第一讲 1关于量纲分析法
量纲分析法

量纲分析法量纲分析法是科学研究和工程实践中一种常用的方法,用于简化和分析复杂的物理方程。
通过引入合适的量纲和无量纲量,可以减少物理方程的数量和复杂性,从而更容易理解和应用。
量纲是衡量物理量的属性,可以理解为物理量的尺度或单位。
常见的量纲有长度、质量、时间、温度等。
在科学领域,量纲的统一是一项基本原则,它要求所有参与物理方程运算的物理量必须具有相同的量纲。
例如,在牛顿定律中,质量的量纲是质量,加速度的量纲是长度除以时间的平方,力的量纲是质量乘以加速度。
无量纲量是指除去量纲后的物理量。
通过合适的变量代换和无量纲化操作,可以将含有多个物理量的复杂方程转化为只涉及少数几个无量纲量的简化形式。
这样做的好处是降低了方程的复杂性,使得我们可以更清晰地理解和研究方程的行为。
量纲分析法的基本思想是通过量纲的统一和无量纲化的技巧,将物理方程从具体的数值问题转化为一般的函数关系问题。
这样一来,可以用较少的实验和计算来研究和验证一类问题的特性,从而节省时间和资源。
量纲分析法在研究新领域的物理学问题、模拟和优化工程设计等方面发挥了重要作用。
量纲分析法的步骤通常包括以下几个方面:第一步是选择物理量,并通过其量纲建立物理方程。
在建立方程时,需要确保所选物理量之间的关系是正确的,并符合基本的物理定律。
第二步是确定主要影响因素,即哪些物理量对方程起主导作用。
对于复杂的问题,这一步可能会需要经验和专业知识的支持。
第三步是进行量纲分析,即将方程中的各个物理量转化为无量纲形式。
这一步需要根据物理量的量纲关系进行变量代换和无量纲化运算。
第四步是根据无量纲方程进行简化和分析。
通过缩小问题的数量级和去除复杂的单位,我们可以更容易地理解方程,并得到问题的一般解。
第五步是进行数值模拟和实验验证。
通过选择合适的数值和实验条件,我们可以验证和应用无量纲方程,并得到具体问题的解。
总的来说,量纲分析法是一种简化和分析物理方程的有效方法。
通过量纲的统一和无量纲化的技巧,我们可以将复杂的问题转化为一般的函数关系问题,从而更容易理解和应用。
量纲分析

一、瑞利法
瑞利法的基本原理是某一物理过程同几个物理量有关:
f (q1 , q2 , q3 ,qn ) 0
其中的某个物理量
qi
可表示为其他物理量的指数乘积:
a b p
qi Kq1 q 2 q n 1
(5—2)
写出量纲式:
[qi ] [q1 ]a [q2 ]b [qn1 ] p
L T
3
1
(M L T ) (L) (M L T )
b 1
1 c
(5)根据量纲和谐求量纲指数 0 ac [M]: 3 2a b c [L]: [T]: 1 2a c 得:a 1 , b 4 , c 1
[Re] [
d (L T )L ] 1 2 1 L T
Re 是由3个有量纲乘除组合得到的无量纲量, 称为雷诺(Reynolds number)数。
依据无量纲数的定义和构成,可归纳出无量纲量具有以下特 点。
1.客观性
正如前面指出,凡有量纲的物理量,都有单位。同一物 理量,因选取的度量单位不同,数值也不同。如果用有量纲 量作过程的自变量,计算出的因变量数值,将随自变量选取 单位的不同而不同。因此,要使运动方程式的计算结果不受 人主观选取单位的影响,就需要把方程中各项物理量组合成 无量纲项。从这个意义上说,真正客观的方程式应是由无量 纲项组成的方程式。
V2 W p1V1 ln V I
其中压缩后与压缩前的体积比 V2 成无量纲项,才 V1 能进行对数运算。
三、量纲和谐原理
量纲和谐原理是量纲分析的基础原理。凡正确反映客 观规律的物理方程,其各项的量纲一定是一致的,这是被 无数事实证实了的客观原理。例如粘性流体运动微分方程 式在x方向的公式:
流体力学-量纲化分析详解

解得:c2=0,b2=0,a2=1 对3: 解得:c3=1,b3=1,a3=1
第五步:归纳上述得:
,
,
故有关系式:G(1,2,3)=0
因为要求的是压强降p,故此可解出:
