第十五章 傅里叶级数

合集下载

(整理)第十五章 傅里叶级数

(整理)第十五章 傅里叶级数

第十五章 傅立叶级数§1 傅立叶级数1.在指定区间内把下列函数展开成傅立叶级数: (1)f(x)=x (i),x p p -<<(ii) 02;x p << (2) f(x)=x 2 (i),x p p -<<(ii) 02;x p << (3) ax 0,x p -<?f(x)= (a,b 为不等于0的常数,且a ≠b) bx 0x p <<解:(1)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。

011()0,a f x dx xdx p p p p p p--===蝌1n ³时,有11cos sin sin 0n xa x nxdx nxnxdx n n p p ppp pp pp---==-=蝌2,1sin 2,n nb x nxdx n p pp -ìïï-ïï==íïïïïïîò所以在(,)p p -上11sin ()2(1)n n nx f x n ¥+==-å(ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。

20012,a xdx pp p ==ò1n ³时,有201cos 0,n a x nxdx pp ==ò2012sin ,n b x nxdx np p ==-ò所以在(0,2)p 上1sin ()2n nxf x n p ¥==-å(2)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。

22012,3a x dx p p p p -==ò1n ³时,有22241cos 4n n a x nxdx np pp -ìïïïï==íïï-ïïïîò 21sin 0n b x nxdx p pp -==ò所以在(,)p p -上221cos ()4(1)3n n nx f x n p ¥==+-å (ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。

