动量定律和能量守恒定律的综合应用

合集下载

动量和能量的综合应用教案

动量和能量的综合应用教案

动量和能量的综合应用教案一、教学目标通过本节课的学习,学生将能够:1. 理解并运用动量和能量的概念;2. 掌握动量定律和能量守恒定律的应用;3. 进行动量和能量的数值计算。

二、教学内容1. 动量的定义和计算方法;2. 动量定律的表述和应用;3. 能量的定义和计算方法;4. 能量守恒定律的表述和应用。

三、教学过程本节课分为以下几个部分进行教学:Part 1:引入1. 引导学生回顾之前学习过的动量和能量的基本概念;2. 提出问题:你认为动量和能量在现实生活中有哪些应用?Part 2:动量的应用1. 介绍动量的定义和计算方法;2. 讲解动量定律的表述和应用:a. 动量定律的数学表达式;b. 利用动量定律解决实际问题的例子;c. 动量守恒的意义和应用。

Part 3:能量的应用1. 介绍能量的定义和计算方法;2. 讲解能量守恒定律的表述和应用:a. 能量守恒定律的数学表达式;b. 利用能量守恒定律解决实际问题的例子;c. 能量转化和能量损失的初步认识。

Part 4:动量和能量的综合应用1. 以实际案例为例,引导学生综合运用动量和能量的概念解决问题;2. 让学生分析并计算物体在碰撞中的动量变化、能量转化和能量损失;3. 引导学生思考和讨论动量和能量在实际应用中的重要性和约束。

Part 5:扩展应用1. 给学生一些实际案例,要求他们应用动量和能量的知识进行分析和计算;2. 引导学生思考动量和能量对于交通安全、机械设计等领域的重要作用。

四、教学评价1. 在课堂上进行相关问题的提问和回答;2. 布置相关练习和作业,检验学生对动量和能量应用的掌握情况;3. 监督学生实践动量和能量计算的能力,评价他们的思维和分析能力。

