速度方向不垂直时,洛伦兹力的方向将会有一个竖直分量和一个水平分量。
竖直方向上的力会使带电粒子向磁场的轴线方向进行运动,而水平方向上的力则会使带电粒子继续保持其原有的速度方向。
这样,带电粒子就会在竖直方向上做匀速直线运动,而在水平方向上做匀速运动,从而形成一个螺旋形的路径。
除了力和加速度的影响之外,磁场还可以影响带电粒子的轨道半径。
根据洛伦兹力的大小和速度方向,我们可以推导出轨道半径和磁场强度之间的关系。
当洛伦兹力增大时,轨道半径也会增大;当磁场强度增大时,轨道半径也会增大。
这意味着磁场的强度可以通过改变轨道半径来控制带电粒子的运动。
在实际应用中,磁场对带电粒子的力与加速度的影响被广泛应用于物理学和工程学领域。
例如,在粒子加速器中,通过精确控制磁场的强度和方向,可以使带电粒子在器件内部完成加速或者偏转运动,进而实现粒子束流的控制和调节。
磁场对带电粒子的轨道和自旋的影响

磁场对带电粒子的轨道和自旋的影响磁场是物理学中一个重要的概念,广泛应用于多个领域。
在物理学中,磁场存在于各种形式和尺度下,从微观的原子层面到宏观的地球磁场,都会对带电粒子的运动产生影响。
本文将探讨磁场对带电粒子的轨道和自旋的影响,以及这种影响在科学和技术领域中的应用。
首先,让我们了解磁场对带电粒子的轨道的影响。
磁场可以通过洛伦兹力来影响带电粒子的运动轨迹。
当带电粒子进入磁场中时,磁场会施加一个垂直于粒子速度和磁场方向的力,这个力被称为洛伦兹力。
根据洛伦兹力的方向,带电粒子将沿着一个特定的弯曲轨道运动,这个轨道被称为洛伦兹轨道。
洛伦兹轨道是一种曲率与带电粒子的质量、电荷和速度相关的特殊轨道。
在强磁场下,带电粒子的运动可呈现出闭合的环形轨道,这种现象被称为磁束陷阱。
磁束陷阱的概念在核聚变和等离子体研究中有重要的应用。
除了轨道的影响,磁场还对带电粒子的自旋产生影响。
自旋是带电粒子的一种内禀性质,类似于物体的自旋。
在存在磁场的情况下,带电粒子的自旋也会发生预cession的运动,这是一种类似于陀螺仪旋转的现象。
磁场会对自旋施加一个力矩,使得自旋在垂直于磁场方向的平面上旋转。
这种自旋预cession的运动速度称为Larmor频率,与带电粒子的旋磁比和磁场强度相关。
自旋预cession在核磁共振成像中广泛应用,通过分析带电粒子自旋的运动,可以对物质的结构和化学性质进行研究。
除了理论研究外,磁场对带电粒子轨道和自旋的影响也在实际应用中发挥着重要作用。
例如,磁共振成像(MRI)技术利用磁场对带电粒子自旋的影响,实现了非侵入性的生物医学成像。
MRI技术通过在人体中施加强大的磁场,使带电粒子的自旋预cession产生信号,然后通过监测这些信号,可以获得人体组织的详细结构信息。
这种非侵入性的成像技术在临床诊断中得到广泛应用,对发现疾病和指导治疗起到了重要作用。
此外,磁场对带电粒子轨道和自旋的影响还在物理学研究中发挥着重要作用。
磁场对运动电荷的作用-洛伦磁力

通过实验验证了洛伦兹力公式,证明了磁场对运动电荷存在作用力,为电磁学理论提供了实验支持。
实验意义
洛伦兹力实验对于理解电磁场与带电粒子的相互作用具有重要意义,有助于深入探究电磁现象的本质 和规律。此外,该实验还可应用于粒子加速器、电子显微镜等领域,为相关技术发展提供理论支持和 实践指导。
பைடு நூலகம் 05
偏转的方向取决于电荷的电性 (正或负)和磁场的强度。
磁场对带电粒子的作用力还与 其运动方向有关,当粒子垂直 于磁场方向运动时,受到的洛 伦兹力最大。
洛伦兹力与磁场强度的关系
