七年级上册数学一元一次方程应用题之调配问题

合集下载

一元一次方程的应用(调配问题)

一元一次方程的应用(调配问题)

2.某生产队有林场108公顷,牧场54公顷,现
要栽培一种新的果树,把一部分牧场改造成林
场,使牧场面积是林场面积的20%,问改为林 场的牧场面积是多少?
例2、在甲处劳动的工人有27人,在乙处 劳动的工人有19人,现在另调20人去支 援,使得甲处的人数为乙处的2倍,应调
往甲、乙两处各多少人?
3.甲仓库有粮食72吨,乙仓库原有粮食54吨, 现又调入42吨,问如何分配,能使乙仓库的粮 食是甲仓库的一半?
例1、甲班有45人,乙班有39人。现在需要从
甲乙两班各抽调一些同学去参加歌咏比赛。如 果从甲班抽调的人数比乙班多1人,那么甲班剩 余人数恰好是乙班剩余人数的2倍。请问从甲、 乙两班各抽调了多少人参加歌咏比赛?
1.某班学生分为两组参加学校活动,第一组有
28人,第二组有38人.现在重新分组,需要从
第二组调多少人到第一组,能使第一组人数与 第二组人数相等?
——调配问题
课前热身
1.填空:
(1)三班有37人,四班有33人,从三班调出x人 给四班,则三班有 (37-x)人,四班有(33+x) 人。
(2)甲处有31人,乙处有20人,现有18人分别派 往甲、乙处, 设甲处调派x人,则乙处调派 (18-x) 人,
甲处共 (31+x) 人,乙处共 (20+18-x)人。
4.甲队原有68人,乙队有44人,现又调入42 人给这两队,为了使乙队人数是甲队人数的四 分之三,应调往甲、乙两队各多少人?
5.某班同学参加平整土地的劳动,其中挖土的 人数比运土的人正好相同。求原来挖土与运土各多少人?
调配问题解题策略:
(1)画出两个等量关系; (2)根据一个等量关系设出未知数,另一个等量关系列 出方程 (3)解方程,并检根的合理性