十五章傅里叶级数

十五章傅里叶级数

2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的

数学分析15傅里叶级数总练习题

数学分析15傅里叶级数总练习题

第十五章 傅里叶级数总练习题1、求三角多项式T n (x)=2A 0+∑=n1k k k sinkx )B +coskx (A 的傅里叶级数展开式.解:T n (x)以2π为周期,且在(-∞,+∞)上光滑,∴能展开为傅里叶级数.又a 0=⎰ππ-02A π1dx+∑⎰⎰=n 1k ππ-k ππ-k dx )sinkx B +dx coskx A (π1=A 0; 当m ≥0时,a m =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n1k k k 0sinkx)B +coskx (A 2A π1cosmxdx=⎩⎨⎧>≤n m 0,n m ,A m ;b m =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n1k k k 0sinkx)B +coskx (A 2A π1sinmxdx=⎩⎨⎧>≤nm ,0n m ,B m .∴在(-∞,+∞)上,有T n (x)=2a 0+∑∞=1m m m sinm x )b +cosmx (a =2A 0+∑=n1k k k sinkx )B +coskx (A ,即T n (x)的傅里叶级数展开式是其本身.2、设f 为[-π,π]上的可积函数,a 0, a k , b k (k=1,2,…,n)为f 的傅里叶系数. 试证明:当A 0=a 0, A k =a k , B k =b k (k=1,2,…,n)时,积分⎰-ππ-2n ](x )T )x (f [dx取得最小值,且最小值为⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 其中 T n (x)=2A 0+∑=n1k k k sinkx )B +coskx (A ,A 0, A k , B k 为其傅里叶系数.证:⎰-ππ-2n ](x )T )x (f [dx=⎰∑⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=ππ-2n1k k k 0sinkx)B +coskx (A 2A )x (f dx=-2⎰∑∑⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∞=ππ-n1k k k 01k k k 0sinkx)B +coskx (A 2A sinkx)b +coskx (a 2a dx+⎰∑⎥⎦⎤⎢⎣⎡+=ππ-2n 1k k k 0sinkx)B +coskx (A 2A dx+⎰∑⎥⎦⎤⎢⎣⎡+∞=ππ-21k k k 0sinkx)b +coskx (a 2a dx =-2π⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k k k k k 00b B a A a 2A +π⎪⎪⎭⎫⎝⎛++∑∑==n 1k n 1k 2k 2k 20B A 2A +2π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a -π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a +π⎪⎭⎫ ⎝⎛+∑∑∞+=∞+=1n k 1n k 2k 2k b a =π⎥⎦⎤⎢⎣⎡++∑∑==n1k 2k k n 1k 2k k 200)b -(B )a -(A )a -(A 21+π∑∞+=+1n k 2k 2k )b (a .∴当A 0=a 0, A k =a k , B k =b k (k=1,2,…,n)时,⎰-ππ-2n ](x )T )x (f [dx 取得最小值.方法一:根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n 2n )b +(a ,即 ⎰ππ-2(x )f dx=2πa 20+π∑∞=1n 2n 2n )b +(a ,∴这个最小值为 π∑∞+=+1n k 2k2k)b (a =π∑∞=+n k 2k2k)b (a -π∑=n1k 2k2k)b +(a =⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 方法二:又⎰-ππ-2n ](x )T )x (f [dx=⎰ππ-2)x (f dx-2⎰ππ-n (x )T )x (f dx+⎰ππ-2n (x )T dx.∵2⎰ππ-n (x )T )x (f dx=π00A a +2π∑=+n 1k k k k k )B b A a (=π2a +2π∑=n1k 2k 2k )b +(a ,由贝塞尔不等式有⎰ππ-2n(x )T dx ≥2πA 20+∑=n 1k 2n 2n )B +(A π=2πa 20+π∑=n 1k 2k 2k )b +(a , ∴⎰-ππ-2n ](x )T )x (f [dx ≥⎰ππ-2)x (f dx-π2a -2π∑=n1k 2k2k )b +(a +2πa 20+π∑=n 1k 2k 2k )b +(a=⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ],即 ⎰-ππ-2n ](x )T )x (f [dx 有最小值⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 方法三:又⎰-ππ-2n ](x )T )x (f [dx=⎰∑⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=ππ-2n1k k k 0sinkx)b +coskx (a 2a )x (f dx=⎰ππ-2)x (f dx-2⎰∑∑⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∞=ππ-n1k k k 01k k k 0sinkx)b +coskx (a 2a sinkx)b +coskx (a 2a dx+⎰∑⎥⎦⎤⎢⎣⎡+=ππ-2n1k k k 0sinkx)b +coskx (a 2a dx=⎰ππ-2)x (f dx-2π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a +π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n1k 2k 2k 20b a 2a =⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ].3、设f 是以2π为周期,且具有二阶连续可微的函数. b n =nx sin )x (f π1ππ-⎰dx ,b n ”=nx sin )x (f π1ππ-⎰''dx. 证明:若级数∑''nb 绝对收敛,则∑=n1k k |b |≤)|b |2(21n1k k∑=''+. 证:利用∑=n1k 2k 1≤∑∞=1k 2k1=6π2<2,及分部积分法可得:b n ”=nx sin )x (f π1ππ-⎰''dx=-cosnx )x (f πn ππ-⎰'dx=-sinnx )x (f πn ππ-2⎰dx=-n 2b n ;∴)|b |2(21n 1k k ∑=''+≥)|b |k 1(21n1k k n 1k 2∑∑==''+=])|b |(k k 1[212k 2n 1k 2+∑=≥|b |k k 1221k n 1k ⋅⋅∑==∑=n 1k k |b |.注:可记a ’n =cosnx )x (f π1ππ-⎰'dx; 则a ’n =-nb n ,b ”n =na ’n ,∴b ”n =-n 2b n .4、设周期为2π的可积函数f(x)与g(x)分别满足以下关系式: (1)f(-x)=g(x);(2)f(-x)=-g(x). 试问:f 的傅里叶系数a n , b n 和g 的傅里叶系数αn , βn 有什么关系? 解:令x=-t ,则 a n =cosnx )x (f π1ππ-⎰dx=-cos(-nt))t (f π1ππ-⎰-d(-t)=cosnt )t (f π1ππ-⎰-dt, n=0,1,2,…; b n =sinnx )x (f π1ππ-⎰dx=-sin(-nt))x (f π1ππ-⎰-d(-t)= -sinnt )t (f π1ππ-⎰-dt, n=1,2,….(1)当f(-x)=g(x)时,a n =cosnt )t (g π1ππ-⎰dt=αn , n=0,1,2,…; b n = -sinnt )t (g π1ππ-⎰dt=-βn , n=1,2,….(2)当f(-x)=-g(x)时,a n =cosnt )t (g -π1ππ-⎰dt=-αn , n=0,1,2,…; b n =sinnt )t (g π1ππ-⎰dt=βn , n=1,2,….5、设定义在[a,b]上的连续函数列{g n }满足:⎰bam n )x (g )x (g dx=⎩⎨⎧=≠m n 1mn 0,,;对于在[a,b]上的可积函数f ,定义αn =⎰ba n )x (g )x (f dx, n=1,2,….证明:∑∞=1n 2nα收敛,且有不等式∑∞=1n 2nα≤⎰ba 2)x (f dx.证:作级数∑∞=1n n n )x (g α,令S m (x)=∑=m1n n n )x (g α,则⎰-ba2m )]x (S )x ([f dx=⎰b a2)x (f dx-2⎰b am )x (S )x (f dx+⎰ba2m )x (S dx ;又2⎰ba m )x (S )x (f dx=2⎰∑=ba m 1n n n )x (g α)x (f dx=2∑⎰=m1n ba n n )x (g )x (f αdx=2∑=m1n 2n α;由{g n }的定义有:⎰b a 2m)x (S dx=⎰∑⎥⎦⎤⎢⎣⎡=ba2m 1n n n )x (g αdx=∑=m1n 2n α;∴0≤⎰-b a 2m )]x (S )x ([f dx=⎰ba 2)x (f dx-∑=m 1n 2nα, 即∑=m1n 2n α≤⎰ba2)x (f dx. 又m 为任意自然数,且⎰ba 2)x (f dx 为有限值,∴∑∞=1n 2nα因部分和数列有界而收敛,且有∑∞=1n 2nα≤⎰ba 2)x (f dx.。

