天然气脱水原理及工艺流程
天然气脱水流程与原理详解演示文稿

优选天然气脱水流程与原理
第一节 概 述 一、直接冷却法:
• 原理:通过降低天然气的温度, 利用水与轻烃凝结为液体的温 差,使水得以冷凝,从而达到 脱水的目的。
• 缺点:需要制冷设施对天然气 进行制冷。
天然气脱硫、脱水器
第一节 概 述
二、溶剂吸收脱水法
•原理:天然气与某种吸水能力强的化学溶剂相接触,利用化 学溶剂对水的吸收能力,吸收天然气中的水分,同时不与水 发生化学反应,最终达到脱水的目的。 •优点:吸收剂能通过一定的方法进行再生,使其能重复使用。
三、甘醇脱水工艺流程
湿天然气自吸收塔底部 进入,自下而上与从顶部进 入的三甘醇贫液相接触后, 干气从顶部流出;贫三甘醇 自塔顶进入,与吸收塔内湿 天然气充分接触后成为富液。 富液从塔底部流出,经过滤 器、换热器与贫三甘醇换热 后进入再生塔,富液再生后 成为贫液经与富液换冷后加 压循环注入吸收塔中。
194.2 -5.6 <1.33 314 1.092 1.128 全溶 237.8 2.4.4-233.9
10.2×10-3 2.18 4.5 1.457
第三节 吸收法脱水 三甘醇质量的最佳值
参数
pH值① 氯化物 烃类② 铁粒子② 水③
固体悬浮物 ③/(mg/L)
起泡倾向
颜色及 外观
富甘醇 7.0-8.5 <600 <0.3 <15 贫甘醇 7.0-8.5 <600 <0.3 <15
3.57.5
<1.5
<200 <200
泡沫高度, 高度1020mL;破裂 时间,5s
洁净, 浅色到 黄色
①富甘醇由于有酸性气体溶解,其pH值较低。
天然气脱水工艺

乐东准备组
2008-6-4
1
天然气脱水工艺
一、基本概念 二、天然气脱水原因及含水量的确定方法 三、天然气脱水方法 1. 冷却法 2. 吸附法 3. 膜分离法 4. 吸收法
2
天然气脱水工艺
一、基本概念 1、天然气的烃露点
在一定压力下,天然气经冷却到气相中析出第一滴微小的液体烃时的温 度,称为烃露点。天然气的烃露点与其组分和压力有关。天然气的组成, 尤其是高碳数组分的含量对烃露点的影响最大。 在天然气输送过程中,一般要求天然气的烃露点必须比沿管线各地段的最低 温度低5℃。
18
天然气脱水工艺
三、天然气脱水方法
从油气井采出及湿法脱碳脱硫后的天然气中一般都含有饱和水蒸气(习 惯上称为含水),在外输前通常要将其中的水蒸气脱除至一定的程度(习 惯上称为脱水),使其露点或水含量符合管输要求。脱水前原料气的露点 与脱水后的干气露点之差成为露点降。露点降即表示天然气脱水深度或效 果。
水和物结构:水分子(主体分子)接氢键形成具有笼型空腔(孔穴)的各 种多面体,而尺寸较小且几何形状合适的气体分子(客体分子)则在范德瓦尔 斯力作用下被包围在笼型空腔内,若干个多面体相互连接即成为水合物晶体。 水合物生成条件:1、 必须有游离水存在;
2、 必须有碳4以上的轻烃存在; 3、 必须有一定含量的酸性气体CO2和H2S等存在; 4.、必须满足一定的压力和温度条件.
W = yWhc + y1W1 + y2W2 W -- 天然气中的含水量 Whc – 图表1.1中对应压力温度下烃类的含水量 W1 – 图表1.2中CO2对应压力温度下的有效含水量 W2 -- 图表1.2中H2S对应压力温度下的有效含水量
10
天然气脱水流程与原理优秀课件