一元一次方程应用_调配问题含答案

一元一次方程应用_调配问题含答案

一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动.原来每组6人.后来重新编组.每组10人.这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承.每人每天平均可以加工轴杆12根或者轴承16个.1根轴杆与2个轴承为一套.该车间共有90人.应该怎样调配人力.才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货.根据市场需求对其进行粗加工和精加工处理.已知精加的这种山货质量比粗加工的质量的3倍还多200kg.求粗加工的这种山货的质量.4.马年新年即将来临.七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个.那么比计划多了7个;如果每人做5个.那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人.每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件.工作两天后因改变了操作方法.每天比原来多生产5个零件结果提前4天完成任务.问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读.如果每人分3本.则剩余20本;如果每人分4本.则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题.原文如下:今有人共买物.人出八.盈三;人出七.不足四.问人数.物价各几何?译文为:现有一些人共同买一个物品.每人出8元.还盈余3元;每人出7元.则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)10.在手工制作课上.老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人.其中男生人数比女生人数少2人.并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底.为了使每小时剪出的筒身与筒底刚好配套.应该分配多少名学生剪筒身.多少名学生剪筒底?11.某校组织学生种植芽苗菜.三个年级共种植909盆.初二年级种植的数量比初一年级的2倍少3盆.初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”.某校团委开展“光盘行动”.倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加.七(1)班参加的人数比七(2)班多10人.请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?14.暑假.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动.如图是划船须知.(1)他们一共租了10条船.并且每条船都坐满了人.那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间.小明、小亮等同学随家长一同到某公园游玩.下面是购买门票时.小明与他爸爸的对话(如图).试根据图中的信息.解答下列问题:(1)小明他们一共去了几个成人.几个学生?(2)请你帮助小明算一算.用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人.先表示出原来和后来各多少组.其等量关系为后来的比原来的少2组.根据此列方程求解.【解答】解:设这些学生共有x人.根据题意.得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用.其关键是找出等量关系及表示原来和后来各多少组.难度一般.2.【分析】设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据1根轴杆与2个轴承为一套列出方程.求出方程的解即可得到结果.【解答】解:设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据题意得:12x×2=16(90﹣x).去括号得:24x=1440﹣16x.移项合并得:40x=1440.解得:x=36.则调配36个人加工轴杆.54个人加工轴承.才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用.找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg.把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克.则精加工(3x+200)千克.由题意得:x+(3x+200)=1000.解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用.得到山货总质量的等量关系是解决本题的关键.难度一般.4.【分析】设小组成员共有x名.由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个.令二者相等.即可求得x的值.可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名.则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20.∴6x﹣7=113.答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系列出方程.再求解.5.【分析】设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系.就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由题意得2000x=2×1200(22﹣x).解得:x=12.则22﹣x=10.答:应安排生产螺钉和螺母的工人10名.12名.【点评】此题主要考查了一元一次方程的应用.列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件.表示出所有零件的个数.进而得出等式求出即可.【解答】解:设原来每天生产x个零件.根据题意可得:26x=2x+(x+5)×20.解得:x=25.故26×25=650(个).答:原来每天生产25个零件.这批零件有650个.【点评】此题主要考查了一元一次方程的应用.根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定.可得:3x+20=4x﹣25.解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生.这批图书共有155本.【点评】解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.8.【分析】根据这个物品的价格不变.列出一元一次方程进行求解即可.【解答】解:设共有x人.可列方程为:8x﹣3=7x+4.解得x=7.∴8x﹣3=53(元).答:共有7人.这个物品的价格是53元.【点评】本题考查了一元一次方程的应用.解题的关键是明确题意.找出合适的等量关系.列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人.利用人数不变.车的辆数相差1.可列出一元一次方程求出.(2)可根据租用两种汽车时.利用假设一种车的辆数.进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人.由题意得方程:.解得x=360;答:该单位参加旅游的职工有360人.(2)有可能.因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人.正好坐满.【点评】此题主要考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人.则男生(x﹣2)人.根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人.则男生(x﹣2)人.由题意.得x+(x﹣2)=44.解得:x=23.∴男生有:44﹣23=21人.答:七年级(2)班有女生23人.则男生21人;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由题意.得50a×2=120(44﹣a).解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身.20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用.一元一次方程的解法的运用.解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆.则初二年级种植(2x﹣3)盆.初三年级种植(2x ﹣3+25)盆.根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆.依题意得:x+(2x﹣3)+(2x﹣3+25)=909.解得.x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量.直接设要求的未知量或间接设一关键的未知量为x.然后用含x的式子表示相关的量.找出之间的相等关系列方程、求解、作答.即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动.由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”.则七(1)班有(x+10)人参加“光盘行动”.依题意有(x+10)+x+48=128.解得x=35.则x+10=45.答:七(1)班有45人参加“光盘行动”.七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用.关键是先确定相等关系.然后列方程求解.13.【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(元).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只.则小船租了(10﹣x)只.那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只.则小船租了(10﹣x)只.则6x+4(10﹣x)=50解得:x=5.答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系.用代数式表示出相等关系中的各个部分.把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人.则去了(12﹣x)个学生.根据爸爸说的话.可确定相等关系为:成人的票价+学生的票价=400元.据此列方程求解;(2)计算团体票所需费用.和400元比较即可求解.【解答】解:(1)设去了x个成人.则去了(12﹣x)个学生.依题意得40x+20(12﹣x)=400.解得x=8.12﹣x=4;答:小明他们一共去了8个成人.4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400.∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题.关键在于设求知数.列方程.此类题目贴近生活.有利于培养学生应用数学解决生活中实际问题的能力.。

一元一次方程的应用(调配问题)