数学分析15.1傅里叶级数

数学分析15.1傅里叶级数

第十5章 傅里叶级数1傅里叶级数一、三角级数·正交函数系概念1:由正弦函数y=Asin(ωx+φ)表示的周期运动称为简谐振动,其中A 为振幅,φ为初相角,ω为角频率,其周期T=ω2π.常用几个简谐振动y k =A k sin(k ωx+φk ), k=1,2,…,n 的叠加来表示较复杂的周期运动,即:y=∑=n 1k k y =∑=n1k k k )φ+ x sin(k ωA ,其周期为T=ω2π.若由无穷多个简谐振动叠加得函数项级数A 0+∑∞=1n n n )φ+ x sin(n ωA 收敛,当ω=1时,sin(nx+φn )=sin φn cosnx+cos φn sinnx ,所以 A 0+∑∞=1n n n )φ+sin(nx A = A 0+∑∞=1n n n n n sinnx )cos φA +cosnx sin φ(A ,记A 0=2a 0,A n sin φn =a n ,A n cos φn =b n ,n=1,2,…,则该级数可以表示为: 2a 0+∑∞=1n n n sinnx )b +cosnx (a . 它是由三角函数列(或称为三角函数系) 1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…构成一般形式的三角级数.定理15.1:若级数2a 0+∑∞=+1n n n |)b ||a (|收敛,则三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上绝对收敛且一致收敛.证:对任何实数x ,∵|a n cosnx+b n sinnx|≤|a n |+|b n |, 由魏尔斯特拉斯M 判别法得证.概念2:若两个函数φ与ψ在[a,b]上可积,且⎰ba φ(x )ψ(x )dx=0,则 称函数φ与ψ在[a,b]上是正交的, 或称它们在[a,b]上具有正交性,若有一系列函数两两具有正交性,则称其为正交函数系.注:三角函数列:1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…有以下性质: 1、所有函数具有共同的周期2π;2、任何两个不相同的函数在[-π, π]上具有正交性,即为在 [-π, π]上的正交函数系. 即有:⎰ππ-cosnx dx=⎰ππ-sinnx dx=0;⎰ππ-cosmx cosnx dx=0 (m ≠n);⎰ππ-sinmx sinnx dx=0 (m ≠n);⎰ππ-cosmx sinnx dx=0 (m ≠n).3、任何一个函数的平方在[-π, π]上的积分都不等于零,即⎰ππ-2nx cos dx=⎰ππ-2nx sin dx=π;⎰ππ-21dx=2π.二、以2π为周期的函数的傅里叶级数定理15.2:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则:a n =⎰ππ-f(x)cosnx π1dx, b n =⎰ππ-f(x)sinnx π1dx, n=1,2,…. 证:由定理条件可知,f(x)在[-π, π]上连续且可积,∴⎰ππ-f(x )dx=2a⎰ππ-dx +∑⎰⎰∞=1n ππ-n ππ-n )sinnx dx b +dx cosnx (a =2a 0·2π=a 0π.即a 0=⎰ππ-f(x)π1dx. 对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以coskx(k 为正整数),可得:f(x)coskx=2a 0coskx +∑∞=1n n n )sinnx coskx b +cosnx coskx (a ,则新级数收敛,有coskx f(x )ππ-⎰dx=2a 0⎰ππ-coskx dx +∑⎰⎰∞=1n ππ-n ππ-n )dx sinnx coskx b +coskx dx cosnx a (.由三解函数的正交性,等式右边除了以=a k 为系数的那一项积分kx cos a 2ππ-k ⎰dx= a k π外,其余各项积分都为0,∴coskx f(x )ππ-⎰dx= a k π,即a k =⎰ππ-f(x)coskx π1dx (k=1,2,…). 同理,对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以sinkx(k 为正整数),可得:b k =⎰ππ-f(x)sinkx π1dx (k=1,2,…).概念3:若f 是以2π为周期且在[-π, π]上可积的函数,则按定理15.2中所求a n , b n 称为函数f(关于三角函数系)的傅里叶系数,以f 的傅里叶系数为系数的三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 称为f(关于三角函数系)的傅里叶级数,记作f(x)~2a 0+∑∞=1n n n sinnx )b +cosnx (a .注:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则,f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .三、收敛定理概念4:若f 的导函数在[a,b]上连续,则称f 在[a,b]上光滑. 若定义在[a,b]上除了至多有限个第一类间断点的函数f 的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f ’的左右极限存在,则称f 在[a,b]上按段光滑.注:若函数f 在[a,b]上按段光滑,则有: 1、f 在[a,b]上可积;2、在[a,b]上每一点都存在f(x ±0),且有t 0)f(x -t)f(x lim 0t +++→=f ’(x+0),t-0)f(x -t)f(x lim 0t ---→=f ’(x-0);3、补充定义f ’在[a,b]上那些至多有限个不存在点上的值后,f ’在[a,b]上可积.定理15.3:(傅里叶级数收敛定理)若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f 在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.注:当f 在点x 连续时,则有20)-f(x 0)f(x ++=f(x),即f 的傅里叶级数收敛于f(x).推论:若周期为2π的续连函数f 在[-π, π]上按段光滑,则f 的傅里叶级数在(-∞,+∞)上收敛于f.注:由f 周期为2π,可将系数公式的积分区间[-π, π]任意平移,即:a n =⎰+2πc c f(x)cosnx π1dx, b n =⎰+2πc c f(x)sinnx π1dx, n=1,2,….c 为任意实数. 在(-π, π]以外的部分,按函数在(-π, π]上的对应关系作周期延拓,如 f 通过周期延拓后的函数为:,2,1k ],1)π(2k , 1)π-(-(2k x ,) 2π-f(x ]π, (-πx ,f(x)(x)f ˆ⎩⎨⎧⋯±±=+∈∈= 函数f 的傅里叶级数就是指函数(x)fˆ的傅里叶级数.例1:设f(x) )0, (-πx ,0]π[0,x x ,⎩⎨⎧∈∈=,求f 的傅里叶级数展开式.解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰ππ-f(x)π1dx=⎰π0x π1dx=2π. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx=⎰π0xcosnx π1dx=⎰-π0π0sinnx n π1|xsinnx n π1dx=π2|cosnx πn 1 =πn 12(cosn π-1)=πn 1(-1)2n -;b n =⎰ππ-f(x)sinnx π1dx=⎰π0xsinnx π1dx=-⎰+π0π0cosnx n π1|xcosnx n π1dx=n (-1)1n +.∴在(-π, π)上,f(x)=4π+∑∞=⎥⎦⎤⎢⎣⎡+-1n n2n sinnx n (-1)cosnx πn 1-)1(.当x=±π时,该傅里叶级数收敛于20)πf(0)πf(+±+-±=20π+=2π.∴f 在[-π, π]上的傅里叶级数图象如下图:例2:把函数f(x)= π2x πx πx 0πx 0 x 22⎪⎩⎪⎨⎧≤<-=<<,,,展开成傅里叶级数. 解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰2π0f(x)π1dx=⎰π02x π1dx-⎰2ππ2x π1dx =-2π2. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx =⎰π02cosnx x π1dx-⎰2ππ2cosnx x π1dx ; 又⎰π02cosnx x π1dx=⎰-π0π02xsinnx n π2|sinnx x n π1dx=21n n 2(-1)+-;⎰2ππ2cosnx x π1dx=⎰-2ππ2ππ2xsinnx n π2|sinnx x n π1=21n 2n 2(-1)n 4++; ∴a n =21n 221n n 2(-1)n 4n 2(-1)++---=2n4[(-1)n -1]. b n =⎰2π0f(x)sinnx π1dx=⎰π02sinnx x π1dx-⎰2ππ2sinnx x π1dx ;又⎰π02sinnx x π1dx=-⎰-π0π02xcosnx n π2|cosnx x n π1dx=πn ](-1)-2[1n π)1(3n 1n --+;⎰2ππ2sinnx x π1dx=-⎰-2ππ2ππ2xcosnx n π2|cosnx x n π1dx=-πn ](-1)-2[1n π)1(n 4π3n 1n +--+; ∴b n =πn ](-1)-2[1n π)1(3n 1n --++πn ](-1)-2[1n π)1(n 4π3n 1n --++ =πn ](-1)-4[1n 2π)1(n 4π3n n ---=πn ](-1)-4[1n (-1)]-[1 2πn 2π3n n -+ =⎪⎭⎫ ⎝⎛-+πn 4n 2π](-1)-[1n 2π3n ;∴当x ∈(0, π)∪(π, 2π]时, f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4 .当x=π时,该傅里叶级数收敛于20)f(π0)f(π++-=2)π(π22-+=0;当x=0或2π时,该傅里叶级数收敛于20)f(00)f(0++-=204π-2+=-2π2.注:由当x=2π时,有f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4=-π2+∑∞=1n n 21]-[(-1)n4=-π2-8∑∞=+0n 21)(2n 1=-2π2. 可求得∑∞=+0n 21)(2n 1=8π2.例3:在电子技术中经常用到矩形波,用傅里叶级数展开后,就可以将巨形波看成一系列不同频率的简庇振动的叠加,在电工学中称为谐波分析。

