天然气脱水方法
天然气脱水流程与原理详解演示文稿

优选天然气脱水流程与原理
第一节 概 述 一、直接冷却法:
• 原理:通过降低天然气的温度, 利用水与轻烃凝结为液体的温 差,使水得以冷凝,从而达到 脱水的目的。
• 缺点:需要制冷设施对天然气 进行制冷。
天然气脱硫、脱水器
第一节 概 述
二、溶剂吸收脱水法
•原理:天然气与某种吸水能力强的化学溶剂相接触,利用化 学溶剂对水的吸收能力,吸收天然气中的水分,同时不与水 发生化学反应,最终达到脱水的目的。 •优点:吸收剂能通过一定的方法进行再生,使其能重复使用。
三、甘醇脱水工艺流程
湿天然气自吸收塔底部 进入,自下而上与从顶部进 入的三甘醇贫液相接触后, 干气从顶部流出;贫三甘醇 自塔顶进入,与吸收塔内湿 天然气充分接触后成为富液。 富液从塔底部流出,经过滤 器、换热器与贫三甘醇换热 后进入再生塔,富液再生后 成为贫液经与富液换冷后加 压循环注入吸收塔中。
194.2 -5.6 <1.33 314 1.092 1.128 全溶 237.8 2.4.4-233.9
10.2×10-3 2.18 4.5 1.457
第三节 吸收法脱水 三甘醇质量的最佳值
参数
pH值① 氯化物 烃类② 铁粒子② 水③
固体悬浮物 ③/(mg/L)
起泡倾向
颜色及 外观
富甘醇 7.0-8.5 <600 <0.3 <15 贫甘醇 7.0-8.5 <600 <0.3 <15
3.57.5
<1.5
<200 <200
泡沫高度, 高度1020mL;破裂 时间,5s
洁净, 浅色到 黄色
①富甘醇由于有酸性气体溶解,其pH值较低。
天然气脱水工程设计

天然气脱水工程设计一、工程背景随着天然气的广泛应用和需求的不断增长,对天然气质量的要求也越来越高。
水分是天然气中常见的污染物之一,它会降低热值,同时在输送管道中形成水合物,对管道造成腐蚀。
因此,在天然气输送前,必须对天然气进行脱水处理。
二、脱水方法常用的天然气脱水方法有物理吸附脱水法和化学吸附脱水法。
物理吸附脱水法是利用吸附剂吸附天然气中的水分子,将其从天然气中分离出来;化学吸附脱水法是利用化学剂将天然气中的水分子转化为可分离的液体,然后通过沉降或过滤等方法将其从天然气中去除。
三、脱水工艺流程1.初级脱水:将天然气通过冷凝器冷却,使水分子与天然气中的液体相结合形成水合物,然后通过隔离器将水合物与天然气分离,并排出水分。
2.中级脱水:将初级脱水后的天然气通过填充吸附剂的吸附器,吸附剂将天然气中的水分子吸附,将干燥的天然气从吸附剂中排出。
3.精制脱水:将中级脱水后的天然气通过再生装置,使吸附剂再生并去除吸附剂上的水分,然后将天然气和再生气体分离,并排出。
四、关键设备和工程参数1.冷凝器:用于初级脱水过程中冷却天然气。
2.隔离器:用于初级脱水过程中将水合物与天然气分离。
3.吸附器:用于中级脱水过程中吸附天然气中的水分子。
4.再生装置:用于精制脱水过程中再生吸附剂并去除水分。
工程参数包括天然气流量、水合物含量、吸附剂种类和用量等。
五、安全与环保考虑在天然气脱水工程设计中,需要考虑到安全和环保因素。
例如,在设计吸附剂选择和用量时,需要考虑到吸附剂的毒性和可再生性。
此外,需要合理设计安全设备和应急措施,确保工程安全运行。
总结:天然气脱水工程设计是为了去除天然气中的水分,提高天然气质量和热值。
在设计中需要考虑脱水方法、工艺流程、关键设备和工程参数以及安全与环保因素。
通过合理的天然气脱水工程设计,可以有效提高天然气的质量和利用效率。
天然气脱水技术