一元一次方程的应用(调配问题)
林场 调配前 108 牧场 54
调配后
等量关系
108+x
54-x
牧场面积=林场面积的20%
例2、在甲处劳动的工人有27人,在乙处劳动 的工人有19人,现在另调20人去支援,使得 甲处的人数为乙处的2倍,应调往甲、乙两处 各多少人? 分析:可设调往甲组x人
甲组 乙组 19 19+20-x来自调配前 调配后 等量关系
1、调配问题两种类型: (1)从甲往乙调,此时总人数不变; (2)从外面调人给甲乙,此时总人数增加. 2、调配问题解题策略:
通过列表得到调配后的数量,列出方程.
宝典训练A:40页练习题
例1、某班学生分为两组参加植树活动,甲组 有17人,乙组有25人.后来由于需要,又从甲 组抽调部分学生去乙组,结果乙组人数是甲组 的2倍,从甲组抽调了多少学生去乙组?
分析:可设从甲组抽调了x人去乙组
甲组 乙组 25 25+x
调配前 调配后 等量关系
17
17-x 乙=2甲
1.某班学生分为两组参加学校活动,第一组有 28人,第二组有38人.现在重新分组,需要从 第二组调多少人到第一组,能使第一组人数是 第二组的2倍?
分析:可设从第二组抽调了x人去第一组
第一组 调配前 28 第二组 38
调配后
等量关系
28+x
38-x
第一组人数=第二组的2倍
2.某生产队有林场108公顷,牧场54公顷,现 要栽培一种新的果树,把一部分牧场改造成林 场,使牧场面积是林场面积的20%,问改为林 场的牧场面积是多少?
分析:可设把x公顷牧场改造为林场
27
27+x
甲处的人数=乙处的2倍
动手试一试
3.甲仓库有粮食72吨,乙仓库原有粮食54吨, 现又调入42吨,问如何分配,能使乙仓库的粮 食是甲仓库的一半? 4.甲队原有68人,乙队有44人,现又调入42 人给这两队,为了使乙队人数是甲队人数的四 分之三,应调往甲、乙两队各多少人?

人教版七年级上册:列一元一次方程解实际问题---调配问题典型习题

人教版七年级上册:列一元一次方程解实际问题---调配问题典型习题

列一元一次方程解实际问题----调配问题【热身训练】解方程:3126x x x +-=- 12225y y y -+-=- 253164x x ---= 122233x x x -+-=-【典型例题】甲仓库储粮35吨 ,乙仓库储粮26吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量与乙仓库的粮食数量相等?【强化训练】有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?【开放思维】(在横线上填上适当的内容,编一道“符合实际”的应用题)初一甲、乙两班各有学生48人和52人,现从外校转来12人插入两班中,_____________________________________?【尝试解决】有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原有多少鸽子和多少鸽笼?【能力提升】已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品.【补充练习】必做题:1、水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎么安排人员,正好能使挖出的土及时运走?2、《孙子算经》下卷第31题“雉兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何?”3、有龟和鹤共40只,龟的腿和鹤的腿共104条,龟、鹤各有几只?4、一人用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少俄尺?选做题:为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。

(1)若某用户五月份的水费为36元,问,该用户五月份应交水费多少元?(2)若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?。

七年级上册数学一元一次方程应用题之调配问题

七年级上册数学一元一次方程应用题之调配问题

一元一次方程应用题之调配问题:
调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。

调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。

在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。

例题精讲
1.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?
3.一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?
针对练习
1.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

2.某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
3.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
4.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
5.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?。

一元一次方程——调配和分配问题

一元一次方程——调配和分配问题

一元一次方程应用题——调配和分配问题一、学习重点:调配和分配问题:1、找准调配前后的数量关系;2、找数量关系时可借助列表等形式。

需要注意人或者物品的流向,流动之后形成了一种什么样的关系,例如:从甲队调一些人去乙队,其中甲队要减去这些人,而乙队要加上这些人。

再根据题意中给的关系设未知数表示出来。

二、基础练习:1、有甲乙两个运输队,甲队32人,乙队28人,从甲调走5人到乙队,则甲队_____人,乙队____人。

2、有甲乙两个运输队,甲队32人,乙队28人,从甲调走x人到乙队,〔1〕使甲乙两队人数恰好相等,则x=______;〔2〕假设乙队人数恰好是甲队人数的2倍,则x=_____;〔3〕假设乙队人数比甲队人数的4倍还多5人,则x=_____。

例1、某厂一车间有64人,二车间有56人。

现因工作需要,需求第一车间人数是笫二车间人数的一半。

问需从第一车间调多少人到第二车间?练习:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下來的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?做题:3、4例2、甲车队有15辆汽车,乙车队有28辆汽年,现调来10辆汽分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?练习:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?做题:5、6例3、某班同学利用假期参加夏令营活动,分成几个小组,假设每组7人还余1人,假设每组8人还缺6人,问该班分成几个小组,共有多少名同学?练习:学校新进假设干箱教学设备,某班同学去运,假设每人运8箱,还余16箱;假设每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?做题:7、8三、应用题: A卷3、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?4、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。