五、教学延伸1. 鼓励学生自主学习和探索更多与动量和能量相关的知识;2. 提供相关学习资料和参考书目,帮助学生深入了解动量和能量的应用。

六、教学心得通过本节课的教学,学生能够将动量和能量的概念有效应用于实际问题中。

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。

高中物理中力学三大观点的综合应用

高中物理中力学三大观点的综合应用

高中物理中力学三大观点的综合应用楼㊀倩(兰州市第七中学ꎬ甘肃兰州730000)摘㊀要:本文主要对力学三大观点进行介绍ꎬ对三大观点的优选原则进行分析ꎬ并结合典型例题ꎬ探讨如何利用力学三大观点解决综合性问题.关键词:高中物理ꎻ力学三大观点ꎻ解题应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)06-0083-03收稿日期:2023-11-25作者简介:楼倩(1986.2-)ꎬ女ꎬ甘肃省兰州人ꎬ本科ꎬ中学一级教师ꎬ从事初高中物理教学研究.㊀㊀高中物理中力学三大观点ꎬ即动力学观点㊁能量观点和动量观点.是高考中必考的考点ꎬ具有综合性强㊁难度大的特征ꎬ常常作为考试的压轴题出现.本文对该部分知识进行了分析ꎬ以便加强学生对三大观点的理解和应用.1力学三大观点概述高中物理中的力学三大观点ꎬ包括动力学观点㊁能量观点和动量观点[1].其中动力学观点是结合牛顿第二定律和匀变速直线运动的规律ꎬ求解物体做匀变速直线运动时速度㊁加速度㊁位移等物理量ꎬ涉及运动的细节ꎬ可以用来处理匀变速运动的相关问题ꎻ能量观点是结合动能定理㊁功能关系㊁机械守恒定律和能量守恒定律ꎬ解决功和能之间的关系ꎬ涉及做功和能量转换ꎬ既能解决匀变速运动的相关问题ꎬ也能处理非匀变速运动问题ꎻ动量观点是涉及动量定理和动量守恒定律ꎬ解决过程只涉及物体的初末速度㊁力㊁时间或者只与初末速度有关ꎬ和能量观点一样ꎬ动量观点适用范围既包括匀变速运动ꎬ也包括非匀变速运动问题.2三大观点的选用原则力学的三大观点ꎬ针对的是不同的物理情境ꎬ解决的是不同的问题.如若误用ꎬ就会降低解题效率ꎬ甚至求出错误答案或者求解过程陷入僵局.因此ꎬ需要对三大观点的选用原则有一定的了解.(1)当物理情境为碰撞㊁爆炸㊁反冲等问题ꎬ若只涉及初㊁末速度而不涉及力㊁时间ꎬ且研究对象为一个系统ꎬ优先选用动量守恒定律ꎬ并联立能量守恒定律进行求解ꎬ需注意所研究的问题是否满足守恒的条件.(2)当涉及运动的具体细节时ꎬ考虑动力学观点进行解题ꎬ能量和动量观点均只关注初末状态ꎬ不考虑运动细节.(3)当问题涉及相对位移时ꎬ可优先考虑能量守恒定律.此时系统克服摩擦力所做的功和系统机械能的减少量相等ꎬ即转变为系统的内能.这种解法可以避免对复杂的运动过程进行分析ꎬ简化解题步骤.(4)若在求解问题时ꎬ需要求出各个物理量在某时刻的大小ꎬ则可以优先运用牛顿第二定律.(5)若研究对象为单一物体ꎬ且涉及功和位移问题时ꎬ应优先考虑动能定理.3热点题型分析3.1应用三大动力学观点解决碰撞㊁爆炸模型例1㊀如图1所示ꎬ水平地面上放置有P㊁Q两个物块ꎬ两者相距L=0.48mꎬP物块的质量为1kgꎬ38Q物块的质量为4kgꎬP物块的左侧和一个固定的弹性挡板接触.已知P物块与水平地面间无摩擦ꎬ且其和弹性挡板碰撞时无能量损失ꎬQ物块与水平地面有摩擦且动摩擦因数为0.1ꎬ重力加速度取10m/s2.某一时刻ꎬP以4m/s的初速度朝着物块Q运动并和其发生弹性碰撞ꎬ回答以下问题:图1㊀例1题图(1)P物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小各为多少?(2)P物块与Q物块第二次碰撞后ꎬ物块Q的瞬间速度大小为多少?解析㊀(1)第一次弹性碰撞后瞬间两物块的速度分别为v1和v2ꎬ有m1v0=m1v1+m2v2ꎬ12m1v02=12m1v21+12m2v22ꎬ求解得v1=-125m/sꎬv2=85m/s.因此ꎬP物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小分别为125m/s㊁85m/s.(2)设碰后Q的加速度为aꎬ则有μmg=ma.假设第二次碰撞前Q没有停止运动ꎬ有x+2L=|v1|t1ꎬx=v2t1-12at21ꎬ解得t1=0.8s.假设第二次碰撞前Q已经停止运动ꎬ有v2=at2ꎬ解得t2=1.6s.所以第二次碰撞前Q没有停止运动.设第二次碰撞前的瞬间ꎬP的速度为vPꎬQ的速度为vQ.碰撞后瞬间ꎬP的速度为vPᶄꎬQ的速度为vQᶄꎬ则:vQ=v2-at1m1vP+m2vQ=m1vPᶄ+m2vQᶄ12m1vP2+12m2vQ2=12m1vPᶄ2+12m2vQᶄ2vP=-v1解得vQᶄ=3625m/s.例2㊀有一组机械组件ꎬ由螺杆A和螺母B组成ꎬ因为生锈难以分开ꎬ图2为装置剖面示意图.