数学分析傅立叶级数习题讲解

数学分析傅立叶级数习题讲解

第十五章 傅里叶级数一.填空题1. 设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,2,0,0,0,2)(,则)(x f 的傅里叶系数=n a .2.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数()=++∑∞=1sin cos 2n n n nx b nx a a . 3. 设,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在π=x 处收敛于 .4. 设⎪⎩⎪⎨⎧≤<=<<--=ππx x x x x x f 0,,0,0,0,)(22,则此函数的傅里叶级数在0=x 处收敛于 .5. 设⎩⎨⎧<≤<≤-50,3,05,0)(x x x f ,则此函数的傅里叶级数在0=x 处收敛于 .6. )(x f 是以π2为周期的连续函数,且在],[ππ-上按段光滑,则()=++∑∞=1sin cos 2n n n nx b nx a a . 二.选择题1.下列说法正确的是( ).A 若)(x f 是以π2为周期的函数,且在],[ππ-上可积,则)(x f 的傅里叶系数中的⎰-=ππnxdx x f b n sin )(, ,3,2,1=n.B 若)(x f 是以l 2为周期的函数,且在],[l l -上可积,则)(x f 的傅里叶系数中的⎰-=ll n dx lxn x f a πcos)(, ,3,2,1=n .C 若)(x f 是以π2为周期的偶函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成余弦级数∑∞=1cos n n nx a ..D 若)(x f 是以π2为周期的奇函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成正弦级数∑∞=1sin n n nx b .2.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,4,0,0,0,4)(,则下列说法错误的是( ).A )(x f 在),(ππ-上可以展开成傅里叶级数..B )(x f 的傅里叶展式在π=x 处收敛于4π. .C )(x f 的傅里叶展式在0=x 处收敛于0. .D )(x f 的傅里叶系数0=n a .3.设函数)(x f 满足)()(x f x f -=+π,则该函数的傅里叶级数具有性质( ).A 0=n a .B 0=n b .C 022==n n b a .D 01212==--n n b a4.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎩⎨⎧<≤<<--=ππx x x f 0,4,0,4)(,则下列说法正确的是( ).A )(x f 的傅里叶展式在0=x 处收敛于4..B )(x f 的傅里叶展式在π-=x 处收敛于-4. .C )(x f 的傅里叶展式在π=x 处收敛于4. .D )(x f 的傅里叶展式在π±=x 处均收敛于0.5.将⎩⎨⎧<<-≤<-=42,3,20,1)(x x x x x f 在)4,0(上展开成余弦级数,则下面关说法错误的是( ).A )(x f 的傅里叶展式在2=x 处收敛于-1..B )(x f 的傅里叶展式在0=x 处收敛于1. .C )(x f 的傅里叶展式在4=x 处收敛于1. .D )(x f 的傅里叶展式在3=x 处收敛于1.6. 若将函数x x f =)(在)2,0(内展成正弦级数,则下列说法正确的是( ).A 40=a.B )(x f 的正弦级数展式在2=x 处收敛于2. .C 当)2,0(∈x 时,展成的正弦级数收敛于)(x f 本身. .D )(x f 在)2,0(内不能展成余弦级数 三.判断题1. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],[ππ-上的正交函数系. ( )2.若)(x f 是以π2为周期的函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数收敛于)(x f 本身. ( )3.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成傅里叶级数. ( )4.函数)(x f 是在],[ππ-上的周期函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成正弦级数. ( )5.函数)(x f 的傅里叶级数在连续点处收敛于该点的函数值. ( )6.设函数,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在x π=-处收敛于0.( )7. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],0[π上的正交函数系. ( ) 8.x x f =)(在)2,0(上不能展成余弦级数. ( )9.2cos )(xx f =在],0[π上不能展成正弦级数. ( )10.若级数()∑∞=++10||||2||n n n b a a 收敛,则级数()∑∞=++10sin cos 2n n n nx b nx a a 在整个数轴上一致收敛. ( ) 四.计算题1.(1)将2)(xx f -=π在]2,0[π上展开成傅里叶级数;(2)利用展开式证明: +-+-=71513114π2.将x x f =)(在)1,1(-上展开成傅里叶级数.3.(1)将x x f =)(在]1,0[上展开成余弦级数; (2)根据展开式求()211.21n n ∞=-∑4.将x e x f =)(在],0[π上展开成正弦级数.5.求⎩⎨⎧<≤<<-=T x x T C x f 0,0,0,)((C 是常数)在),[T T -上的傅里叶展开式.五.证明题1.设)(x f 在],[ππ-上可积或绝对可积,若对],[ππ-∈∀x ,成立)()(x f x f =+π,证明:01212==--n n b a .2.设周期为π2的可积函数)(x f 在],[ππ-的傅里叶系数为n n b a ,,函数)(x g 的傅里叶系数为n n b a ~,~,且)()(x f x g -=,证明:n n n n b b a a ==~,~.3.根据2)1()(-=x x f 在)1,0(的余弦级数展开式证明631211222π=+++ .4.已知帕萨瓦尔等式为∑⎰∞=-++=122202)(2)]([1n n n b a a dx x f πππ,(n n b a ,为)(x f 的傅里叶系数),利用),(,cos )1(431222πππ-∈-+=∑∞=x nx n x n n 证明9031211444π=+++ . 5.已知),(,cos )1(431222πππ-∈-+=∑∞=x nx nx n n,利用逐项积分法证明3x 在),(ππ-的傅里叶级数为x n n n n sin )6()1(21322∑∞=--π第十六章——第十七章一、判断题1、设平面点集{}(,),D x y x y Z =∈,则(0,0)为其内点。

