量纲分析法最新版本

合集下载

3.1量纲分析法

3.1量纲分析法

x K
dy ry 1 y dt
rt , t 时间无量纲化
dy y 1 y d
简化后的模型不含参数!便于理论分析和数值求解。
例2:简化三次方程
az bz cz d 0, a 0
3 2
b b 令x z (z与 a 具有相同的量纲! ) 3a
3
未定
Fr 3
对方程组Ay=0选择符合要求的基础解系
3.2 量纲分析在物理模拟中的应用
例: 航船阻力的物理模拟
通过航船模型确定原型船所受阻力 3 3 , 3 ) f l ( 2 f l g ( 2 , 3 ) 1 1 g1 1 可得原 已知模 s v s v 1 1 型船所 型船所 , , 2 3 2 2 3 2 l 受阻力 g1l1 l 受阻力 gl 1
s qj
j 1
m
ysj
1 fg 1l 3 1 2 l s 2 1 1 2 2 g l v 3
F( 1, 2,…, m-r ) = 0 与 f (q1, q2, , qm) =0 等价 为得到阻力 f 的显式表达式
F(1, 2 ,3 ) = 0与 (g,l,,v,s,f) = 0 等价
v v w
3
w
k Aa
3.4: 思路与步骤


专业分析软件
一. 层次分析法简介
层次分析法(AHP: Analytic Hierarchy Process) 是美国著名的运筹学家T.L.Saaty等人于20世纪70年代提出的一 种决策方法。其主要特点是按照思维、心理的规律把决策过程层 次化、数量化,合理地将定性问题定量化处理。

2:量纲分析法

2:量纲分析法

量纲齐次原则
用数学公式表示一物理定律时, 用数学公式表示一物理定律时,等号两端必须保持量纲的一致 所谓量纲分析就是利用量纲齐次原则来寻求物理量之间的关系 下面用一个简单的例子来说明 单摆运动:质量为m的小球系在长度为l的线一端,作单摆运动 求其周期t的表达式 在这个问题中出现的物理量有t,m,l,g,设他们之间有关系 1--4
α1 α 2 +α 3
T
− 2α 3
按照量纲齐次原则应有:
α1 = 0 α2 + α3 = 0 − 2α 3 = 1
1--5
可得出其解为
1 1 α 1 = 0, α 2 = , α 3 = − 2 2
量纲齐次定理: q1 , q 2 , q 3 ,...... q m

l t=λ g

设有m个物理量 f ( q1 , q 2 , q 3 ,...... q m ) = 0
在万有引力公式中,引力常数G是有量纲的 是有量纲的, 例3 在万有引力公式中,引力常数 是有量纲的,根据量 纲齐次性, 的量纲为 的量纲为M 其实, 纲齐次性,G的量纲为 -1L3T-2,其实,在一量纲齐次的公 式中除以其任何一项,即可使其任何一项化为无量纲, 式中除以其任何一项,即可使其任何一项化为无量纲,因 此任一公式均可改写成其相关量的无量纲常数或无量纲变 量的函数。例如, 量的函数。例如,与万有引力公式 F = Gm 1m 2 2 r 相关的物理量有: 相关的物理量有:G、m1、m2、r和F。 和 。
∂v −1 −1 −1 [ ] = LT • L = T ∂x
量纲矩阵为:
A 3×7
1 1 1 1 − 3 −1 1 1 0 0 0 1 1 0 = − 2 0 0 − 1 0 − 1 − 2