某同学将该组件垂直放置于水平面上ꎬ在螺杆A顶端的T形螺帽与螺母B之间的空隙处装入适量火药并点燃ꎬ利用火药将其 炸开 .已知螺杆A的质量为0.5kgꎬ螺母的质量为0.3kgꎬ火药爆炸时所转化的机械能E=6JꎬB与A的竖直直杆间滑动摩擦力大小恒为f=15Nꎬ忽略空气阻力ꎬ重力加速度g=10m/s2.图2㊀例2题图(1)求火药爆炸瞬间螺杆A和螺母B各自的速度大小ꎻ(2)忽略空隙及螺母B的厚度影响ꎬ要使A与B能顺利分开ꎬ求螺杆A的竖直直杆的最大长度L.解析㊀(1)设火药爆炸瞬间螺杆A的速度大小为v1ꎬ螺母B的速度大小分别为v2ꎬ以竖直向下为正方向ꎬ根据能量守恒定律和动量守恒定律ꎬ有0=m1v1+m2v2E=12m1v21+12m2v22求解得v1=-3m/sꎬv2=5m/sꎬ因此杆A的速度大小为3m/sꎬ方向竖直向上ꎻ螺母B的速度大小为5m/sꎬ方向坚直向下.(2)A相对B向上运动ꎬ所受摩擦力f向下ꎬ则对螺杆A由牛顿第二定律可得m1g+f=m1a1ꎬ解得a1=40m/s2ꎬ方向竖直向下.对螺母B由牛顿第二定律可得f-m2g=m2a2ꎬ解得a2=40m/s2ꎬ方向竖直向上.火药爆炸后ꎬA向上做匀减速直线运动ꎬ其减速至零的时间为t1=v1a1=340s.B向下做匀减速直线运动ꎬ其减速至零的时间为t1=v2a2=540s.所以B一直做匀减速运动ꎬA则先做匀减速将速度减至为0而后做匀加速运动ꎬ当两者速度相等时刚好分开ꎬ此时直杆的长度最大.取向下为正方向ꎬ可得v2-a2t3=-v1+a1t3ꎬ解得t3=0.1s.则直杆长度的最大值为L=(v1+v2)t32ꎬ解得L=0.4m.3.2应用三大动力学观点解决多过程问题例3㊀竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接ꎬ小物块B静止48于水平轨道的最左端ꎬ如图3(a)所示.t=0时刻ꎬ小物块A在倾斜轨道上从静止开始下滑ꎬ一段时间后与B发生弹性碰撞(碰撞时间极短)ꎻ当A返回到倾斜轨道上的P点(图中未标出)时ꎬ速度减为0ꎬ此时对其施加一外力ꎬ使其在倾斜轨道上保持静止.物块A运动的v-t图像如图3(b)所示ꎬ图中的v1和t1均为未知量.已知A的质量为mꎬ初始时A与B的高度差为Hꎬ重力加速度大小为gꎬ不计空气阻力.(a)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)图3㊀示意图(1)物块B的质量为多少?(2)物体A在图3(b)所描述的运动过程中ꎬ克服摩擦力做了多少功?(3)已知A物块和B物块和轨道间的摩擦因数是相等的.当物块B停止运动后ꎬ将物块和轨道间的摩擦因数改变ꎬ然后从P点释放物块Aꎬ其运动一段时间后ꎬ刚好能和物块B正好碰上.求改变前后摩擦因数的比值.解析㊀(1)根据图3(b)ꎬ可以得出在t1时刻ꎬ两物块发生了碰撞ꎬ物块A的速度由碰撞前的v1变为碰撞后的v12.碰撞问题ꎬ运用动量守恒和能量守恒观点进行分析ꎬ设物块B的质量为mBꎬ其碰撞后的瞬间速度大小为vB.则有mv1=m(-v12)+mBvB12mv21=12m(-12v1)2+12mBv2B解得mB=3m.(2)求物体A在运动过程中克服摩擦力所做的功的大小ꎬ需要结合能量观点和动力学观点进行求解.设物体A和轨道之间的滑动摩擦力为fꎬP点距地面的高度为hꎬ碰撞前物体A走过的路程为s1ꎬ碰撞之后走过的路程为s2.碰撞之前ꎬ物体A的速度由0加速至v1ꎬ该过程重力做正功ꎬ摩擦力做负功ꎬ根据动能定理ꎬ有mgH-fs1=12mv21-0碰撞之后ꎬ物体A的速度由v12减速至0ꎬ该过程重力和摩擦力均做负功ꎬ根据动能定理ꎬ有-(fs2+mgh)=0-12m(-v12)2在整个过程中ꎬ物体克服摩擦力做功的大小为W=fs1+fs2由图3(b)的v-t图像可知s1=12v1t1s2=12ˑv12ˑ(1.4t1-t1)且s1和s2存在几何关系s2s1=hH联立可得W=215mgH.(3)设轨道和地面之间的夹角为θꎬ改变前的动摩擦因数为μ有W=μmgcosθH+hsinθ设物块B在水平轨道上能够滑行的距离为sᶄꎬ由动能定理有-μmᶄgsᶄ=0-12mᶄvᶄ2设改变后的动摩擦因数为μᶄꎬ依据动能定理有mgh-μᶄmgcosθ hsinθ-μᶄmgsᶄ=0联立可得μμᶄ=119.4结束语总之ꎬ当运用力学三大观点进行解题时ꎬ关键在于明确研究对象和其所经历的物理过程ꎬ并能够根据问题ꎬ应用合适的观点进行求解.该类题对学生的综合素质要求较高ꎬ教学过程切不可机械化㊁模板化ꎬ教师要引导学生多思考㊁多总结ꎬ达到 讲一题会一类 的教学效果ꎬ培养学生的解题思维.参考文献:[1]李得天.利用力学的三大观点解高考力学压轴题[J].高中数理化ꎬ2022(20):34-35.[责任编辑:李㊀璟]58。