脱水的三种方法1 冷却法2 分子筛吸附法3甘醇吸收法0前言1884年Roozeboom提出了天然气水合物形成的相理论。
此后不久,Villard在实验室合成了CH4、C2H6、C2H4、C2H2等的水合物。
1919年,Scheffer和Meijer建立了一种新的动力学理论方法来直接分析天然气水合物,他们应用Clausius-Clapeyron方程建立三相平衡曲线,来推测水合物的组成。
1990年,中国科学院兰州冰川冻土研究所冻土工程国家重点实验室科研人员曾与莫斯科大学冻土专业学者Ю.П.列别琴科博士成功地进行了天然气水合物人工合成实验。
近来国内[1]的合成实验也取得了较大进展。
天然气水合物(Catural Gas Hydrate,简称GasHydrate),…在油田,油库流体通常被水饱和。
气体中含水会出现一些问题:·形成固体水合物,堵塞阀、弯头或管线·水和H2S或CO2共存时,出现腐蚀问题·水在管线中凝结会造成侵蚀或腐蚀问题通常,在气体厂使用脱水单元来满足管线规定。
有几种不同的工艺可以用来脱水:乙二醇、硅胶,或者分子筛。
天然气工业通常使用三酐醇(TEG)进行气体脱水,满足气体低露点温度的需要,我所在的气田均采用三甘醇脱水装置进行脱水,此装置在实际生产运用中效果很好。
用的是国外引进橇装式TEG脱水装置我所在的气田采用3种脱水方式,J-T阀+乙二醇作为水合物抑制剂、三甘醇、分子筛。
采用什么样的脱水方式主要和气质、投资等都有关系,一般气比较贫,不要求烃露点的采用三甘醇比较好;气较富考虑回收部分轻烃和液化气,温降要求不高的一般采用J-T阀+乙二醇作为水合物抑制剂较多;考虑深度回收轻烃和液化气,一般采用分子筛较多。
三种方式中分子筛运行维护比较麻烦,三甘醇简单一些。
脱水方法与脱水的深度以及天然气处理规模有关:深度脱水:采用分子筛吸附脱水。
处理规模较大:采用TEG脱水。
应用较多就这两种。
浅析天然气处理装置的脱水方法

浅析天然气处理装置的脱水方法天然气是一种重要的能源资源,其含有大量的水分和杂质,需要经过处理才能被使用。
天然气脱水是其中的一项重要工艺,其目的是去除天然气中的水分,以保证天然气的品质和安全。
为了实现天然气的高效脱水,人们设计了各种天然气处理装置,采用不同的脱水方法,本文将对天然气处理装置的脱水方法进行浅析。
天然气处理装置的脱水方法主要包括物理脱水和化学脱水两种方式。
物理脱水主要是通过物理手段使水分脱离天然气,主要包括凝结脱水、吸附脱水、膜分离脱水等方法。
而化学脱水则是通过添加化学试剂将水分转化为其他物质,达到脱水的目的。
凝结脱水是一种常见的物理脱水方法,其原理是利用温度差使天然气中的水汽凝结成液体,然后将液体与天然气分离。
常见的凝结脱水设备有冷凝器和冷冻器。
冷凝器利用低温使水分凝结成液体,然后通过分离装置将水分与天然气进行分离。
而冷冻器则是通过低温冷冻水分,然后将冻结的水分与天然气进行分离。
这两种方法都能有效去除天然气中的水分,但对能耗要求较高,需要耗费大量的能源才能实现脱水。
吸附脱水是一种常用的物理脱水方法,其原理是利用吸附剂吸附天然气中的水分,达到脱水的目的。
常见的吸附剂有硅胶、分子筛等。
当天然气通过吸附剂层时,水分会被吸附在吸附剂颗粒表面,从而实现脱水。
吸附脱水方法有较高的脱水效率,能够满足高纯度天然气的要求,但吸附剂的使用寿命较短,需要定期更换和再生。
膜分离脱水是一种新型的脱水方法,其原理是利用特定的膜材料将天然气中的水分与天然气进行分离。
常见的膜材料有聚合物膜、陶瓷膜等。
当天然气通过膜分离装置时,水分会在膜的作用下被分离出来,达到脱水的目的。
膜分离脱水方法具有操作简单、不需加热、脱水效率高等优点,但膜材料的选择和制备对脱水效果有较大影响。
化学脱水是一种常用的脱水方法,其原理是通过添加化学试剂将水分转化为其他物质,达到脱水的目的。
常见的化学脱水方法有脱硫脱水、脱碳酸盐脱水等。
脱硫脱水是通过添加脱硫剂将天然气中的硫化氢转化为硫酸氢钠,从而将水分与天然气进行分离。
天然气脱水工艺