第十五章傅里叶级数练习题(2021

第十五章傅里叶级数练习题(2021

第十五章 傅里叶级数(2021.1)一、 填空1、若函数()f x 与()g x 在[,]a b 上正交,则,()()=⎰b a f x g x dx . 答案:02、对任意的正整数,m n ,积分,sin cos -=⎰nx mxdx ππ . 答案:03、对任意的正整数,且≠m n m n ,积分20,sin sin =⎰nx mxdx π . 答案:04、对任意的正整数,且≠m n m n ,积分20,cos cos =⎰nx mxdx π . 答案:05、 若函数)(x f 在区间[]ππ,-可积,则函数)(x f 的傅立叶系数=n b . 答案:1()sin -=⎰n b f x nxdx πππ 6、若函数)(x f 在区间[]ππ,-可积,则函数)(x f 的傅立叶系数=n a . 答案:1()cos -=⎰n a f x nxdx πππ7、 设()x f 是周期为π2的周期函数,且()() =-<≤f x x x ππ,则()x f 的傅里叶叶系数=n a _____.答案:0=n a8、 设()x f 是周期为π2的周期函数,且()()2 =-<≤f x x x ππ,则 ()x f 的傅里叶系数=n b _____.答案:0=n b9、 设()x f 是周期为π2的周期函数,且()()3 =-<≤f x x x ππ,则()x f 的傅里叶叶系数=n a _____.答案:0=n a10、设()x f 是周期为π2的周期函数,且()() =-<≤f x x x ππ,则()x f 的傅里叶级数在=x π收敛于_____.答案:0解析:()x f 的傅里叶级数在=x π收敛于(0)(0)()022-+++-==f f ππππ 11、设f x x x x (),,=-<≤---<<⎧⎨⎪⎩⎪02220ππππ,已知S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,则S 94π⎛⎝ ⎫⎭⎪=______ . 答案:S 9434ππ⎛⎝ ⎫⎭⎪= 解析:由于S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,所以S x ()是以2π为周期的奇函数,从而93S S 2S S 4444424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫πππππππ=π+==--=---= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12、设f x x x x (),,=≤<≤≤⎧⎨⎪⎩⎪0022πππ,已知S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,则()S -3π=______ .答案:π解析:由于S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,所以S x ()是以2π 为周期的偶函数,从而()()()S 3S 43S -π=π-π=π=π13、设f x x x x (),,=≤<≤≤⎧⎨⎪⎩⎪0022πππ,已知S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,则S 3⎛⎫π- ⎪⎝⎭=______ . 答案:0解析:由于S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,所以S x ()是以2π为周期的偶函数,从而S S 033⎛⎫⎛⎫ππ-== ⎪ ⎪⎝⎭⎝⎭14、设f x x x x (),,=≤<≤≤⎧⎨⎪⎩⎪0022πππ,已知S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,则8S 3⎛⎫π- ⎪⎝⎭=______ . 答案:23π- 解析:由于S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,所以S x ()是以2π为周期的奇函数,从而8822S S S 3333⎛⎫⎛⎫⎛⎫ππππ-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭15、设f x x x x x (),,=-≤<≤<⎧⎨⎪⎩⎪2022πππ,又设S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,则()S 4=______ .答案:S(4)24=π- 解析:由于S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,所以S x ()是以2π为周期的偶函数,从而S(4)S (4)S (24)24=-=π-=π- 16、设f x x x x x (),,=-≤<≤<⎧⎨⎪⎩⎪2022πππ,又设S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,则()S 6=______ . 答案:S(6)82=-π 解析:由于S x ()是f x ()的以2π为周期的余弦级数展开式的和函数,所以S x ()是以2π为周期的偶函数,从而S(6)S (6)S (26)2(26)82=-=π-=-π-=-π 17、设f x x x x x (),,=-≤<≤<⎧⎨⎪⎩⎪2022πππ,又设S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,则()S 6=______ .答案:S(6)28=π- 解析:由于S x ()是f x ()的以2π为周期的正弦级数展开式的和函数,所以S x ()是以2π为周期的奇函数,从而()S (6)S (6)S (26)[226]28=--=-π-=--π-=π-18、设()f x 是以2π为周期的连续函数,其傅里叶系数01=a ,1=n a n, 0(1,2,3,)==n b n ,则()=f x _______________ . 答案:111cos 2∞=+∑n nx n19、设()f x 是以2π为周期的连续函数,其傅里叶系数01=a ,()1-=n nb n , 0(1,2,3,)==n a n ,则()=f x _______________ . 答案:()111sin 2∞=-+∑nn nx n 20、设()f x 是以2π为周期的连续函数,其傅里叶系数01=a ,1=n a n ,()1-=n n b n, (1,2,3,)=n ,则()=f x _______________ . 答案:()111cos 1sin 2∞=⎡⎤++-⎣⎦∑n n nx nx n。

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

第15章傅里叶级数§15.1傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1)周期性每一个函数都是以2π为周期的周期函数; (2)正交性任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b 为常数2以2π为周期的傅里叶级数定义1设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论如果()f x 是以2π,]ππ-上按 段光滑,则x R ∀∈,有()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1在指定区间内把下列函数展开为傅里叶级数(1)(),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011sin sin d 0|x nx nx x n n ππππ=-=⎰,2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,222224cos cos d (1)|n x nx nx x n n n ππππππ--=-=-⎰,2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.()2f x =x0a =当1n ≥时,222220224cos cos d |x nx nx x n n n ππππ=-=⎰,2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.(3)0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有c+2 c+211()cos d ()cos d f t nt t f x nx xππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2)111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1)取2x π=,则11114357π=-+-+;(2)由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3)取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,02()cos d 2102f x nx x n k n k ππ⎧=-⎪=⎨⎪=⎩⎰.02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =. 5设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰. 02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=. 6试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是[0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7求下列函数的傅里叶级数展开式(1)(),022x f x x ππ-=<<;(),02x f x x ππ-=<< 0a 当1n ≥时,22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2)()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得0sin d sin d 22x x x x ππ-=+=.当1n ≥时,sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,24an =, 42a n n ππ=--, 故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x c ππππ-=++=+⎰.