而函数 G1 的具体确定可通过试验进行。
流体力学里有几类主要问题:如封闭管道内的流动,带有自由表面的流动(如 河流),没有任何接触面的流动(如喷雾),以及通过物体的绕流(如飞行中的 飞机)等。而表征这些流动的无量纲参数将是非常有意义的。
1.1 量纲分析的提出
现代工程的流体力学问题,往往是十分复杂的。例如飞机与船舶的流体动力特性、 河流的水动力学特性等等。如何解决这些问题?途径有:
(a)进行原型的观察与测量,这需要耗费大量的资金及时间,以及人力与 设备。不仅如此,有时这种测量是无法做到的,例如在十二级台风中怎么到海上 去测量船舶的流体动力特性?同时,原型的实测有时是不符需求的,例如建造一 艘巨型的航空母舰,我们不能等建成之后才知道它的性能,很多产品必须在建成 之前能预见它的性能。
如果已知力 F 和物体质量 M 的量纲,那么加速度 a 的量纲必须满足上述公 式。即 F、M、a 中的二个可以自由选择,而第三个则必须根据已选定的二个物 理量量纲按照其间存在的定律推导出来。由此可见,在物理量中有些量的量纲是 基本的可以独立取定,而另外一些物理量的量纲则是根据物理定律推导出来的。 前者称为基本单位,后者称为导出单位。
在国际单位制(SI)中,七个基本物理量长度、质量、时间、电流、热力学温 度、物质的量、 发光强度的量纲符号分别是 L、M、T、I、Q、N 和 J。
力学中基本单位的量纲有两个系统:
(1)表征长度的量纲[L];时间的量纲[T];质量的量纲[M]。(2)表征力 的量纲[F];时间的量纲[T];长度的量纲[L]。为了应用方便,根据第一个基本 单位的量纲系统将力学中经常遇见的一些物理量的量纲列表如下:
第一节-量纲分析方法

第一节量纲分析方法量纲分析是物理学中常用的一种定性分析方法,也是在物理领域中建立数学模型的一个有力工具。
利用这种方法可以从某些条件出发,对某一物理现象进行推断,可将这个物理现象表示为某些具有量纲的变量的方程,从而可以用此来分析个物理量之间的关系。
1.1量纲当对一个物理概念进行定量描述时,总离不开它的一些特性,比如,时间、质量、密度、速度、力等等,这种表示不同物理特性的量,称之为具有不同的“量纲”。
概括来说,将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)(量纲又称为因次)。
它是在选定了单位制之后,由基本物理量单位表达的式子。
在国际单位制(I)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是L、M、T、I、Q、N和J。
按照国家标准(GB3101—93),物理量•的量纲记为dim•,国际物理学界沿用的习惯记为[•]。
实际中,有些物理量的量纲是基本的,成为基本量纲。
系统因选定的基本单位不同,而分成绝对系统与工程系统两大类。
工程系统的基本单位:质量、长度、时间、力。
绝对系统的基本单位:质量、长度、时间。
绝对系统以长度(length)、质量(mass)、时间(time)及温度(temperature)为基本量纲,各以符号L 、M 、T 、θ表示其量纲。
其他可由基本量纲推导出的量纲称为导出量纲。
但在工程系统中,除了长度L 、质量M 、时间T 及温度θ等基本量纲外,也将力定义为基本量纲,而以符号F 表示其量纲。
此外在探讨热量 (heat)时,热量亦被定义为基本量纲,而以H 表示。
而其他的物理量的量纲可以由这些基本量纲来表示,比如:速度v = ds/dt 量纲:[]V =1LT - 加速度a = dv/dt 量纲:2[]a LT -= 力F = ma 量纲:22[][][]F M LT MLT --==压强P = F/S 量纲: 22[]P MLTL --= 21MT L --= 实际中,也有些量是无量纲的,比如,e π等,此时记为[][]1e π==。
第一讲 1关于量纲分析法

t、m、l、g、θ
给出。 单摆运动的规律由公式 F(t, l, m, g, θ) = 0 给出。