应用力学的“三大观点”解题

应用力学的“三大观点”解题

分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.

运动物体的能量守恒与动量守恒定律分析

运动物体的能量守恒与动量守恒定律分析

运动物体的能量守恒与动量守恒定律分析运动物体的能量守恒与动量守恒定律是物理学中重要的基本原理,它们揭示了物体在运动过程中能量和动量的守恒规律。

本文将从理论和实践两个方面分析这两个定律的原理和应用。

一、能量守恒定律能量守恒定律是指在一个封闭系统中,能量的总量在任何时刻都保持不变。

对于运动物体而言,其能量守恒定律可以分为动能守恒和势能守恒两个方面。

动能守恒是指物体在运动过程中,其动能的总量保持不变。

动能的大小与物体的质量和速度有关,可以用公式E=1/2mv²表示,其中E为动能,m为物体的质量,v为物体的速度。

当物体在运动过程中没有受到外力的作用时,动能守恒定律成立。

例如,一个自由落体的物体在下落过程中,只受到重力的作用,没有其他外力的干扰,其动能将保持不变。

势能守恒是指物体在运动过程中,其势能的总量保持不变。

势能是由物体所处位置决定的,常见的有重力势能、弹性势能等。

在没有外力做功的情况下,势能守恒定律成立。

例如,一个弹簧被压缩后释放,弹簧的势能会转化为物体的动能,当物体再次回到原来位置时,其势能又会恢复到原来的大小。

能量守恒定律在日常生活中有着广泛的应用。

例如,我们乘坐电梯上楼时,电梯的势能会转化为我们的动能,使我们能够上升到目标楼层。

再例如,我们玩弹球游戏时,弹球在碰撞过程中动能的转化使得游戏更加有趣。

二、动量守恒定律动量守恒定律是指在一个封闭系统中,物体的总动量在任何时刻都保持不变。

动量的大小与物体的质量和速度有关,可以用公式p=mv表示,其中p为动量,m为物体的质量,v为物体的速度。

当物体在运动过程中没有受到外力的作用时,动量守恒定律成立。

动量守恒定律在碰撞过程中有着重要的应用。

碰撞可以分为弹性碰撞和非弹性碰撞两种情况。

弹性碰撞是指碰撞物体在碰撞过程中动能守恒,并且碰撞前后物体的动量大小和方向都保持不变。

例如,两个弹球碰撞后,它们的动量之和仍然保持不变。

非弹性碰撞是指碰撞物体在碰撞过程中动能不守恒,但总动量仍然保持不变。

专题六 力学中三大观点的综合应用

专题六 力学中三大观点的综合应用

(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水

动量和能量守恒定律

动量和能量守恒定律动量和能量守恒定律是物理学中两个重要的基本原理。

这两个定律在理论物理和实验物理中起着至关重要的作用。

本文将从理论和实验两方面介绍动量和能量守恒定律,并探讨它们在日常生活和工程实践中的应用。

一、动量守恒定律的基本原理动量守恒定律是描述物体运动的基本规律之一。

根据动量守恒定律,孤立系统中的总动量保持不变。

即在没有外力作用的情况下,物体的总动量守恒。

这一定律可以通过数学公式表示为:Σ(m₁v₁) = Σ(m₂v₂)其中,m₁、m₂分别为物体的质量,v₁、v₂为物体的速度。

该公式表示,两个物体在碰撞前后的动量之和保持不变。

动量守恒定律可以用来解释许多物理现象,如弹性碰撞、爆炸等。

例如,在弹性碰撞过程中,两个物体发生碰撞后,它们之间的动量交换,但总动量保持不变。

这一定律也被应用于交通事故分析和设计安全气囊等工程实践中。

二、能量守恒定律的基本原理能量守恒定律是描述能量转化和能量流动的基本规律。

根据能量守恒定律,孤立系统中的总能量保持不变。

即在没有能量的输入或输出的情况下,系统的总能量守恒。

根据物理学原理,能量可以存在于不同的形式,如动能、势能、热能等。

能量守恒定律可以用数学公式表示为:ΣKE₁ + ΣPE₁ + ΣTE₁ = ΣKE₂ + ΣPE₂ + ΣTE₂其中,KE表示动能,PE表示势能,TE表示热能。

该公式表示,系统中各种形式的能量在转化和交换过程中维持总能量不变。

能量守恒定律可以解释许多自然现象,如机械运动、热力学等。

例如,在机械能守恒定律中,当物体从高处自由下落时,重力势能转化为动能,保持总能量不变。

这一定律也被应用于能源管理和可持续发展等领域。

三、动量和能量守恒定律的联系和应用动量和能量守恒定律都描述了物体或系统中某种物理量的守恒。

二者在某些情况下可以相互转化和关联。

例如,当物体发生完全弹性碰撞时,动量守恒定律和能量守恒定律同时适用。

在碰撞前后,物体的总动能和总动量保持不变。

体育原理中的三个规律和应用

体育原理中的三个规律和应用体育是人类活动的重要组成部分,它不仅是一种娱乐方式,更是一门科学。

体育原理作为体育科学的基础,涉及到运动的规律和应用。

本文将介绍体育原理中的三个规律,并探讨它们在实际运动中的应用。

一、万有引力定律万有引力定律是物理学中的基本定律,也适用于体育运动。

根据这个定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离平方成反比。

在体育运动中,我们可以应用这个定律来解释一些现象。

以足球为例,当一个球员踢出一脚球时,球会受到地球引力的作用,从而开始下落。

根据万有引力定律,球的下落速度与球的质量成正比,与球离地面的距离平方成反比。

因此,较重的足球会更快地落地,而较轻的足球则会悬停更长时间。

万有引力定律还可以解释为什么在跳高比赛中,运动员在离地面越近的地方跳得越高。

因为当运动员离地面较近时,他们与地球的距离较小,地球对运动员的引力更强,这会帮助运动员克服重力,跳得更高。

二、动量守恒定律动量守恒定律是力学中的重要定律之一,也适用于体育运动。

根据这个定律,一个系统的总动量在没有外部力作用时保持不变。

在体育运动中,动量守恒定律可以解释一些运动现象。

例如,在碰撞运动中,当两个物体发生碰撞时,它们的总动量在碰撞前后保持不变。

这意味着如果一个物体减少了速度,另一个物体就会增加速度,以保持总动量不变。

这就是为什么在篮球比赛中,当两个球员碰撞时,一个球员会被撞飞,而另一个球员会向前推进。

动量守恒定律还可以解释为什么在射击比赛中,运动员需要稳定地持枪。

因为当子弹离开枪口时,枪和子弹的总动量必须为零。

如果运动员没有稳定地持枪,枪的反冲会导致他们失去平衡,从而影响射击的准确性。

三、能量守恒定律能量守恒定律是物理学中的基本定律之一,也适用于体育运动。

根据这个定律,一个系统的总能量在没有外部能量输入或输出时保持不变。

在体育运动中,能量守恒定律可以解释一些运动现象。

例如,在田径比赛中,当一个运动员抛掷铅球时,他们给铅球施加了一定的能量。

高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用

一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。

题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。