当1n ≥时,24(1)nan =-, 12(1)n bn -=-, 故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4)()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5)()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑. 解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.故结论成立.10证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 22Mn ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15.2以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n xb f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑. 其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n xb f x x f x x l l l l ππ-==⎰⎰. 从而01()2n n a f x a ∞=+∑由此可知,函数偶延拓() (0,()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1求下列周期函数的傅里叶级数展开式 (1)()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于(f ()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2)()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π);2222解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4)()sgn(cos )f x x =(周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,02sgn(cos )cos d n a x nx xππ=⎰4sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos(21)2n n xn ππ∞=-=-∑为所求.6把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l=0.5,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7求下列函数的傅里叶级数展开式 (1)()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2)()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 是偶函数,故其展开式为余弦级数.002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈. 8试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑;(2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2)先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.()f x 是偶函数,故其展开式为余弦级数.002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15.3收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2设以2π为周期的函数()f x 在[,]ππ-上可积,则1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3(收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式. (1)22118(21)n n π∞==-∑;(2)22116n n π∞==∑;(3)44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1(1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1(2)得 2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰, 故44190n π=∑. 4证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2n n n g x nx nx ααβ∞==++∑.于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ cos ,cos n n n n a nx nx a αα==, cos ,cos n n n n b nx nx b ββ==,所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,且成立贝塞尔等式,则22()d ()d f x x f x xππππ--'≥⎰⎰.证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是由贝塞尔等式得2()d f x xππ-=⎰.总练习题151试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得001(),1(cos sin ),12nn k k k A a T x A kx B kx A ===++=∑,当1k ≥时,1(cos sin ),cos 02nkk k k A k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,1(cos sin ),sin 02nkk k k B k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的 傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn k k k A T x A kx B kx ==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====, 因为[]2()()d n f x T x xππ--⎰22 ()d 2()()d ()d n n f x x f x T x x T x xππππππ---=-+⎰⎰⎰,而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰, () 22201()d 2nnk k k A T x x A B πππ-==++∑⎰,所以[]2()()d n f x T x xππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 3设f 为以2π周期,且具有二阶连续可微的函数,11()sin d , ()sin d n nb f x nx x b f x nx xππππππ--''''==⎰⎰,若级数n b ''∑绝对收敛,则11122n n n b ∞∞==⎛⎫''+ ⎪⎝⎭∑.证:因为()f x 为以2π周期,且具有二阶连续可微的函数, 所以1()sin d n b f x nx x πππ-''''=⎰2 2 ()cos ()sin d nn n f x nxf x nx x n b ππππππ--=-+=⎰. 即211,n n n b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=1122n n b ∞=⎛⎫''<+ ⎪⎝⎭∑.故结论成立.4设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1)()()x x ϕψ-=;(2)()()x x ϕψ-=-.试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,()1()cos sin 2n n n x nx nx αψαβ∞==++∑,(1)则当()()x x ϕψ-=时,0n ∀≥,n α=.1n ∀≥,n β=-.(2)当()()x x ϕψ-=-时,0n ∀≥,n α=-.1n ∀≥,n β=.5设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系0 ()()d 1 bn m a n mx x x n m ϕϕ≠⎧=⎨=⎩⎰,对于在[,]a b 上的可积函数f ,定义()()d , 1,2,b n n a a f x x x n ϕ==⎰,证明21n n a ∞=∑收敛,且有不等式 22 1[()]d b n a n a f x x ∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为(),()()()d b a f x g x f x g x x =⎰,则函数列{}()n x ϕ为标准正交系.令1()(),1,2,m m n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=, 又 2 [()()]d bm a f x S x x -⎰22 ()d 2()()d ()d n n f x x f x S x x S x x ππππππ---=-+⎰⎰⎰,而11(),()(),()(),()m m n n n n n n n f x S x f x a x a f x x ϕϕ====∑∑ 21m nn a ==∑. 211(),()m mk k k k k k k a a x x a ϕϕ====∑∑,于是 222 1()d [()()]d 0m b n m an f x x a f x S x x ππ-=-=-≥∑⎰⎰, 所以22 11,[()]d m b n a n m a f x x =∀≥≤∑⎰,即{}()m S x 有上界. 故 21n n a∞=∑收敛,且 22 1[()]d b n a n a f x x∞=≤∑⎰.。