假设物理量 t, m, l, g 之间有关系式
t = λ m α 1 l α 2 g α 3 (1)
α1, α2, α3 为待定系数,λ为无量纲量 为待定系数,
(1)的量纲表达式 的量纲表达式
α1 α 2 +α 3
l
假设: 、不考虑空气阻力; 假设:1、不考虑空气阻力; 2、忽略地球自转对单摆运动的影响; 、忽略地球自转对单摆运动的影响; 3、摆线是刚体,在摆动中无形变; 、摆线是刚体,在摆动中无形变; 4、摆轴部分没有摩擦。 、摆轴部分没有摩擦。
m mg
在这样的假设条件下,与单摆运动有关的物理量分别有: 在这样的假设条件下,与单摆运动有关的物理量分别有:
量纲齐次原则
引力常数 k 的量纲 [k] =[f][l]2[m]-2=L3M-1T-2 对无量纲量α,[α]=1(=L0M 0T 0)
量纲齐次原则
等式两端的量纲一致
量纲分析~利用量纲齐次原则寻求物理量之间的关系 量纲分析 利用量纲齐次原则寻求物理量之间的关系
单摆运动示例
例:单摆运动 求摆动周期 t 的表达式 单摆运动
第一讲 关于量纲分析法
量纲分析法是二十世纪初,一些物理学家提出的一种 量纲分析法是二十世纪初, 在物理领域建立数学模型的办法。 在物理领域建立数学模型的办法。 所谓量纲分析法,即在经验和实验的基础上,利用物 所谓量纲分析法,即在经验和实验的基础上, 理量的量纲所提供的信息, 理量的量纲所提供的信息,根据量纲齐次原则来确定 物理量之间的关系。 物理量之间的关系。 量纲,即物理量的单位, 量纲,即物理量的单位,如速度的量纲就是 m/s
量纲分析

第一节量纲分析方法1.1量纲当对一个物理概念进行定量描述时,总离不开它的一些特性,比如,时间、质量、密度、速度、力等等,这种表示不同物理特性的量,称之为具有不同的“量纲”。
概括来说,将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)(量纲又称为因次)。
它是在选定了单位制之后,由基本物理量单位表达的式子。
在国际单位制(I)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是L、M、T、I、Q、N和J 速度v = ds/dt 量纲: = 加速度a = dv/dt 量纲: 力F = ma 量纲: 压强P = F/S 量纲:实际中,也有些量是无量纲的,比如等,此时记为。
有量纲的物理量都可以进行无量纲化处理量纲有赖于基本量的选择,是外加的有关量的度量手段。
模型所描述的规律应该独立于量纲的影响。
机理模型的深入探讨应该排除量纲的影响,因此机理模型需要无量纲化。
使用无量纲量来描述客观规律。
在量纲表达式中,其基本量量纲的全部指数均为零的量,即无量纲量,也称纯数。
1.无量纲量具有数值的特性,它可以通过两个量纲相同的物理量相除得到,也可由几个量纲不同的物理量通过乘除组合得到。
2.无量纲量具有这样一些特点:①无量纲数既无量纲又无单位,因此其数值大小与所选单位无关。
即无论选择什么单位制计算,其结果总是相同的。
当然,同一问题必须用同一单位制进行计算。
②对数、指数、三角函数等超越函数的运算往往都是对无量纲量来讲的。
③一个力学方程,如果用无量纲数表示的话,它的应用就可以不受单位制的限制。
要正确反映一个物理现象所代表之客观规律,当用数学公式描述已物理量时,等号两端就必须保持量纲的一致性和单位的一致性,即其所遵循的物理方程式各项的量纲必须一致,可以用这一原理来校核物理方程和经验公式的正确性和完整性。
量纲分析就是基于量纲一致的原则来分析物理量之间关系的一种方法。
量纲分析法

量纲分析法量纲分析法是一种工程数学方法,用于处理含有多个变量的物理问题。
这种方法非常有用,因为在实际应用中,我们通常需要考虑许多不同的变量和参数,这些参数可能具有不同的单位和量纲,使得问题变得复杂和难以处理。
利用量纲分析法,可以将各个参数转换为无量纲形式,从而简化问题并提高计算精度。
1. 什么是量纲首先,我们需要明确什么是量纲。