5.2 量纲分析

5.2 量纲分析

1、量纲分析指数法
(1)柏金汉姆法(π定理法)(E.Buckingham) 柏金汉姆法( 定理法) E.Buckingham) 列出影响现象的各个参量 f(x1、x2、x3…xn)=0 确定k个量纲彼此独立物理量为重复变量 确定k 其它物理量量纲用重复变量量纲的幂积形式表示 其它物理量量纲用重复变量量纲的幂积形式表示 量纲用重复变量量纲
5.2
量纲分析
原理:1、 原理:1、量纲和谐性原则 :1 2、 Π定理 重点: 重点:量纲分析法
5.2.1 量纲和谐性
量纲和谐性原则 任何一个完整的物理方程, 各项量纲必定是和谐的。 任何一个完整的物理方程,其各项量纲必定是和谐的。 量纲必定是和谐的 量纲分析法的物理本质在于描述现象的微分方程中各项量纲的 一致性。 一致性。 量纲和谐性原则应用: 量纲和谐性原则应用: 可检验方程的正确性。 可检验方程的正确性。 物理量单位换算。 物理量单位换算。工程计算时常采用的经验公式中系数往往 时采取某一单位制(早期许多采用英制)确定,使用时单位制 时采取某一单位制(早期许多采用英制)确定, 改变,要注意单位系数换算。 改变,要注意单位系数换算。 推导相似准数和准数方程
5.2.4 量纲分析法
应用量纲理论寻找相似准数和准数方程的方法, 应用量纲理论寻找相似准数和准数方程的方法,称为量纲 分析法。 分析法。 基本思路: 基本思路: 1、列出影响该现象的全部物理量及待求物理量(因变量), 列出影响该现象的全部物理量及待求物理量(因变量), 将因变量与其他物理量之间的关系写成一般的不定函数式。 将因变量与其他物理量之间的关系写成一般的不定函数式。 2、根据量纲理论,求出因变量和自变量的关系。 根据量纲理论,求出因变量和自变量的关系。 3、再通过量纲分析和适当的组合,将上述不定函数式改写 再通过量纲分析和适当的组合, 为无量纲数群之间的关系式,即准数方程(准则方程)。 为无量纲数群之间的关系式,即准数方程(准则方程)。 量纲分析法分指数法和矩阵法两大类。 量纲分析法分指数法和矩阵法两大类。 指数法和矩阵法两大类

第十一章量纲分析法(续)(2011-9-11)

第十一章量纲分析法(续)(2011-9-11)
问题9流体在水平圆管中作恒定流动管道截面沿程不变管径为d由于阻力的作用压强将沿流程下降通过观察已知两个相距为l的断面间的压强差p与断面平均流速v流体密度动力粘性系数以及管壁表面的平均粗糙度等因素有关
第十一章 量纲分析法 (续)
1
量纲、量纲和谐性原理
2
问题1
什么是量纲,什么是单位,二者之间有什么 区别和联系?
a2 1 b2 0 c2 0
2
D2 D1
a3 4 b3 2 c3 1
3
p
D14Q2
25
5. 写出无量纲量方程
f (1, 2 , 3 )
f
( D11Q
, D2 D1
,
p D14Q 2
)
0
上式中的数可根据需要取其倒数,而不会改变它 的无量纲性质。即:
D14Q2 f ( D11Q , D2 )
H有关。
12
解: 1.
分析影响因素,列出函数方程
根据题意可知,水泵的输出功率N 与单位体积水的
重量 、 流g量Q、扬程H 有关,用函数关系式表示

f (N, ,Q, H ) 0
2. 将N写成γ ,Q,H的指数乘积形式,即
N k aQbH c
13
3. 写出量纲表达式
dim N dim( aQbH c )
答:(1)基本物理量与基本量纲相对应。即若基本量纲选 (M,L,T)为三个,那么基本物理量也选择三个;倘若基 本量纲只出现两个,则基本物理量同样只须选择两个。 (2)选择基本物理量时,应选择重要的物理量。换句话说, 不要选择次要的物理量作为基本物理量,否则次要的物理量 在大多数项中出现,往往使问题复杂化,甚至要重新求解。 (3)为保证三个基本物理量相互独立,其量纲的指数行列式 应满足不等于零的条件。一般是从几何学量、运动学量、动 力学量中各选一个,即可满足要求。