方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。

选项A 正确。

题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。

F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。

专题力学三大观点的综合应用

力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题 1动量和能量观点在力学中的应用例1(2014 ·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 1.0 m ,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1)2.5 m/s(2)6次(3)5 s12.75 m解析(1) 设两者间相对静止时速度为v,由动量守恒定律得m v0= 2m vv=2.5 m/s.(2)解得物块与凹槽间的滑动摩擦力F =μF=μmgf N设两者相对静止前相对运动的路程为s1,由功能关系得1212- F f·s1=(m+m)v- m v022解得 s1= 12.5 m已知 L= 1 m,可推知物块与右侧槽壁共发生 6 次碰撞.(3)设凹槽与物块碰前的速度分别为 v1、 v2,碰后的速度分别为 v 1′、 v2′.有m v1+ m v2=m v1′+ m v2′121m v22121m v2′2m v1+=m v1′+2222得 v 1′= v2, v2′= v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为 13 段,凹槽、物块的v —t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v= v 0+ata =- μg解得 t = 5 s凹槽的 v —t 图象所包围的阴影部分面积即为凹槽的位移大小 s 2.(等腰三角形面积共分13 份,第一份面积为 0.5 L ,其余每两份面积和均为 L.)1 v 0)t + 6.5L ,解得 s 2= 12.75 m.s 2=(221.如图 2 所示,倾角 45°高 h 的固定斜面.右边有一高3h的平台,平台顶部左边水平,上面有一质量为1圆弧.质量为2m 的小球 A 从斜面底端以某一初速度沿斜面上滑,M 的静止小球 B ,右边有一半径为 h 的 4从斜面最高点飞出后恰好沿水平方向滑上平台,与 B 发生弹性碰撞, 碰后 B 从圆弧上的某点离开圆弧. 所有接触面均光滑, A 、 B 均可视为质点,重力加速度为 g.图 2(1) 求斜面与平台间的水平距离s 和 A 的初速度 v 0;(2) 若 M = 2m ,求碰后 B 的速度;(3) 若 B 的质量 M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为 α.求 cos α的取值范围.答案(1) h 2gh (2) 2gh(3)2≤ cos α≤ 133解析(1) 设小球 A 飞上平台的速度为 v 1,小球由斜面顶端飞上平台,可看成以速度v 1 反向平抛运动,由平抛运动规律得:1h = 1gt 2, s =v 1t , tan 45 =°gt2 2v 1解得: v 1= gh , s = h由机械能守恒定律得:1m v 0 2= 3mgh + 1m v 1 222 2解得: v 0= 2 gh.(2) 设碰后 A 、 B 的速度分别为 v A 、 v B ,由动量、能量守恒得m v 1= m v A + M v B1 2 1 21 2m v 1 =m v A + M v B2222m2v B = m + M v 1= 3gh.(3) 由 (2) 可知,当 M ? m 时 v B ≈ 2 gh > gh 从顶端飞离则 cos α= 1 当 M ? m 时, v B = 0,设 B 球与圆弧面在 C 处分离,则:1 2 Mgh (1- cos α)=2M v Cv C 2 , cos α= 2,故 2≤ cos α≤ 1Mg cos α= M h331.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题 2应用动力学、能量、动量解决综合问题例 2如图3所示,在光滑的水平面上有一质量为m= 1 kg 的足够长的木板C,在 C 上放置有A、 B 两物体, A 的质量 m A= 1 kg,B 的质量为 m B= 2 kg.A、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能 E p= 3 J,现突然给A、B 一瞬时冲量作用,使A、B同时获得v 0=2 m/s的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与 A、B 分离.已知 A 和的摩擦因数为μ= 0.2,B、 C 之间的动摩擦因数为μ= 0.1,且滑动摩擦力略小于最大静摩擦力.求:1 2C 之间图3(1)弹簧与 A、 B 分离的瞬间, A、 B 的速度分别是多大?(2) 已知在 C 第一次碰到右边的固定挡板之前,A、B 和 C 已经达到了共同速度,求在到达共同速度之前B、 C 的加速度分别是多大及该过程中产生的内能为多少?(3) 已知 C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前 A 在 C 上滑行的距离?审题突破(1) 根据动量守恒和能量守恒列方程组求A、B 分离时的速度; (2) 由牛顿第二定律求三者的加速A、度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解.答案(1)0 3 m/s(2)4.5 J 1.5 m/s (3)0.75 m解析(1) 在弹簧弹开两物体的过程中,由于作用时间极短,对A、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A+m B)v0= m A v A+ m B v B121212E p+ (m A+ m B)v0=m A v A+ m B v B222联立解得: v A=0, v B=3 m/s.2(2) 对物体 B 有: a =μg= 1 m/s ,方向水平向左B2对 A、 C 有:μ+ m)a2m B g=(m A又因为: m A a<μ1m A g故物体 A、 C 的共同加速度为a= 1 m/s 2,方向水平向右对 A、 B、 C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B= ( m A+ m B+ m)v 121(m A+ m B+ m)v2Q= m B v B-22解得: Q= 4.5 J,v= 1.5 m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0 后向右匀加速运动,分析可知,在向右加速过程中先和 A 达到共同速度v1,之后 A、C 再以共同的加速度向右匀加速, B 一直向右匀减速,最后三者达共同速度 v 2后做匀速运动.