第二节 直接冷却法脱水
二、低温集输工艺流程
低 温 集 输 工 艺 流 程 图 ( 二 )
第三节 吸收法脱水
一、吸收剂
对吸收剂的要求:
吸收容量:对水有高的吸附能力; 选择性:具有较高的选择性吸附能力; 饱和蒸汽压:越小越好,可减小循环量,节约热、电、吸收塔直径等; 沸点:应在443K~473K范围内; 粘度:影响热量传递和输送的重要因素,粘度小将节约热能和电能; 热化学稳定性:热化学性质稳定性,便于再生,要求一般使用6~18年。 其他:密度小;有足够的强度;价格便宜。
天然气脱硫、脱水器
第一节 概 述
二、溶剂吸收脱水法
•原理:天然气与某种吸水能力强的化学溶剂相接触,利用化 学溶剂对水的吸收能力,吸收天然气中的水分,同时不与水 发生化学反应,最终达到脱水的目的。 •优点:吸收剂能通过一定的方法进行再生,使其能重复使用。
三、固体吸附脱水法
•原理:天然气与亲水性强的多孔物质相接触,利用多孔物质 宏大的比表面积吸附天然气中的水分,达到脱水的目的。 •优点:吸附剂能再生,可重复使用。 •特点:适用于深度脱水。
一、常温集输工艺流程
常 温 分 离 集 输 工 艺 流 程 图 ( 二 )
第二节 直接冷却法脱水
二、低温集输工艺流程
低温分离的集气流程适用范围: • 天然气压力高、产量大; • 天然气中含有较高硫化氢、二氧化碳和凝析油和汽液水; • 为了增加液烃回收量,降低天然气露点。
第二节 直接冷却法脱水
二、低温集输工艺流程
CQUST
天然气脱水流程与原理
天然气脱水
第一节 概 述 •脱水的目的:
•降低输送负荷 •减小设备及管道腐蚀 •防止水合物的生成 •防止液泛 •达到商品气质要求
天然气脱水工艺流程介绍(ppt 30页)

①工艺简单,操作容易,占地面积小;
②不需要额外加入溶剂,不需再生,无二次污染;
③可利用天然气本身的压力作为推动力,几乎没有压力损失;
④操作弹性大,可通过调节膜面积和工艺参数来适应处理量
的波动。
中国石油塔里木油田公司
迪那筹备组
讲座提 纲
一、脱水的原
因 二、脱水方法简
介 三、脱水工艺介
绍 四、各工艺的注意事
节流阀制冷
膨胀制冷
膨胀机制冷
低温分离法
丙烷制冷
热分离机制冷等
中国石油塔里木油田公司
迪那筹备组
脱水的方
法
• 溶剂吸收法:
利用某些液体物质不与天然气中的水分发 化学反应,只对水有很好的溶解能力且溶水 后蒸气压很低,可再生和循环使用的特点。 将天然气中水汽脱出。这样的物质有甲醇、 甘醇等。由于吸收剂可再生和循环使用,故 脱水成本低,已得到广泛使用。
油气田无自由压降可利用,满足 管输天然气水露点要求的场合。
1、脱水后干气中水含量可 低于1ppm,水露点可低于90℃; 2、对进料气体温度、压力 、流量变化不敏感; 3、操作简单,占地面积小 4、无严重腐蚀和发泡方面 的问题。
1、对于大装置,其设备投 资大,操作费用高; 2、气体压降大; 3、吸附剂使用寿命短,一 般三年需更换,增加成本; 4、耗能高,低处理量时更 明显;
• 牙哈320万方/日凝析气处理装置:设计处理天然 气320万方/天、凝析油产量为50万吨/年, 2000 年10月31日投产装置通过经J-T阀节流降温[加注 乙二醇防冻],脱除天然气中的水,并实现轻烃回 收。
中国石油塔里木油田公司
迪 三那 甘筹 醇备脱水组 工
艺
各工艺的注意 事项
第7章 天然气的脱水