化学试剂法:该法是用可以与天然气中不发生化学反应的 化学试剂与天然气充分接触,生成具有较低蒸汽压的另一种 物质。这样可以使天然气中的水 完全被脱出,但化学试剂的 现生很困难,因此这种温法、溶剂 吸收法、固体吸附法、化学反应法和膜分离 法等
低温冷凝法:低温冷凝是借助天然气与水汽凝结为液
体的温度差异,在一定的压力下降低含水气的温度,使其中 的水汽与重烃冷凝为液体,再借助于液烃与水的相对密度差 和互不溶解的特点进行重力分离,使水被脱出。这种方式的 效果是显而易见的。但是为了达到较深的的脱水程度,应该 有足够低的温度。如果温度低于常温,则需要有制冷设施, 这样会使脱水过程的工程投资、能量消耗增加,并进一步提 高天然气的处理成本。(注:降温的方法:节流、膨胀机、 外部制冷,其中节流最常见。)
溶剂吸收脱水法:该法是利用某些液体物质不与天 然气中水发生化学反应,只对水有很好的溶解能力。 溶水后的溶液蒸气压很低,且可再生和循环使用的 特点,将天然气中水汽脱出。这样的物质有甲醇、 甘醇等。由于吸收剂可以再生和循环使用,故脱水 成本低。已在天然气脱水中得到广泛使用。
优点:成本低、运行可靠以及经济效益好 缺点:甘醇在使用过程中将会受到各种污染
氯化钙法
氯化钙(CaCl2)用作消耗性的吸附剂也可脱除天然气中的水 分。无水CaCl2可结合水分而形成CaCl2水合物(CaCl2・xH2O), 随着CaCl2不断从天然气中吸收水分,而变成稳定性好的结晶水合 物,最后形成CaCl2盐溶液。 CaCl2脱水有价廉、没有火灾隐患、装置紧凑等优点。但由于 床层下部的CaCl2会溶于水儿形成盐溶液,因此存在CaCl2的消耗、 腐蚀和由此而引起的环境影响等问题。此外,在一定的操作条件下, 固定床层内的CaCl2还会形成桥连,从而造成气体沟流而使脱水性 效果变差。
天然气加工工艺学——第五章 天然气脱水

教材名称: 《天然气处理与加工工艺 》
参考教材: 《天然气加工工程》 《天然气处理与加工》
内容提要
第一章 天然气概述 第二章 天然气的相特性与状态方程计算 第三章 天然气水合物及其防治 第四章 天然气酸性组分脱除 第五章 天然气脱水 第六章 硫磺回收 第七章 尾气处理 第八章 天然气凝液回收 第九章 天然气液化与提氦
4、化学反应脱水法
它是利用化学试剂与天然气中水份 发生不可逆的反应脱除水份,因溶剂 无法回收,只能用于实验之中。
第二节 溶剂吸收法脱水
一、三甘醇(TEG)的主要物性
三甘醇分子式 HOCH2CH2OCH2CH2OCH2CH2OH (Triethylene Glycol) 无色或微黄粘稠液体,相甘醇浓
度,故在略低于大气压条件操作。
汽提气
常温常压下,常使用被水蒸气饱和的湿气。
甘醇循环率
在吸收塔塔板数、贫甘醇浓度确定后,气体 露点与甘醇循环率成一函数关系。常用的循环率 为吸收1Kg水需25-60升TEG;循环率过大会增 大再沸器负荷。
汽提塔温度
较高汽提塔顶温度会增大甘醇损耗,建议顶 温为107.2℃ ,当温度超过121.1℃ 甘醇会显著地蒸 发损失;塔顶温度过低也会使冷凝水增加.
第五章 天然气脱水 Natural Gas Dehydration
第一节 天然气脱水方法概述 一、天然气脱水目的、意义
防止水合物生成,堵塞集输管线、设备 防止液体水与酸气形成酸液腐蚀管线、设
备 提高天然气输送效率及热值
二、天然气脱水方法概述
天然气脱水工艺一般包括: 低温脱水,溶剂吸收法脱水,固 体吸附法脱水和化学反应脱水。
甘醇浓度
贫甘醇浓度越高,露点降越大,离 开吸收塔的气体实际露点一般较平衡露 点高5.5-8.3℃ 普遍的贫甘醇浓度在98% -99%之间。
浅析天然气处理装置的脱水方法