在此过程中由于摩擦力做负功,故 C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A=μ1g= 2 m/s2, a B=μ2g= 1 m/s2μ,解得: a = 4 m/s 21m A g + μ2m B g = ma C C v 1= v - a A t =- v + a C t解得: v 1= 0.5 m/st = 0.5 s- v + v 1 x A1=v + v 12 t = 0.5 m , x C1= 2 t =- 0.25 m故 A 、 C 间的相对运动距离为x AC = x A1+ |x C1|= 0.75 m.2. (2014 广·东 ·35)如图 4 所示,的水平轨道中, AC 段的中点 B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1 沿光滑轨道向右以速度v 1 与静止在 A 点的物体 P 2 碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在 t 1= 2 s 至 t 2= 4 s 内工作.已知 P 1、 P 2 的质量都为 m = 1 kg , P 与 AC 间的动摩擦因数2为 μ= 0.1, AB 段长 L = 4 m , g 取 10 m/s , P 1、 P 2 和 P 均视为质点, P 与挡板的碰撞为弹性碰撞.图 4(1) 若 v 1= 6 m/s ,求 P 1、 P 2 碰后瞬间的速度大小 v 和碰撞损失的动能E ;(2) 若 P 与挡板碰后, 能在探测器的工作时间内通过 B 点,求 v 1 的取值范围和 P 向左经过 A 点时的最大动能 E .答案 (1)3 m/s 9 J (2)10 m/s ≤ v 1≤ 14 m/s 17 J解析(1) 设 P 1 和 P 2 发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1= 2m v 2①解得: v 2=v 1= 3 m/s2E = 1m v 11× 2m v 2碰撞过程中损失的动能为:2- 2②2 2解得E =9 J.(2) P 滑动过程中,由牛顿第二定律知2ma =- 2μ mg③可以把 P 从 A 点运动到 C 点再返回 B 点的全过程看作匀减速直线运动,根据运动学公式有1 2 3L = v 2t + at2④26L - at由 ①③④ 式得 v 1=t① 若 2 s 时通过 B 点,解得: v 1= 14 m/s ② 若 4 s 时通过 B 点,解得: v 1= 10 m/s 故 v 1 的取值范围为: 10 m/s ≤ v 1≤ 14 m/s设向左经过 A 点的速度为 v A ,由动能定理知1× 2m v A 2- 1× 2m v 2 2=- μ·2mg ·4L22 当 v = 1v 1 = 7 m/s 时,复合体向左通过 A 点时的动能最大, E =17 J.22根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练训练 6题组 1动量和能量的观点在力学中的应用1.如图 1 所示,在倾角为 30°的光滑斜面上放置一质量为 m 的物块 B , B 的下端连接一轻质弹簧,弹簧下端与挡板相连接, B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块 A ,距物块 B 为 3x 0,现让 A 从静止开始沿斜面下滑, A 与 B 相碰后立即一起沿斜面向下运动,并恰好回到 O 点(A 、 B 均视为质点 ).试求:图 1(1) A 、 B 相碰后瞬间的共同速度的大小;(2) A 、 B 相碰前弹簧具有的弹性势能;(3) 若在斜面顶端再连接一光滑的半径 R = x 0 的半圆轨道 PQ ,圆轨道与斜面相切于最高点 P ,现让物块 A以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上的速度,试问:v 为多大时物块 A 恰能通过圆弧轨道的最高点?答案 (1) 1 3gx 0 120+ 4 3 gx 02(2) mgx 0 (3)4解析(1) 设 A 与 B 相碰前 A 的速度为 v 1, A 与 B 相碰后共同速度为 v 2由机械能守恒定律得 3mgx 0 sin 30 1 2=°m v 12由动量守恒定律得m v 1= 2m v 21解以上二式得 v 2= 2 3gx 0.(2) 设 A 、B 相碰前弹簧所具有的弹性势能为 E p ,从 A 、 B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p + 1·2m v 2 2= 2mgx 0 sin 30 °2解得 E p = 1mgx 0.4(3) 设物块 A 与 B 相碰前的速度为 v 3,碰后 A 、 B 的共同速度为 v 41 21 2m v + 3mgx 0 sin 30 =°m v 322m v 3= 2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则1·2m v 4 2+ E p = 1·2m v 5 2+ 2mgx 0sin 30 °2 211此后 A 继续上滑到半圆轨道最高点时速度为v 6,则2 2+ 2mgx 0 sin 30 +°mgR(1+ sin 60 ) °2m v 5= m v 62在最高点有 mg =m v 6 R 2联立以上各式解得v =20+ 4 3 gx 0.2.如图 2 所示,质量为 m 1 的滑块 (可视为质点 )自光滑圆弧形槽的顶端 A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点, A 、 B 的高度差为 h 1= 1.25 m .传导轮半径很小,两个轮之间的距离为 L = 4.00 m .滑块与传送带间的动摩擦因数 μ= 0.20.右端的轮子上沿距离地面高度h 2= 1.80 m ,g取 10 m/s 2.(1) 若槽的底端没有滑块图m 2,传送带静止不运转,求滑块2m 1 滑过C 点时的速度大小v ; (结果保留两位有效数字)(2)在m 1 下滑前将质量为 m 2 的滑块(可视为质点)停放在槽的底端.m 1 下滑后与 m 2 发生弹性碰撞,且碰撞后 m 1 速度方向不变,则m 1、 m 2 应该满足什么条件?(3) 满足 (2) 的条件前提下, 传送带顺时针运转, 速度为 v = 5.0 m/s.求出滑块 m 1、m 2 落地点间的最大距离 (结果可带根号 ).答案(1)3.0 m/s (2)m 1> m 2 (3)(621 - 3) m5 解析(1) 滑块 m 11 2滑到 B 点有 m 1gh 1= m 1v 02解得 v 0= 5 m/s滑块 m 由 B 滑到 C 点有- μm1 2-1211gL = m 1 vm 1v 022解得 v = 3.0 m/s.