约瑟夫环的代码及算法思想

合集下载

约瑟夫环公式

约瑟夫环公式

约瑟夫环公式约瑟夫环:编号从0开始,第⼀个出去的⼈是(k-1)%n,重新编号,出去的⼈的下⼀位编号为0,以此类推,最后⼀个出去的⼈的编号⼀定为0,f[1] = 0;当第⼀个⼈出去后,剩下n – 1 个⼈出去编号f[9] =(k - 1) % (n – 1), 还原原来队列编号(f[n - 1] + k) % (n – 1 + 1);1. 编号从0开始2. 每出去⼀个⼈重新编号3. 还原原排列公式:f[x] = (f[x] + k) % (x + 1) (不断+k模原⼈数+1直到原⼈数+1=n);得初始值n个⼈,数k个数第⼀个出去:剩n⼈;初始值:f[n] = (k - 1) % n;第⼆个出去:剩n - 1⼈;初始值:f[n - 1] = (k - 1) % (n - 1);第三个出去:剩n - 2⼈;初始值:f[n - 2] = (k - 1) % (n - 2);。

还原原排列编号有了初始值,接下来还原编号即可第⼀个出去:剩n⼈,⽆需还原第⼆个出去:剩n - 1⼈,f[n - 1] = (f[n - 1] + k) % n;第三个出去:剩n - 2⼈,f[n - 2] = (f[n - 2] + k) % (n - 1), f[n - 2] = (f[n - 2] + k) % n;。

就是不断 +k 模⼈数+1;直到⼈到n个代码#include <cstdio>#define N 100001int n,k;int f[N];int main(){scanf("%d%d", &n, &k);for(int i = n; i >= 1; --i){f[i] = (k - 1) % i;for(int j = i + 1; j <= n; ++j)f[i] = (f[i] + k) % j;printf("%d ", f[i] + 1);//输出编号+1,因为从0开始编号}return0;}。

实验报告 约瑟夫问题

实验报告 约瑟夫问题
pNew->next = pCur->next;
pCur->next = pNew;
pCur = pNew;
printf("结点%d,密码%d\n",pCur->id, pCur->cipher);
}
}
printf("完成单向循环链表的创建!\n");
}
(3)运行"约瑟夫环"问题
static void StartJoseph(NodeType **, int)
exit(-1);
}
pNew->id = iId;
pNew->cipher = iCipher;
pNew->next = NULL;
return pNew;
}
(6)测试链表是否为空,空为TRUE,非空为FALSE
static unsigned EmptyList(const NodeType *pHead)
实验内容
利用循环链表实现约瑟夫环求解。
实验说明
1.问题描述
约瑟夫问题的:编号为1,2,....,N的N个人按顺时针方向围坐一圈,每人持有一个密码(正整数),一开始任选一个正整数作为报数上限值M,从第一个人开始按顺时针方向自1开始顺序报数,报到M时停止报数。报M的人出列,将他的密码作为新的M值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出出列顺序。
{
if(!pHead)
{
return TRUE;
}
return FALSE;
}
实验中遇到的问题及解决方法
实验结果如下:
实验总结(结果和心得体会)