量纲是一个物理量所具有的度量属性,通常包括基本量纲,比如长度、时间、质量、电流等等。
每个量纲都有一个标准单位,比如米、秒、千克、安培等等。
通过组合不同的基本量纲和单位,我们可以得到其他物理量的单位和量纲。
比如速度可以表示为长度/时间,加速度可以表示为长度/时间^2。
在处理物理问题时,量纲是非常重要的,因为它们决定了各个物理量之间的关系和单位的选择。
2. 如何运用量纲分析法量纲分析法是一种基于量纲的数学方法,用于研究变量之间的关系和有效参数的数量。
在使用这种方法时,我们需要将所有涉及的物理量和参数转换为无量纲形式,然后通过比较各个无量纲参量的数量级和变化趋势来分析问题。
这种方法可用于许多不同的物理问题,例如流体力学、热传递、电路分析等等。
下面我们以流体力学为例来讲解量纲分析法的应用过程。
首先,我们考虑一个典型的流体力学问题:水从一根直管中流出的速度是多少?公司设计师可以运用以下方程式解决此题: v = (P1 - P2) / ρL其中v是水的速度,P1和P2是入口和出口处的压力,ρ是水的密度,L是管道长度。
我们观察到这个公式涉及四个参数,每个参数都有自己的单位和量纲。
在使用量纲分析法时,我们需要将它们都转换为无量纲形式。
我们可以定义以下五个无量纲参量:F1 = v L / νF2 = (P1 - P2) / (0.5ρv^2)F3 = D / LF4 = ε/ D其中,ν是水的动力粘度,D是管道的直径,ε是管道壁面粗糙度。
这里表示F1 代表惯性力,F2 代表压力力,F3 代表管道长度比,F4 代表管道细度等无量纲参量。
量纲分析法

第三节 量纲分析法量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。
3.1 量纲齐次原则与Pi 定理许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。
例如在动力学中,把长度l , 质量m 和时间t 的量纲作为基本量纲,记为[][][]T t M m L l ===,,; 而速度f v ,力的量纲可表示为[][]21,--==MLT f LT v .在国际单位制中,有7个基本量:长度、质量、时间、电流、温度、光强度和物质的量,它们的量纲分别为L 、M 、T 、I 、Θ、J 、和N ;称为基本量纲。
任一个物理量q 的量纲都可以表成基本量纲的幂次之积,[]ηξεδγβαJ N I T M L q Θ=量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。
量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体的例子,再给出量纲分析的一般方法。
例3—1: 单摆运动,质量为m 的小球系在长度为l 的线的一端,线的另一端固定,小球偏离平衡位置后,在重力mg 作用下做往复摆动,忽略阻力,求摆动周期t 的表达式。
解:在这个问题中有关的物理量有g l m t ,,,设它们之间有关系式3211αααλg l m t =---------------(3.1)其中32,,ααα为待定常数,入为无量纲的比例系数,取(3.1)式的量纲表达式有[][][][]321αααg l m t = 整理得:33212αααα-+=T LM T --------------(3.2)由量纲齐次原则应有⎪⎩⎪⎨⎧=-=+=12003321αααα ---------------(3.3)解得:,21,21,0321-===ααα 代入(3.1)得 glt λ= -------(3.4)(3.4)式与单摆的周期公式是一致的下面我们给出用于量纲分析建模的 Buckingham Pi 定理,定理:设n 个物理量n x x x ,,,21 之间存在一个函数关系()0,,,21=n x x x f --------------(3.5)[][]m x x 1为基本量纲,n m ≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理量的量纲 动力学中 基本量纲 L, M, T