第9章 量纲分析

第9章 量纲分析
用[ ]表示物理量的 量纲,用( )表 示物理量的单位
量纲的分类:基本量纲 导出量纲
基本量纲是一组具有独立性的量纲。在 水力学领域中有三个基本量纲:[ L ] , [ T ], [ M ]。
导出量纲由基本量纲组合或推导出来的 量纲。如加速度的量纲 [a]=LT-2 ;力的量 纲 [F]=[ma]=MLT-2
可知p / v2与其余三个无量纲数有关,那么
p/v2=F1(l/d, /d, 1/Re)= (l/d)F2( /d, 1/Re)
p/g= p/= (l/d)(v2/2g)F2( /d, 1/Re)
令= F2( /d, 1/Re) p/= (l/d)(v2/2g)
这就是达西公式, 为沿程阻力系数, 表示了等直圆管中流动流体的压降与 沿程阻力系数、管长、速度水头成
1=l1v1d1 2=2v2d2 3=3v3d3 4= p4v4d4
将上述表达式写成量纲形式 [1]=L(ML-3)1(LT-1)1L1=M0L0T (1) [2]=L(ML-3)2(LT-1)2L2=M0L0T0
(2) [3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0
(3) [4]=ML-1T-2 (ML-3)4(LT-1)4L4=M0L0T0
所以 3=/vd=1/Re 求解方程(4) M: 1+4=0 → 4= -1
T: -2-4=0 → 4= -2 L: -1-3 4+ 4+4=0 → 4= 0 所以 4= p / v2 因此,所解问题用无量纲数表示的方程为
F(l/d, /d, 1/Re, p / v2)=0
至此,问题求解结束,进一步对上式整理规范。 由上式
有量纲量和无量纲量
水力学中任何物理量C的量纲可写成 [C]=[ M ][ L ][ T ]

量纲分析法

量纲分析法

(注:在流体力学中称 Fr =
v lg

Froude
数,
Re
=
lvρ μ

Reynold
数。)
3. 无量纲化 单位和量纲在建模过程中是一个需要注意的问题,在建立模型时,为了满足量纲齐次原 则需要引入新的参量,这使得模型十分复杂;在建立和分析模型时,模型所描述的实际问题 的内涵性质一般应该独立于度量单位的选择。因此在机理模型建立过程中如何使得模型摆脱
模型建立:
由万有引力定律 m1
d2y dt 2
=
−k
m1m2 (y + r)2
,y(0)
=
0,
y′(0)
=
v 。由假设
2,y′′(0)
=
−g

在方程始终令 t = 0 ,则有 g = k m2 ,则模型可以简化为 r2
y′′
=

r2g (y + r)2
,
y(0)
=
0,
y′(0)
=
v

在模型中有三个参量 r, g, v ,两个变量 t, y 。这些量都是有量纲的,下面将利用无量纲
2
二、 轮廓模型
1.量的比例关系
因为模型表达了不同量纲的量之间的转换规律,不同量纲的量的乘幂之间一定存在比例
关系。所以在同一模型中,若量 X1 和 X 2 的量纲分别为 [ X 1 ] = X α 和 [ X 2 ] = X β ,则一
定有
X1
=
kX
α 2
/
β

例 4(几何上的比例关系)
对于正立方体:设棱长为 L1 = a ,底面周长为 L2 = 4a ,底面对角线长 L3 = 2a ,立

量纲分析法

量纲分析法
步骤 4:用独立变量的待定幂指数乘积形式与其余变量中的每个变量组成无
量纲数 j j n k , n,并代入变量的量纲组成量纲关系式。
如在该问题中,有:
4 h A1 d A2 A3
5

g B1
d B2 B3
步骤 5:对量纲关系式中的每一个基本量纲令等式两边的幂
量纲分析法
一、量纲
1. 量纲的定义 是用来描述物体或系统物理状态的可测量性质,如长度、质量、速度、 加速度。 2. 基本量纲
彼此无关的量纲,如长度、质量和时间。 3. 导出量
最终要用基本量纲的组合来确定的量纲,如速度、加速度、动量等。 国际单位制中基本量纲为:
[L]、[t]、[M]、[T]。
二、量纲分析法—π定理
为无量纲的量,所以有
ML1T 2 L x LT 1 y ML3 z M z Lx y3zT y
z 1, y 2, x 0


p
2
同理有,分别有:
ML1T 1 L x4 LT 1 y4 ML3 z4 M L T z4 x4 y4 3z4 y4
2
2g
hf

P
g
2
g
f 1 , l , Re d d
莫迪图
hf
Re , l
dd
2
2g
例题: 在层流情况下,流过一小等边三角形截面的孔(边长为 b
,孔长为 L )的体积流量 Q 为动力粘性系数 、单位长度上的压降
p / L 及 b 的函数。试将此关系写成无因次式。在其他条件不变的
z4 1, y4 1, x4 1
4