C++编写的 约瑟夫环问题 代码

C++编写的 约瑟夫环问题 代码

程序源代码:#include <stdio.h>#include <malloc.h>#include<conio.h>#include <stdlib.h>#include<ctime>#define NULL 0typedef struct Node{int m;//密码int n;//序号struct Node *next;}Node,*Linklist;Linklist create(int z) //生成循环单链表并返回,z为总人数{int i,mm;Linklist H,r,s;H=NULL;printf("请按顺序依次为每个人添加密码:");for(i=1;i<=z;i++){printf("\ninput cipher=");scanf("%d",&mm);s=(Linklist)malloc(sizeof(Node));s->n=i;s->m=mm;printf("%d号的密码%d",i,s->m);if(H==NULL)//从链表的第一个节点插入{H=s;r=H;}else//链表的其余节点插入{r->next=s;r=s;//r后移}//for结束r->next=H;/*生成循环单链表*/return H;}void search(Linklist H,int m0,int z)//用循环链表实现报数问题{int count=1;//count为累计报数人数计数器int num=0;//num为标记出列人数计数器Linklist pre,p;p=H;printf("出列的顺序为:");while(num<z){do{count++;pre=p;p=p->next;}while(count<m0);{pre->next=p->next;printf("%d ",p->n);m0=p->m;free(p);p=pre->next;count=1;num++;}//while结束}void clean(){int system(const char *string);int inquiry;printf("请问需要清除上一次操作记录吗(1.清屏/2.不清屏)...?\n"); scanf("%d",&inquiry);if(inquiry ==1)system("cls");}void text(){int m0,z,i, choose,k=1; //k用来阻止第一次进入程序清屏操作Linklist H;bool chooseFlag=false;while(1){if(k!=1)clean();k++;while(!chooseFlag){printf(" ……………………欢迎进入约瑟夫环问题系统…………………… \n"); printf( "* 1.输入约瑟夫环数据 * \n"); printf(" * 2.什么是约瑟夫环 * \n"); printf(" * 3.退出系统 * \n"); printf("........................................................ \n"); printf("请输入相应的数字进行选择: ");scanf("%d",&choose);for(i=1;i<=4;i++){if(choose==i) { chooseFlag=true; break;}else chooseFlag=false;}if(!chooseFlag) printf("Error Input!\n");} //end while(!chooseFlag)if(choose==1) //if 开始{printf("Input how many people in it:");//z为总人数scanf("%d",&z);if(z<=30){H=create(z);//函数调用printf("\nInput the start code m0=");scanf("%d",&m0);search(H,m0,z);printf("\n\n\n");}else{printf("超过最大输入人数\n");break;}}else if(choose==2){printf("\n约瑟夫环问题:设有n个人,其编号分别为1,2,3,…,n,安装编号顺序顺时针围坐一圈。

约瑟夫环问题源代码(C语言)

约瑟夫环问题源代码(C语言)