洛伦兹力的大小与磁场的强度成正比, 即磁场越强,洛伦兹力越大。
洛伦兹力的方向由右手定则确定,即伸 开右手,让拇指与其余四指垂直,并使 拇指指向正电荷的运动方向,然后让磁 感线穿过手心,四指指向就是洛伦兹力
洛伦兹力与带电粒子所受的电场力和重力相比, 在一些特定条件下可以忽略不计。
在研究带电粒子在磁场中的运动时,还需考虑其 他物理量如电场、重力场等的影响。
洛伦兹力在科技领域的应用
在磁约束聚变反应中,洛伦兹力用于控制带电粒子的运动轨迹,从而实现 核聚变反应。
在电子显微镜中,洛伦兹力用于操纵电子束的运动,从而提高成像质量。
粒子加速器
洛伦兹力用于加速带电粒子,如电子、质子等,以研究基本粒子和物质结构。
同步辐射光源
在粒子加速器中,利用洛伦兹力产生的同步辐射作为光源,可用于材料科学、 生物学等领域的研究。
洛伦兹力在核聚变中的应用
核聚变反应控制
在核聚变反应中,利用强磁场和高速运动的带电粒子之间的洛伦兹力来控制反应 过程,实现可控热核聚变。
洛伦兹力的方向
• 根据左手定则判断:将左手掌摊平,让磁感线穿过手掌心,四 指指向正电荷的运动方向或负电荷运动的反方向,大拇指所指 方向即为洛伦兹力的方向。
2025届高三物理一轮复习磁场对运动电荷的作用(53张PPT)

答案 AB
考向4 运动的周期性形成多解带电粒子在两个相邻磁场或电场、磁场相邻的空间内形成周期性的运动而形成多解。
【典例11】 (多选)(2022·湖北卷)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,
解析 电子在磁场中都做匀速圆周运动,根据题意画出电子的运动轨迹,如图所示,电子1垂直射进磁场,从b点离开,则运动了半个圆周,ab即为直径,c点为圆心,电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b
答案 A
考向2 带电粒子在平行边界磁场中的运动平行边界(存在临界条件,如图所示)。
【典例4】 如图所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直射入匀强磁场,入射方向与CD边界间夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求:(1)电子的速率v0至少多大?(2)若θ角可取任意值,v0的最小值是多少?
答案 C
1.洛伦兹力的特点:洛伦兹力不改变带电粒子速度的_______,只改变带电粒子速度的方向。2.粒子的运动性质。(1)若v0∥B,则粒子不受洛伦兹力,在磁场中做_____________。(2)若v0⊥B,则带电粒子在匀强磁场中做_____________。
考点2 带电粒子在匀强磁场中的匀速圆周运动
平面
0
qvB
(1)带电粒子在磁场中的速度不为零,一定受到洛伦兹力作用( )(2)洛伦兹力对运动电荷不做功( )(3)同一带电粒子在A处受到的洛伦兹力大于在B处受到的洛伦兹力,则A处的磁场一定大于B处的磁场( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 u 、粒子的初速度 ^ B
•回转周期与速率无关:质谱仪、回旋加速的物理基础
回顾、带电粒子在均匀磁场中的运动
例1 回旋加速器 —— 一种用来获得高能带电粒子的设备。
基本原理:
1. 带电粒子在磁场中作回 旋运动。
环形 真空室
铁芯
S
线圈 接振荡器
在非相对论下与粒子速 率无关。
★霍尔电势差