量纲分析法

量纲分析法

第三节 量纲分析法量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。

3.1 量纲齐次原则与Pi 定理许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。

例如在动力学中,把长度l , 质量m 和时间t 的量纲作为基本量纲,记为[][][]T t M m L l ===,,; 而速度f v ,力的量纲可表示为[][]21,--==MLT f LT v .在国际单位制中,有7个基本量:长度、质量、时间、电流、温度、光强度和物质的量,它们的量纲分别为L 、M 、T 、I 、Θ、J 、和N ;称为基本量纲。

任一个物理量q 的量纲都可以表成基本量纲的幂次之积,[]ηξεδγβαJ N I T M L q Θ=量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。

量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体的例子,再给出量纲分析的一般方法。

例3—1: 单摆运动,质量为m 的小球系在长度为l 的线的一端,线的另一端固定,小球偏离平衡位置后,在重力mg 作用下做往复摆动,忽略阻力,求摆动周期t 的表达式。

解:在这个问题中有关的物理量有g l m t ,,,设它们之间有关系式3211αααλg l m t =---------------(3.1)其中32,,ααα为待定常数,入为无量纲的比例系数,取(3.1)式的量纲表达式有[][][][]321αααg l m t = 整理得:33212αααα-+=T LM T --------------(3.2)由量纲齐次原则应有⎪⎩⎪⎨⎧=-=+=12003321αααα ---------------(3.3)解得:,21,21,0321-===ααα 代入(3.1)得 glt λ= -------(3.4)(3.4)式与单摆的周期公式是一致的下面我们给出用于量纲分析建模的 Buckingham Pi 定理,定理:设n 个物理量n x x x ,,,21 之间存在一个函数关系()0,,,21=n x x x f --------------(3.5)[][]m x x 1为基本量纲,n m ≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数通过测量和最小二乘法计算可以得到。
原理分析
t ml g 1 2 3
为什么假设这种形式?
设p= f(x,y,z) 对 x,y,z的两组测量值x1,y1,z1 和x2,y2,z2,
p1 = f( x1,y1,z1), p2 = f( x2, y2,z2 )
x,y,z的量纲单
位缩小a,b,c倍 p 1 f( a 1 ,b 1 x ,c 1 y )p z 2 , f( a 2 ,b 2 x ,c 2 y )
n
[qj] Xiaij, j1,2,,m i1
量纲矩阵记作 A{aij}nm, 若ranAkr
即线性齐次方程组 Ay0 有 m-r 个基本解,记作
ys = (ys1, ys2, …,ysm)T , s = 1,2,…, m-r
m
则 q ysj
s
j
j 1
为m-r 个相互独立的无量纲量, 且
F( 1, 2,…, m-r ) = 0 与 f (q1, q2, , qm) =0 等价, F未定
第一讲 关于量纲分析法
量纲分析法是二十世纪初,一些物理学家提出的一种 在物理领域建立数学模型的办法。
所谓量纲分析法,即在经验和实验的基础上,利用物 理量的量纲所提供的信息,根据量纲齐次原则来确定 物理量之间的关系。
量纲,即物理量的单位,如速度的量纲就是 m/s
一、量纲齐次原则
物理量的量纲
物 长度 l 的量纲记 L=[l] 理 质量 m的量纲记 M=[m] 量 时力;
2、忽略地球自转对单摆运动的影响;
m
3、摆线是刚体,在摆动中无形变;
4、摆轴部分没有摩擦。
mg
在这样的假设条件下,与单摆运动有关的物理量分别有:
t、m、l、g、
单摆运动的规律由公式 F(t, l, m, g, ) = 0 给出。
假设物理量 t, m, l, g 之间有关系式
的 速度 v 的量纲 [v]=LT-1
量 纲
加速度 a 的量纲 [a]=LT-2
力 f 的量纲 [f]=LMT-2
动力学中 基本量纲 L, M, T
导出量纲
国际单位制SI制的基本量
• 长度 l • 质量 m • 时间 t • 电流强度 I
• 温度
文K • 光强 J
拉cd
• 物质的量
米L 公斤M
秒T 安培A
ys = (ys1, ys2, …,ysm)T s = 1,2,…, m-r
m-r 个无量纲量
y1 ( 1 / 2,1 / 2,0, 1,0,0)T y2 ( 0, 2, 0, 0,1,0)T y3 ( 1, 3, 1, 0,0,1)T
m
q ysj
s
j
j 1
而且存在一个未定的函数关系:
(1,2,3)0
1 2
1 1
g 2l 2v l 2s
3
g l f 1 3 1
航船阻力模型
注意3中含有 f ,为了得到 f 的 关系式,不妨设
1 2
1 1
g 2l 2v l 2s
3
g
l 1 3
f 1
3 12 2