物 理 量 的 量 纲
长度 l 的量纲记 L=[l] 质量 m的量纲记 M=[m] 时间 t 的量纲记 T=[t] 速度 v 的量纲 [v]=LT-1 加速度 a 的量纲 [a]=LT-2 力 f 的量纲 [f]=LMT-2
导出量纲
国际单位制SI制的基本量
原理分析
设p= f(x,y,z)
x,y,z的量纲单 位缩小a,b,c倍
t m l g
1 2
3
为什么假设这种形式? 对 x,y,z的两组测量值x1,y1,z1 和x2,y2,z2, p1 = f( x1,y1,z1), p2 = f( x2, y2,z2 )
f (ax1, by1, cz1 ), p2 f (ax2 , by2 , cz2 ) p1
基本解
( y1 , y2 , y3 , y4 )T (2, 0, 1, 1)
T
t l g
2 1
F () 0
(t l / g )
Pi定理 (Buckingham)
设 f(q1, q2, , qm) = 0
是与量纲单位无关的物理定律,X1,X2, , Xn 是基本量 纲, nm, q1, q2, , qm 的量纲可表为
1 A 0 2 (g) 1 3 1 2 1 ( L) 0 1 0 0 1 ( M ) 0 0 1 0 2 (T ) (l ) ( ) (v) ( s) ( f )
[q j ] X i ,
aij i 1
n
j 1,2,, m
A {aij }nm
m=6, n=3
f (q1 , q2 ,, qm ) 0
( g , l , , v, s, f ) 0
rank A = 3
rank A = r
Ay = 0 有m-r个基本解
Ay=0 有m-r=3个基本解
ys =
(ys1, ys2, …,ysm)T
s = 1,2,…, m-r
m-r 个无量纲量
3 2 则 1 2 由 ( 1 , 2 , 3 ) 0 得 3 ( 1 , 2 ) 及
至此我们已经建立了阻力 f 与其他各物理量之间的关系式。 仍是未知的函数关系,看起来似乎没什么用,其实不然。
航船阻力模型的意义
以我们上面得出的最后模型为例: 在设计制造舰船、飞机、汽车等产品时,研究人员需要先制 作出非常逼真的仿真实物模型,然后对实物模型进行阻力、 运动特征实验,以此来验证设计是否合理。
s qj
jห้องสมุดไป่ตู้1
m
y sj
F( 1, 2,…, m-r ) = 0 与 f (q1, q2, , qm) =0 等价, F未定
Pi定理的意义
Pi定理实际上给出了一个量纲分析法建 模的方法和理论支持,即这个定理证明 了:量纲分析法是可行的,没有任何理 论上的疑点。
下面就利用Pi定理中给出的步骤和方法来解决一个 新的建模问题。
( L0 M 0T 1 ) y ( L0 M 1T 0 ) y ( L1 M 0T 0 ) y
1 2
3
(L M T ) L M T
1 0 2 y4 0 0
0
L
y
y3 y4
M T
y2
y1 2 y4
LM T
0 0
0
y3 y 4 0 y2 0 y 2y 0 4 1
f (t , m, l , g ) 0
t m l g
y1 y2 y3 y4
0 0 1 [ t ] L M T 0 1 0 [ m ] L M T 1 0 0 [l ] L M T 1 0 2 [ g ] L M T
y1~y4 为待定常数, Δ为无量纲量
二、波浪对航船的阻力
与航船阻力有关的物理量: 航船速度v, 船体尺寸l, 浸没面积 s, 航船阻力 f 海水密度, 重力加速度g。
f (q1 , q2 ,, qm ) 0
( g , l , , v, s, f ) 0
[g] = LT-2, [l] = L, [] = L-3M, [v] = LT-1,, [s] = L2, [f] = LMT-2
量纲分析法的评注
• 物理量的选取