(霍尔电压)
四、霍尔效应
霍尔效应的机理解释
b
–– – –
I
(方向向上)
h
-e
+ + ++
(方向向下) 达到动态平衡时:
四、霍尔效应
霍尔效应的机理解释
b
h
E
F
四、霍尔效应
霍尔效应的机理解释
四、霍尔效应
霍尔电压
UH b
h
在金属中,由于n ~ 1029 很大,因此霍耳效应很弱。 而在半导体中, n 较小,因此霍耳效应就较明显。
四、霍尔效应 1982年, 崔琦等发现分数量子霍尔效应。
• 崔琦 • 分数量子霍尔效应 • 1998年诺贝尔物理学奖
四、霍尔效应
2013年清华大学物理系和中科院物 理所联合组成的团队在实验中首次 发现量子反常霍尔效应
薛其坤
四、霍尔效应
不同的曲线显示在不同栅极电压下材料霍尔电阻随磁场的变 化。在一定的栅极电压范围内,零磁场的反常霍尔电阻数值 达到量子电阻的数值h/e2。
例3 一长l、高h、宽b的矩形管,其上下两侧面为金属板,前后 两面为绝缘板,用导线将两金属板相连,金属板和导线的电阻 可忽略,今有电阻率为ρ的高温高压等离子体流过矩形管,其流 速与管两端压强成正比,且流速为vo时管两端压强为Po,试计 算在垂直于矩形管左右平面的方向加感应强度为B 的均匀磁场 后,管中等离子体的流速。
由题设:
解:设载流子电量为q, 载流子浓度为n
它受到与v方向相反的 洛仑兹力为 f ' =qv'B
在上下方向上利用电流 密度与电阻率的关系
l
+ + ++
h
q – – – –
b
解:设载流子电量为q, 载流子浓度为n
等离子体受到与v方向
相反的磁场力为
l
+ + ++
h
q
–– – –
b
因为此力方向与v反向,故将在管两端产生附加压强
典型应用 1)判断半导体的类型 2)磁场或其他非电量的检测与传感 3)磁流体发电
四、霍尔效应
1)判断半导体类型
P型:载流子为正电荷; N型:载流子为负电荷
++ +
I - - -+
+I
+
-+-
-
+
-
-
P 型半导体 -
N 型半导体 +
小结:若 (视为电动势)的方向与 的流向及 的方 向满足右螺旋法则,则为P型半导体;反之,为N型。
四、霍尔效应 2)磁体或其他非电量的检测与传感 例1 霍尔压力传感器与位移传感器
霍尔压力 传感器
四、霍尔效应
2)磁体或其他非电量的检测与传感 例2 霍尔转速传感器原理图
输入轴
输入轴
Байду номын сангаас
(a)
霍尔传感器
(b)
四、霍尔效应
3)磁流体发电
当高温高速的等离子气体通 过导电管时,受垂直于气流方向 上的磁场(洛伦兹力)的作用, 等离子体中的正负离子,将分别 沿着既垂直于磁场方向又垂直于 流速方向的两侧反向偏移,从而 在导电管两侧的电极上建立起霍 耳电势差,从而可由电极上获得 连续输出的电能。
2.粒子在同频缝隙电场的 作用下加速。
N
带电粒子束
回旋加速器原理示意图
回顾、带电粒子在均匀磁场中的运动 带电粒子作螺旋运动
螺距:
回顾、带电粒子在均匀磁场中的运动
(对称轴)
磁u ^镜场
回顾、带电粒子在均匀磁场中的运动 2、磁塞与磁瓶——磁约束装置 磁塞
载流 线圈
B
磁瓶
磁塞
载流 线圈
四、霍尔效应
四、霍尔效应 拓展:量子霍尔效应
1978-1980 年,德国物理学家 K.Von Klitzing 在低温 (1.5K)和强磁场(19T)条件下,发现上式中的霍尔电势差与 电流的关系,不再是线性的,而是台阶式跃变关系。并得 到:
——整数量子霍耳效应
四、霍尔效应
K.V. Klitzing
量子霍耳效应 1985年诺贝尔物理学奖