《数学分析》第十五章 傅立叶级数

《数学分析》第十五章 傅立叶级数

1 22

1 32

1 42

,
2


4

1
2
4
,

1
2

2 , 6
2

1 3

2 , 2432 1
2 . 12
例 3 设f ( x)是以2为周期的连续函数,且
f ( x) a0
2 试证明:1



n1

f

(an cos nx 2( x)dx
第十五章 傅立叶级数
15.1 傅立叶级数 15.2 正弦级数与余弦级数 15.3 以 为周期的函数的展开式 15.4 收敛定理的证明
15.1 傅立叶级数
一、问题的提出 二、三角级数 三角函数系的正交性
三、函数展开成傅里叶级数
一、问题的提出
非正弦周期函数:矩形波
u
u(t
)

1,

1,
当 t 0 当0 t
sin nx)
问题:
f
(x)
条件?
a0 2


(an
n1
cos nx

bn
sin nx)
2.狄利克雷(Dirichlet)充分条件(收敛定理)
设 f ( x)是以2为周期的周期函数.如果它满足条件: 在一个周期内连续或只有有限个第一类间断点,并且 至多只有有限个极值点,则 f ( x) 的傅里叶级数收敛, 并且 (1) 当x 是 f ( x)的连续点时,级数收敛于 f ( x) ;
f
( x)sin nxdx]
n1


f 2( x)dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章 傅里叶级数
1 三角级数与傅里叶级数
1.证明
(1) sin x ,sin 2x , , sin nx , 是[0,]π上的正交系; (2) sin x ,sin 3x , , ()sin 21n x +, 是[0,
]2
π
上的正交系;
(3) 1,cos x ,cos 2x , ,cos nx , 是[0,]π上的正交系; (4) 1,sin x ,sin 2x , , sin nx , 不是[0,]π上的正交系; 2.求下列周期为2π的函数的傅里叶级数: (1) 三角多项式()()0
cos sin n
n i
i
i P x a ix b ix ==
+∑;
(2) ()()3
f x x x ππ=-<<; (3) ()cos
2
x
f x =; (4) ()() ax
f x e x ππ=-<<; (5) ()()sin f x x x ππ=-<<; (6) ()()cos f x x x x ππ=-<<; (7) (), 0
0, 0x x f x x ππ
-<<⎧=⎨
≤<⎩;
(8) ()()2
2
f x x x πππ=--<<; (9) ()sgncos f x x =; (10) ()() 022
x
f x x ππ-=
<<.
3.设()f x 以2π为周期,在[,]ππ-绝对可积,证明: (1) 如果函数()f x 在[,]ππ-满足()()f x f x π+=,则
21210, 1,2,m m a b m --=== ;
(2) 如果函数()f x 在[,]ππ-满足()()f x f x π+=-,则
220, 1,2,m m a b m === .
2 傅里叶级数的收敛性
1.将下列函数展成傅里叶级数,并讨论收敛性: (1) ()sin [,]f x x x x ππ=∈-;
(2) ()2, [0,]
1, [,0)
x x f x x ππ⎧∈=⎨∈-⎩;
2.由展开式
()1
1sin 2(1) n n nx
x x n
ππ∞
+==--<<∑, (1) 用逐项积分法求2
x ,3
x ,4
x 在(,)ππ-中的傅里叶展开式;
(2) 求级数
()
1
4
1
1n n n +∞
=-∑