(2) 滑块 m 2 停放在槽的底端, m 1 下滑并与滑块 m 2 弹性碰撞,则有m 1v 0=m 1v 1+ m 2v 211 v 0 2= 11v 1 2 + 1 2v 2 22m2m2mm 1 速度方向不变即v 1= m 1- m 2+ m v 0> 0m 12 则 m 1> m 2.(3) 滑块经过传送带作用后做平抛运动12h 2=2gt当两滑块速度相差最大时,它们的水平射程相差最大,当 m 1? m 2 时,滑块 m 1、 m 2 碰撞后的速度相差最大,经过传送带后速度相差也最大m 2m 1- m 2 1- m 1 v 0≈ v 0= 5.0 m/s v 1= + m v 0=2m 1+m 1v 2= 2m 1v 0= 2v 0≈ 2v 0= 10.0 m/s+ m 2m2m1+m 1滑块 m 1 与传送带同速度,没有摩擦,落地点射程为x 1= v 1t = 3.0 m滑块 m 2 与传送带发生摩擦,有 - μm1′ 2- 122gL =2m 2v 2 2m 2v 2解得 v 2′= 2 21 m/s落地点射程为 x 2= v 2′ t =621 m5m 2、m 1 的水平射程相差最大值为x = (6 21- 3) m.5题组 2应用动力学观点、能量观点、动量观点解决综合问题3.如图 3 所示,质量 M = 4 kg 的平板小车停在光滑水平面上,车上表面高 h 1= 1.6 m .水平面右边的台阶高 h 2= 0.8 m ,台阶宽l = 0.7 m ,台阶右端B 恰好与半径r = 5 m的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ= 53°,在平板小车的A 处有质量m 1= 2 kg 的甲物体和质量m 2= 1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上 A 点左侧表面光滑,右侧粗糙且动摩擦因数为 μ= 0.2.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取 10 m/s 2,sin 53=°0.8, cos 53 =°0.6).求:图 3(1) 炸药爆炸使两物体增加的机械能E ;(2) 物体在圆弧轨道最低点 C 处对轨道的压力 F ;(3) 平板车上表面的长度 L 和平板车运动位移 s 的大小.答案 (1)75 J (2)46 N ,方向竖直向下(3)1 m解析(1) 甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2= 01 2 1 m 2v 22=75 J.E = m 1v 1 +22(2) 设甲物体平抛到 B 点时,水平方向速度为 v x ,竖直分速度为 v yv y = 2g h 1- h 2 = 4 m/s v x =v y= 3 m/stan θ合速度为: v B = 5 m/s物体从 B 到 C 过程中:m 1gr(1- cos θ)= 1m 1v C 2- 1m 1v B222v C 2F N - m 1 g = m 1 rF N =46 N由牛顿第三定律可知:F = F N = 46 N ,方向竖直向下.v y(3) 甲物体平抛运动时间: t = g = 0.4 s 平抛水平位移: x = v x t = 1.2 m > 0.7 m甲物体在车上运动时的加速度为: a 1= μg = 2 m/s2甲物体在车上运动时间为:t 1= v 0- v x = 1 sa 1甲物体的对地位移: x =1+ v = 4 m12 (v 0 x )t 1a 2= μm 1g = 1 m/s 2甲物体在车上运动时,车的加速度为:1M甲离开车时,车对地的位移:2= 0.5 mx 2= a 2t 12车长为: L = 2(x 1- x 2)= 7 m车的位移为: s = x 2+ (x - l)= 1 m.4.如图 4 所示,光滑的水平面 AB(足够长 )与半径为 R = 0.8 m 的光滑竖直半圆轨道 BCD 在 B 点相切, D点为半圆轨道最高点.A 点的右侧等高地放置着一个长为 L = 20 m 、逆时针转动且速度为v = 10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1= 3 kg ,乙的质量为 m 2= 1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过 D 点,且过 D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为 0.6,重力加速度 g 取 10 m/s 2,甲、乙两物体可看做质点.图 4(1) 求甲球离开弹簧时的速度.(2) 若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3) 甲、乙均不固定,烧断细线以后,求甲和乙能否再次在 AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案(1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为23 m/s ,方向水平向右,乙的速度为 6 3m/s ,方向水平向左解析(1) 甲离开弹簧时的速度大小为v 0,运动至 D 点的过程中机械能守恒:12 1 2m 1 v 0 = m 1g ·2R +m 1v D ,22 在最高点 D ,由牛顿第二定律,v D 2 有 2m 1g = m 1 R联立解得: v 0= 4 3 m/s.(2) 甲固定,烧断细线后乙的速度大小为 v 乙 ,由能量守恒:E p =1m 1v 0 2=1m 2v 乙 2,2 2得 v 乙 = 12 m/s之后乙滑上传送带做匀减速运动:μm 2g = m 2a得 a = 6 m/s 2乙的速度为零时,在传送带滑行的距离最远,最远距离为:2v 乙s=2a= 12 m < 20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为 v1、 v 2,甲、乙分离瞬间动量守恒: m1v1= m2v2甲、乙弹簧组成的系统能量守恒:121212E p= m1v0= m1v1+m2v2222解得: v1=2 3 m/s,v2= 6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h,12则2m1v1=m1gh得 h= 0.6 m< 0.8 m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s< 12 m/s,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回 AB 面上时速度大小仍然为v2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为 2 3 m/s,方向水平向右,乙的速度为 6 3 m/s,方向水平向左.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒和能量守恒定律的综合应用
1.解决该类问题用到的规律
动量守恒定律,机械能守恒定律,能量守恒定律,功能关系等。