由 (1,2,3)0得 3(1,2) 及
至此我们已经建立了阻力 f 与其他各物理量之间的关系式。 仍是未知的函数关系,看起来似乎没什么用,其实不然。
A{aij}nm
A 0 0 1 0 0 1 (M) 2 0 0 1 0 2 (T)
m=6, n=3
(g) (l) () (v) (s) (f )
f(q1,q2,,qm)0
(g,l, ,v,s,f)0
rank A = r
Ay = 0 有m-r个基本解
rank A = 3 Ay=0 有m-r=3个基本解
0
y
2
0
y 1 2 y 4 0
基本解 y ( y1, y2 , y3, y4 )T (2, 0, 1, 1)T
t2l1g F()0
(t l/g)
Pi定理 (Buckingham) 设 f(q1, q2, , qm) = 0
是与量纲单位无关的物理定律,X1,X2, , Xn 是基本量 纲, nm, q1, q2, , qm 的量纲可表为
Pi定理的意义
Pi定理实际上给出了一个量纲分析法建 模的方法和理论支持,即这个定理证明 了:量纲分析法是可行的,没有任何理 论上的疑点。
下面就利用Pi定理中给出的步骤和方法来解决一个 新的建模问题。
二、波浪对航船的阻力
与航船阻力有关的物理量:
航船阻力 f
航船速度v, 船体尺寸l, 浸没面积 s,
t m1l2g3 (1)
1, 2, 3 为待定系数,为无量纲量 (1)的量纲表达式
[t][m ]1[l]2[g]3 T M LT 1 2 3 2 3
1 0 2 3 0 2 3 1
1 0 2 1 / 2 3 1 / 2
t l g
对比
t 2 l g
对比这里计算出的公式和实际公式
开尔
堪德
摩尔N
其他所有物理量的单位都由这7个基本量复合得到。
量纲齐次原则
引力常数 k 的量纲 [k] =[f][l]2[m]-2=L3M-1T-2
对无量纲量,[]=1(=L0M 0T 0)
量纲齐次原则 等式两端的量纲一致
量纲分析~利用量纲齐次原则寻求物理量之间的关系
单摆运动示例
例:单摆运动 求摆动周期 t 的表达式
海水密度, 重力加速度g。
f(q1,q2,,qm)0 (g,l, ,v,s,f)0
n
[q ] j
X ,aij i
i 1
[g] = LT-2, [l] = L, [] = L-3M,
[v] = LT-1,, [s] = L2, [f] = LMT-2
j 1,2, , m
1 1 3 1 2 1 (L)
[ t ] L 0 M T0 1
[
m
]
L0M
1T
0
[
l
]
L1M
0T
0
[ g ] L 1 M 0 T 2
(L0M0T1)y1(L0M1T0)y2(L1M0T0)y3 (L1M0T2)y4 L0M0T0
LM T L M T y 3 y 4 y 2 y 1 2 y 4
0 00
y3
y 4
p1
p
1
p2
p
2
f(x1,y1,z1)f(a1x,b1y,c1z) f(x2,y2,z2) f(a2x,b2y,c2z)
p= f(x,y,z)的形式为 f(x,y,z)xyz
单摆运动中 t, m, l, g 的一般表达式 f(t,m ,l,g)0
t ml g y1 y2 y3 y4 y1~y4 为待定常数, Δ为无量纲量
相关文档
最新文档