约瑟夫环问题如下:已知n个人(n>=1)围桌一园桌周围,从1开始顺序编号。

从序号为1的人开始报数,顺时针数到m的那个人出列。

他的下一个人又从1开始报数,数到m的那个人又出列。

依此规则重复下去,直到所有人全部出列。

求解最后一个出列的人的编号。

本次实验是以顺序表求解约瑟夫环问题,程序流程图及程序运行结果如下:输入人数、所报数、第一个报数人编号存储并建立一个约瑟夫环通过循环结构依次查找每次出列的人的编号并输出输出最后一个出列的人的编号程序代码如下:#include<iostream>#include<process.h>#include<stdlib.h>using namespace std;struct Node //循环节点的定义{int number; //编号Node *next;};Node *CreateList(Node *L,int &n,int &m); //建立约瑟夫环函数void Joseph(Node *L,int n,int m); //输出每次出列号数函数Node *DeleteList(Node **L,int i,Node *q); //寻找每次出列人的号数int LengthList(Node *L); //计算环上所有人数函数void main() //主函数{system("color 75"); //设置颜色以美观Node *L;L=NULL; //初始化尾指针int n, m;cout<<"请输入人数N:";cin>>n; //环的长度if(n<1){cout<<"请输入正整数!";} //人数异常处理else{cout<<"请输入所报数M:";cin>>m;if(m<1){cout<<"请输入正整数!";} //号数异常处理else{L=CreateList(L,n,m); //重新给尾指针赋值Joseph(L,n,m);}}system("pause");}Node *CreateList(Node *L,int &n,int &m) //建立一个约瑟夫环(尾插法){Node *q;for(int i=1;i<=n;i++){Node *p;p=new Node;p->number=i;p->next=NULL;if(i==1) L=q=p; //工作指针的初始化 else{q->next=p;q=q->next;}}q->next=L;if(L!=NULL){return(L);} //返回尾指针else cout<<"尾指针异常!"<<endl; //尾指针异常处理}void Joseph(Node *L,int n,int m) //输出每次出列的人{int k;cout<<"请输入第一个报数人:";cin>>k;if(k<1||k>n){cout<<"请输入1-"<<n<<"之间的数"<<endl;}else{cout<<"\n出列顺序:\n";for(int i=1;i<n;i++){Node *q = new Node;if(i==1) q=DeleteList(&L,k+m-1,q); //第一个出列人的号数else q=DeleteList(&L,m,q);cout<<"号数:"<<q->number<<endl;delete q; //释放出列人的存储空间}cout<<"最后一个出列号数是:"<<L->number<<endl; //输出最后出列人的号数}}Node *DeleteList(Node **L,int i,Node *q) //寻找每次出列的人{if(i==1) i+=LengthList(*L); //顺序依次出列情况的处理方式Node *p;p=*L;int j=0;while(j<i-2) {p=p->next;j++;}q = p->next;p->next=p->next->next;*L = p->next;return(q);}int LengthList(Node *L) //计算环上的人数{if(L){cout<<"尾指针错误!"<<endl;} //异常处理else{int i=1;Node *p=L->next;while(p!=L){i++;p=p->next;}return(i);}}实验体会:通过对本问题的分析,我进一步熟悉了对各种逻辑表达式的判断和指针的使用。

约瑟夫环 源代码

约瑟夫环  源代码

#include"stdio.h"#include"stdlib.h"#include"malloc.h"#include"conio.h"#define ERROR 1#define OK 0typedef int ElemType;typedef int Status;typedef struct LNode{ElemType code;ElemType number;struct LNode *next;}LNode,*LinkList;Status CreateLink_L(LinkList &L,int n){struct LNode *p,*q;int i;if(n<=0)return ERROR;printf("请输入个人的密码:");L = (LinkList)malloc(sizeof(LNode));L -> next = NULL;L -> number=1;scanf("%d",&L->code);p=L;q=L;for(i = 2;i <= n;++i){L = (LinkList)malloc(sizeof (LNode));L -> next = NULL;L -> number = i;scanf("%d",&L->code);q-> next=L;q = L;}L->next=p;//首尾链接,L指向最后一个人return OK;Status ListDelete_L(LinkList &L,int n,int k,ElemType &code,ElemType &number) {int i;LinkList p=NULL;if(L->next==L) //{p=L;L=NULL;}else{k=(k-1+n)%n;//该移动的次数for(i=1;i<=k;i++) L=L->next;//点到出列的前一个人p=L->next;//该出列的人L->next=p->next;}code=p->code;number=p->number;free(p);return OK;}Status Josephus_L(LinkList &L,int n){ElemType code=0;ElemType number=0;int m;if(L==NULL)return ERROR;printf("请输入m的初值:");scanf("%d",&m);printf("先后出列的人是:");while(L!=NULL){ListDelete_L(L,n--,m,code,number);m=code;printf("%d ",number);}printf("\n");return OK;}int main()LinkList L=NULL;int n;int m;printf("请输入人数:");while(!scanf("%d",&n)||n<=0){printf("请输入一个正整数:");fflush(stdin);}if(!CreateLink_L(L,n)) // 判断链表是否创建成功Josephus_L(L,n);elseprintf("创建链表失败");printf("按任意键结束程序");getch();return 0;}。

C语言的循环链表和约瑟夫环

C语言的循环链表和约瑟夫环

C语言的循环链表和约瑟夫环C语言的循环链表和约瑟夫环约瑟夫问题)是一个数学的应用问题,对于学习C语言四非常挺有帮助的,下面是店铺为大家搜集整理出来的有关于C语言的循环链表和约瑟夫环,一起了解下吧!循环链表的实现单链表只有向后结点,当单链表的尾链表不指向NULL,而是指向头结点时候,形成了一个环,成为单循环链表,简称循环链表。