2.解决该类问题的基本思路
(1)认真审题,明确题目所述的物理情景,确定研究对象。

(2)如果物体间涉及多过程,要把整个过程分解为几个小的过程。

(3)对所选取的对象进行受力分析,判定系统是否符合动量守恒的条件。

(4)对所选系统进行能量转化的分析。

例如,系统是否满足机械能守恒,如果系统内有摩擦则机械能不守恒,有机械能转化为内能。

(5)选取所需要的方程列式并求解。

例3.如图所示,两块相同平板P 1、P 2置于光滑
水平面上,质量均为m 。

P 2的右端固定一轻质
弹簧,左端A 与弹簧的自由端B 相距L 。

物体
P 置于P 1的最右端,质量为2m 且可看做质点。

P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起。

P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。

P 与P 2之间的动摩擦因数为μ。

求:
(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;
(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p 。

[解析] (1)对P 1、P 2组成的系统,由动量守恒定律得m v 0=2m v 1 解得v 1=v 02 对P 1、P 2、P 组成的系统,由动量守恒定律得
2m v 1+2m v 0=4m v 2 解得v 2=34
v 0。

(2)对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到最终P 停在A 点,由能量守恒定律得
μ·2mg (2L +2x )=12·2m v 20+12·2m v 21-12·4m v 22 解得x =v 2032μg
-L 对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到弹簧压缩到最短,此时P 1、P 2、P 的速度均为v 2,由能量守恒定律得
μ·2mg (L +x )+E p =12·2m v 20+12·2m v 21-12·4m v 22 解得E p =m v 2016。

相关文档
最新文档