(…) = 0中包括哪些物理量是至关重要的
• 基本量纲的选取
基本量纲个数n; 选哪些基本量纲
• 基本解的构造 有目的地构造 Ay=0 的基本解 • 方法的普适性 • 结果的局限性 不需要特定的专业知识 函数F和无量纲量未定
对量纲分析法的评价
量纲分析法能在建立物理问题的数学模型中得到一些重 要、有用的结果,但也存在局限性,应用时应注意以下几点:
f模 f实 f模 f实
s v 模 ( 1 , 2 ) s v 实 ( 1 , 2 ) s v 模 s v 实
2 模 模 2 实 实 2 模 模 2 实 实
如果我们能使模型船的 中两个数据与真实船 相同,则得到:
这就为我们根据模型船评估实体船 的阻力提供了有效途径,至于究竟 是什么已经不重要了。
1 2
3
T M L
T
23
1 0 2 3 0 2 1 3
1 0 2 1 / 2 1 / 2 3
对比
l t g
l t 2 g
对比这里计算出的公式和实际公式 参数通过测量和最小二乘法计算可以得到。
f ( x1 , y1 , z1 ) f (ax1 , by1 , cz1 ) f ( x2 , y2 , z2 ) f (ax2 , by2 , cz2 )
p1 p1 p2 p 2
p= f(x,y,z)的形式为
f ( x, y, z ) x y z
单摆运动中 t, m, l, g 的一般表达式
y1 ( 1 / 2,1 / 2,0, 1, 0, 0) T 0 , 2 , 0 , y ( 0 , 1 , 0 ) 2 y ( 1, 3, 1, 0, 0, 1)T 3
T
s qj
j 1
m
ysj
而且存在一个未定的函数关系:
( 1 , 2 , 3 ) 0
[q j ] X i ij ,
a i 1 n
j 1,2,, m
量纲矩阵记作
A {aij }nm ,
若 rankA r
即线性齐次方程组
Ay 0 有 m-r 个基本解,记作
为m-r 个相互独立的无量纲量, 且
ys = (ys1, ys2, …,ysm)T , s = 1,2,…, m-r 则
t、m、l、g、
单摆运动的规律由公式 F(t, l, m, g, ) = 0 给出。
假设物理量 t, m, l, g 之间有关系式
t m1 l 2 g 3 (1)
1, 2, 3 为待定系数,为无量纲量
(1)的量纲表达式
1 2 3
[t ] [m] [l ] [ g ]
• • • •
正确确定物理量(根据经验和概念,宁多勿缺) 恰当确定基本量纲 构造基本解(如果构造得当,可以直接得到期望的结果) 结果的效用和局限性
1、从未知定律 到用量纲分析法得到的等 价形式 不仅物理量减少了 r 个,降低了 问题复杂性,同时也得到了一些关键的无量纲量 i 。
2、当然,这种建模方法也是有局限性的,它始终是初等建模 方法,一些物理公式中常见的三角函数和指数函数都得不到。 另外,在航船阻力模型中也能看到,还有未定函数和一些常量 无法得到,因此模型的实用价值有限。
• • • • • • • 长度 l 质量 m 时间 t 电流强度 I 温度 光强 J 物质的量 米L 公斤M 秒T 安培A 开尔文K 堪德拉cd 摩尔N
其他所有物理量的单位都由这7个基本量复合得到。
量纲齐次原则
引力常数 k 的量纲 [k] =[f][l]2[m]-2=L3M-1T-2
对无量纲量,[]=1(=L0M 0T 0)
量纲齐次原则
等式两端的量纲一致
量纲分析~利用量纲齐次原则寻求物理量之间的关系
单摆运动示例
例:单摆运动 求摆动周期 t 的表达式
l
假设:1、不考虑空气阻力;
2、忽略地球自转对单摆运动的影响; 3、摆线是刚体,在摆动中无形变;
4、摆轴部分没有摩擦。
m mg
在这样的假设条件下,与单摆运动有关的物理量分别有:
g l v 1 2 l s 2 g 1l 3 1 f 3
1 2 1 2
航船阻力模型
注意3中含有 f ,为了得到 f 的 关系式,不妨设
1 g 1 2 2 l v 1 2 l s 2 g 1l 3 1 f 3