当它是空表,向后结点就只想了自己,这也是它与单链表的主要差异,判断node->next是否等于head。

代码实现分为四部分:1. 初始化2. 插入3. 删除4. 定位寻找代码实现:1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1void ListInit(Node *pNode){int item;Node *temp,*target;cout<<"输入0完成初始化"<<endl; cin="">>item;if(!item)return ;if(!(pNode)){ //当空表的时候,head==NULLpNode = new Node ;if(!(pNode))exit(0);//未成功申请pNode->data = item;pNode->next = pNode;}else{//for(target = pNode;target->next!=pNode;target = target->next);4 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3temp = new Node;if(!(temp))exit(0);temp->data = item;temp->next = pNode;target->next = temp;}}}void ListInsert(Node *pNode,int i){ //参数是首节点和插入位置Node *temp;Node *target;int item;cout<<"输入您要插入的值:"<<endl; cin="">>item;if(i==1){temp = new Node;if(!temp)exit(0);temp->data = item;for(target=pNode;target->next != pNode;target = target->next);temp->next = pNode;target->next = temp;pNode = temp;}else{target = pNode;for (int j=1;j<i-1;++j) target="target-">next;temp = new Node;if(!temp)exit(0);temp->data = item;temp->next = target->next;target->next = temp;}}void ListDelete(Node *pNode,int i){Node *target,*temp;if(i==1){for(target=pNode;target->next!=pNode;target=target ->next);temp = pNode;//保存一下要删除的首节点 ,一会便于释放6 37 38 39 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5pNode = pNode->next;target->next = pNode;temp;}else{target = pNode;for(int j=1;j<i-1;++j) target="target-">next;temp = target->next;//要释放的nodetarget->next = target->next->next;temp;}}int ListSearch(Node *pNode,int elem){ //查询并返回结点所在的位置Node *target;int i=1;for(target = pNode;target->data!=elem && target->next!= pNode;++i)target = target->next;if(target->next == pNode && target->data!=elem)return 0;else return i;}</i-1;++j)></i-1;++j)></endl;></endl;>5 96 0 6 1 6 2 6 3 6 4 6 5 6 6 67 68 69 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8约瑟夫问题约瑟夫环(约瑟夫问题)是一个数学的'应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。

约 瑟 夫 环 问 题 的 三 种 解 法

约 瑟 夫 环 问 题 的 三 种 解 法

约瑟夫环问题的简单解法(数学公式法)关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。

我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。

因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。

求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):k k+1 k+2 … n-2, n-1, 0, 1, 2, … k-2并且从k开始报0。

现在我们把他们的编号做一下转换:k-2 – n-2k-1 – n-1解x’ —- 解为x注意x’就是最终的解变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x’=(x+k)%n如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。

(n-2)个人的解呢?当然是先求(n-3)的情况—- 这显然就是一个倒推问题!下面举例说明:假设现在是6个人(编号从0到5)报数,报到(2-1)的退出,即 m=2。

那么第一次编号为1的人退出圈子,从他之后的人开始算起,序列变为2,3,4,5,0,即问题变成了这5个人报数的问题,将序号做一下转换:现在假设x为0,1,2,3,4的解,x’设为那么原问题的解(这里注意,2,3,4,5,0的解就是0,1,2,3,4,5的解,因为1出去了,结果还是一个),根据观察发现,x与x’关系为x’=(x+m)%n,因此只要求出x,就可以求x’。

约瑟夫环问题的三种解法

约瑟夫环问题的三种解法

约瑟夫环问题的三种解法约瑟夫问题是个著名的问题:N个⼈围成⼀圈,第⼀个⼈从1开始报数,报到k的⼈将被杀掉,接着下⼀个⼈⼜从1开始报,直到最后剩下⼀个,求最后留下的⼈的下标。