4
11
n n

=∑的和. 3. (1) 在 (,)ππ-内,求()x
f x e =的傅里叶展开式; (2) 求级数
2
1
1
1n n ∞
=+∑的和. 4.设()f x 在[,]ππ-上逐段可微,且()()f f ππ-=. n a ,n b 为()f x 的傅里叶系数,
'n a ,'n b 是()f x 的导函数'()f x 的傅里叶系数,证明:
0'0a =,'n n a nb =,'n n b na =- ( n 1,2,=
. 5.证明:若三角级数
()01
cos sin 2n n n a a nx b nx ∞
=++∑ 中的系数n a ,n b 满足关系
{}
33max ,n n n a n b M ≤,
M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.
6.设()()01
cos sin 2n
n k k k a T x a kx b kx ==++∑,求证:
()()1sin 122sin
2
n n n t
T x T x t dt t πππ-⎛
⎫+ ⎪⎝⎭=+⎰. 7.设()f x 以2π为周期,在(0,2)π上单调递减,且有界,求证:()0 0n b n ≥>. 8.设()f x 以2π为周期,在(0,2)π上导数'()f x 单调上升有界. 求证:
()0 0n a n ≥>.
9.证明:若()f x 在0x 点满足α阶的利普希茨条件,则()f x 在0x 点连续. 给出一个表明这论断的逆命题不成立的例子.
10.设()f x 是以2π为周期的函数,在[,]ππ-绝对可积,又设()n S x 是()f x 的傅里叶级数的前n 项部分和
()()01
cos sin 2n
n k k k a S x a kx b kx ==++∑,
则 ()()()
()20
224
22
n n f x t f x t S x D t dt π
π
++-=⎰

其中()n D t 是狄利克雷核.
11.设()f x 是以2π为周期,在(),-∞∞连续,它的傅里叶级数在0x 点收敛. 求证:
()()()00 n S x f x n →→+∞.
12.设()f x 是以2π为周期、连续,其傅里叶系数全为0,则()0f x ≡. 13.设()f x 是以2π为周期,在[,]ππ-绝对可积. 又设0(,)x ππ∈-满足
()()000lim 2
t f x t f x t L +→++-= 存在. 证明()0lim n n x L σ→∞
=. 进一步,若()f x 在0x 点连续,则()()00lim n n x f x σ→∞
=,其中
()()0
11n
n k k x S x n σ==+∑.
3 任意区间上的傅里叶级数
1.将下列函数在指定区间上展开为傅里叶级数,并讨论其收敛性: (1) 在区间()0,2l 展开
, 0,
()0, 2;A x l f x l x l <<⎧=⎨
≤<⎩
(2) ()cos , ,22f x x x ππ⎛⎫
=-
⎪⎝⎭
; (3) ()(), 0,f x x l =;
(4) , 01,()1, 12,3, 2 3.x x f x x x x ≤≤⎧⎪
=<<⎨⎪-≤≤⎩
2.求下列周期函数的傅里叶级数: (1) ()cos f x x =; (2) []()f x x x =-.
3.把下列函数在指定区间上展开为余弦级数: (1) ()sin , 0f x x x π=≤≤;
(2) 1, 02,
()3, 2 4.x x f x x x -<≤⎧=⎨-<<⎩
4.把下列函数在指定区间上展开为正弦级数: (1) ()cos
, 02
x
f x x π=≤≤ (2) 2
(), 02f x x x =≤≤.
5.把函数()2
()1f x x =-在()0,1上展开成余弦级数,并推出
222116123π⎛⎫
=+++ ⎪⎝⎭
.
6.将函数()f x 分别作奇延拓和偶延拓后,求函数的傅里叶级数,其中
1, 0,21
(), ,2
20, .2x f x x x ππππ⎧
<<⎪⎪
⎪==⎨⎪⎪<≤⎪⎩
7.应当如何把给定在区间0,2π⎛

⎪⎝

的可积函数延拓到区间(),ππ-内,
使得它在(),ππ-中对应的傅里叶级数为: (1) ()()21
1cos 21n n f x a
n x ∞
-=-∑
; (2) ()()21
1
sin 21n n f x b
n x ∞
-=-∑ .
4 傅里叶级数的平均收敛性
1.若()f x ,()g x 以2π为周期,在[,]ππ-平方可积,
()01()cos sin 2n n n a f x a nx b nx ∞
=++∑ ,
()0
1
()cos sin 2
n n n g x nx nx ααβ∞
=++∑


()001
1
()()2n n n n n a f x g x dx a b π
π
ααβπ

-
==++∑⎰.
2.设()f x 在[0,]l 上平方可积,求证:
222
001
21()2l n n f x dx a a l ∞==+∑⎰, 其中
02()cos l n n x
a f x dx l l
π=
⎰.。

相关文档
最新文档