列一元一次方程解应用题——调配问题

列一元一次方程解应用题——调配问题

初一数学学案 执笔人:姜苹苹
让省思成为我们的习惯 在省思中获取前进动力
第二章 列方程解应用题
第1课时 人员调配问题
1. 会将文字语言转换成数学符号,理解语句,能写出等量关系,正确写出解题过程。

2. 学法指导:原有人数、调出人数,剩余人数,三者关系,给出一组量,两组等量关系。

【任务1】翻译语句:
为了丰富我们学校学生业余生活,合唱团准备在初一年级招募15名同学,1班学生共32人,2班学生31人,体委曹新鹏上操时候发现1班剩下的学生和2班剩下学生的一样多,你知道从我们班抽多少同学去了合唱团吗?
翻译语句,列出等量关系式:
招募15名同学: 1班剩下的学生和2班剩下学生的一样多:
1班学生共32人: 2班学生31人 。

学生试着画出理解本题的思维导图: 根据导图写出解题过程:
【任务2
变式1:为了丰富我们学校学生业余生活,合唱团准备在初一年级招募15名同学,1班学生共32
人,2班学生31人,体委曹新鹏上操时候发现1班剩下的学生是2班剩下学生的2倍,你知道从我们班抽多少同学去了合唱团吗?
变式2:为了丰富我们学校学生业余生活,合唱团准备在初一年级招募一些同学,1班学生32人,2班学生31人,从1班抽走的学生是2班抽走学生的2倍,体委曹新鹏上操时候发现1班剩下的学生与2班剩下学生一样多,你知道从我们班抽多少同学去了合唱团吗?
甲班有45人,乙班有39人,现从甲、乙两班各抽调一些同学去参加歌咏比赛。

如果从甲班抽调了15人,那么甲班剩余人数恰好是乙班剩余人数的2倍。

问从乙班抽调了多少人参加歌咏比赛?
让省思成为我们的习惯在省思中获取前进动力。

一元一次方程的应用(调配问题)

一元一次方程的应用(调配问题)

按比例调配 全校总人数为m人
初一年级占5 初二年级占3 初三年级占2
等量关系:
总人数=初一年级人数+初二年级人数 +初三年级人数
做一做
1 学校团委组织65名团员为学校 建花坛搬砖,初一同学每人搬6块, 其他年级同学每人搬8块,总共搬了 400块,问初一同学有多少人参加了 搬砖?
分析
如何找出题中的 相等关系?
1.
5 、将全班 45 名同学分成两组植树,要求甲组每人 挖 5 个坑,乙组每人挖 3 个坑并植 7 棵树,如何分配两 组的人数,才能使挖的坑数与植树的棵数相等?
6、学校组织植树活动,已知在甲处植树的有23人, 在乙处植树的有17人.现调20人去支援,使在甲处植树 的人数是乙处植树人数的2倍,应调往甲,乙两处各多少 人? 3. 7、甲比乙大15岁,五年前甲的年龄是乙的年龄的2 倍,现在乙的年龄是多少? 4. 8、某校初一年级有三个班:1班有34人,2班有38 人,3班有32人,三个班都按照统一的比例派同学参加运 动会的比赛项目全年级未参加比赛的有78人,则3班参 加比赛项目的有多少人? 2.
方程能够解决这个问题吗? 若能解决,请试列方程。 找出它的解。
试试看 填写下表
涉及的量 原有煤量 调运煤量 调后存煤量
甲煤矿有煤432吨。乙煤矿有煤96吨, 为了使甲煤矿存煤数是乙煤矿的2倍。 应从甲煤矿运多少吨煤到乙煤矿?
甲矿 432
乙矿 96
- x
432 - x
Байду номын сангаас
+ x
96 + x
等量关系
调后甲矿存煤量=2×调后乙矿存煤量
解:设应从甲煤矿调运 x 吨煤到乙煤矿,那么调 运后甲煤矿有煤(432- x )吨, 乙煤矿有煤(96 + x )吨,根据题意得: 432-x = 2(96+x) 432-x = 192+2x, 3x = 240 X = 80 答:应从甲煤矿调运80吨煤到乙煤矿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题之调配问题:
调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。

调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。

在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。

例题精讲
1.甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?
3.一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?
针对练习
1.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

2.某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
3.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
4.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
5.甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?。

相关文档
最新文档