题⽬集合解法1:暴⼒可以直接暴⼒求解,时间复杂度为O(nk)解法2:递推设f(n,k)为当n个⼈围成⼀圈时,最后留下的⼈的下标。

对于f(n-1,k)来说,其结果相当于f(n,k)的结果向前移动k\%(n-1)位。

因为对于f(n,k)来说,去掉第⼀轮报的数(k\%n)后,现在就只剩下n-1个数,并且是以(k\%(n-1)+1)作为第⼀个数,即所有数向前移动k\%(n-1)位。

现在的结果就为f(n-1,k)对于f(5,3)来说,其结果为4。

当其去掉第⼀轮报的数后,其向前移动了(3\%4)位,以4为起始,f(4,3)结果为1,对应着f(5,3)的结果4向前移动了3位所以反过来看即为,即为f(n-1,k)的结果向后移动k\%(n-1)位即f(n+1,k)=(f(n,k)+k\%n)\%n (x下标从0开始,因为取模结果为[0,n-1])时间复杂度为O(n)ll josephus2(ll n,ll k){ll pos=0;for(int len=1;len<=n;len++){pos = (pos+k)%len;}return pos+1;}递推代码解法3:如果当前这⼀位⼈没被杀掉,则他可以放在幸存者的末尾,直到幸存者数量为1所以对于下标为i的⼈,如果在他前⾯已经被杀掉了q个⼈,那么他的新的下标为n+q(k-1)+x,(1\leq x <k)如下图所⽰,最后被淘汰的编号⼀定是n*k,所以幸存者最后的编号是n*k我们现在需要从幸存者最后的编号中恢复出最初编号假设幸存者这⼀次的编号为p os_{i},在他后⾯包括他还有x位幸存者,则[pos_{i-1},pos_{i})间⼀定有x个不能被k整除的数这样才能使在他后⾯包括他还有x位幸存者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

约瑟夫环
约瑟夫环问题是指n个人围成一个圆圈,然后按照某种方式进行报数,比如我所写的是按照1,2,3的顺序报数,所有报3的人退出圈子,剩下的人继续按照1,2,3的顺序报数,直到只剩下一个人,求这个人在最初的圈子中是第几号。

源代码:
#include<stdio.h>
#include<malloc.h>
#include<string.h>
#define LEN sizeof(ysf)
typedef struct _ysf
{
int num;
struct _ysf *next;
}ysf;//定义结构体
ysf *addTile(ysf *head,int j)
{
ysf *p = (ysf *)malloc(LEN);
ysf *pt;
int i;
pt = head;
for(i = 1;i<=j;i++)
{
if(head == NULL)
{
p->num = i;
head = p;
pt = p;
head->next = NULL;
}
else
{
p->num = i;
pt->next = p;
pt = p;
p->next =NULL;
}
p = (ysf *)malloc(LEN);
}
pt->next = head;
free(p);
p = NULL;
return head;
}//使用尾插生成一个长度为n的链表,链表节点中的数据域依次为1-n;ysf *dele(ysf *head)
{
ysf *pt = NULL;
int count = 1;
while (head->next != head)
{
count++;//标识
pt = head;
head = head->next;
if(count == 3)//寻找到报数为3的节点
{
head = head->next;
free(pt->next);
pt->next = head;
count = 1;
}
}
head->next = NULL;
return head;
}//寻找到会报数为3的节点,将其删除
void showList(ysf *head)
{
ysf *p = head;
while (p != NULL)
{
printf("最终剩下的是:");
printf("%d\n",p->num);
p = p->next;
}
}//展示最终剩下的那个节点
int main()
{
ysf *head = NULL;
int i;
printf("请输入一共几个数字:");
scanf("%d",&i);
head = addTile(head,i);
head = dele(head);
showList(head);
return 0;
}//主函数。

相关文档
最新文档