浅析天然气处理装置的脱水方法
天然气处理装置的脱水方法,是将天然气中的水分去除,以达到天然气质量标准和管
道输送要求的处理过程。
天然气在地下储存和开采过程中,难免会带有水分,如果不处理
掉水分,会导致气体中的水分在管道输送过程中凝结、冻结、腐蚀管道,甚至对终端用户
的使用造成损害。
因此,脱水处理是天然气处理中不可或缺的一个环节。
常见的脱水方法包括:物理吸附法、化学吸附法、膜分离法和冷凝法。
物理吸附法:物理吸附法是利用某些固体吸附剂,如分子筛、活性炭、硅胶等,将天
然气中的水分吸附在吸附剂表面上,并通过换热的方式,将吸附剂中吸附的水分释放出来。
该方法的优点是操作简单、成本较低,脱水效率高,特别是在高湿度条件下,效率更高。
膜分离法:膜分离法是将天然气通过一些特殊的膜,将液体、气体进行分离的方法。
该方法操作简单、空间占用较小、无化学污染和危险废物的产生。
但由于膜的选择和成本
较高,使用范围相对较窄且对气体中杂质的选择性较低。
冷凝法:冷凝法是利用改变气体温度和压力的方式,使水分凝结为液态。
该方法虽然
操作简单,但较难控制温度和压力,且有可能粘附在机械零件上,造成设备故障。
综上所述,选择何种脱水方法取决于实际情况和要求。
在使用脱水设备时,需要根据
天然气的产量、水分含量和不同的脱水方法特点进行选择,以达到最佳的脱水效果。
天然气脱水工艺流程

天然气脱水工艺流程包括以下步骤:
1.来自集气站压力为8.8MPa、温度为23℃的原料天然气进入原料
气重力分离器与过滤分离器,分出液态水分及其他杂质,然后进入TEG吸收塔的下部,自下而上流动,与从上而下的贫TEG 逆流接触,脱除其中水分。
2.干气从塔顶流出,经干气分离器分离出夹带的三甘醇后,出装
置至外输管线。
3.吸收了水分的TEG富液从TEG吸收塔底部流出,经减压后进
入重沸器上部的富液精馏柱顶换热盘管,加热后进入闪蒸罐闪蒸,闪蒸气进入燃料气系统。
4.闪蒸后的富液先后通过机械过滤器和活性炭过滤器,以除去其
中的机械杂质和降解产物。
5.过滤后的富液经TEG缓冲罐与热的贫TEG换热后进入富液精
馏柱,与来自重沸器的蒸汽逆流接触而得到部分提浓。
6.在重沸器内,富液被加热至约200℃。
7.TEG溶液经贫液精馏柱进入缓冲罐,与自下而上的气提气在贫
液精馏柱中逆流接触,以进一步提高贫TEG浓度。
8.高温TEG贫液在缓冲罐内与冷的TEG富液换热后,经冷却器
冷却。
9.TEG循环泵升压后送至吸收塔上部完成TEG吸收和再生循环
过程。