3、吸收塔塔板数的确定
Kremser-Brown方程
y N 1 y1 A A 实际吸水量 N 1 y N 1 y0 A 1 理论吸水量
N 1
式中 yN+1——进吸收塔湿原料气中水的摩尔分数
y1——离开吸收塔干气中水的摩尔分数
y0——当离塔干气与进塔贫三甘醇溶液处于平衡时,干气 中水的摩尔分数 N——吸收塔理论塔板数 A——吸收因子
19
问题
影响三甘醇脱水关键因素是什么? 三甘醇贫液浓度
20
提高三甘醇贫液浓度的方法
(1) 减压再生 可将三甘醇提浓至 98.5% (质)以上。 但减压系统比较复杂,限制了该法的应用。 (2) 气体汽提 典型流程见图7-7。 气体汽提是将甘醇溶液同热的汽提气接 触,以降低溶液表面的水蒸气分压,使甘 醇溶液得以提浓到 98.5%( 质 ) 以上。此法是 现行三甘醇脱水装置中应用较多的再生方 21 法。
其中 Q——被处理气体的体积流量,基米3/天, ——天然气相对密度(空气相对密度为1.0) Mn——被处理气体的分子量
52
二、三甘醇再生系统的计算
1.再生系统操作条件的确定
(1)再生温度和压力
再生温度和压力 一般采用常压再生 。 常压下,三甘醇的热分解温度约为 206C。因而重沸器的温度不应高于此值, 通 常 为 191 ~ 193C , 最 高 不 应 超 过 204C 。
53
(1)再生温度和压力
在罐式重沸器中,气液两相可认为达到 平衡,此汽一液两相平衡系统的温度和压 力关系如图 7-19 所示。已知重沸器压力 (甘醇蒸汽和水蒸汽分压之和)和要求达 到的三甘醇溶液浓度,则由图7-19可以查 出相应的重沸器温度,如有惰性气体存在 时,则应由重沸器压力中扣除惰性气体分 压后,再由图查出相应的温度。
天然气加工工艺学——第五章 天然气脱水

教材名称: 《天然气处理与加工工艺 》
参考教材: 《天然气加工工程》 《天然气处理与加工》
内容提要
第一章 天然气概述 第二章 天然气的相特性与状态方程计算 第三章 天然气水合物及其防治 第四章 天然气酸性组分脱除 第五章 天然气脱水 第六章 硫磺回收 第七章 尾气处理 第八章 天然气凝液回收 第九章 天然气液化与提氦
4、化学反应脱水法
它是利用化学试剂与天然气中水份 发生不可逆的反应脱除水份,因溶剂 无法回收,只能用于实验之中。
第二节 溶剂吸收法脱水
一、三甘醇(TEG)的主要物性
三甘醇分子式 HOCH2CH2OCH2CH2OCH2CH2OH (Triethylene Glycol) 无色或微黄粘稠液体,相甘醇浓
度,故在略低于大气压条件操作。
汽提气
常温常压下,常使用被水蒸气饱和的湿气。
甘醇循环率
在吸收塔塔板数、贫甘醇浓度确定后,气体 露点与甘醇循环率成一函数关系。常用的循环率 为吸收1Kg水需25-60升TEG;循环率过大会增 大再沸器负荷。
汽提塔温度
较高汽提塔顶温度会增大甘醇损耗,建议顶 温为107.2℃ ,当温度超过121.1℃ 甘醇会显著地蒸 发损失;塔顶温度过低也会使冷凝水增加.
第五章 天然气脱水 Natural Gas Dehydration
第一节 天然气脱水方法概述 一、天然气脱水目的、意义
防止水合物生成,堵塞集输管线、设备 防止液体水与酸气形成酸液腐蚀管线、设
备 提高天然气输送效率及热值
二、天然气脱水方法概述
天然气脱水工艺一般包括: 低温脱水,溶剂吸收法脱水,固 体吸附法脱水和化学反应脱水。
甘醇浓度
贫甘醇浓度越高,露点降越大,离 开吸收塔的气体实际露点一般较平衡露 点高5.5-8.3℃ 普遍的贫甘醇浓度在98% -99%之间。
天然气脱水工艺流程

天然气脱水工艺流程包括以下步骤:
1.来自集气站压力为8.8MPa、温度为23℃的原料天然气进入原料
气重力分离器与过滤分离器,分出液态水分及其他杂质,然后进入TEG吸收塔的下部,自下而上流动,与从上而下的贫TEG 逆流接触,脱除其中水分。
2.干气从塔顶流出,经干气分离器分离出夹带的三甘醇后,出装
置至外输管线。
3.吸收了水分的TEG富液从TEG吸收塔底部流出,经减压后进
入重沸器上部的富液精馏柱顶换热盘管,加热后进入闪蒸罐闪蒸,闪蒸气进入燃料气系统。
4.闪蒸后的富液先后通过机械过滤器和活性炭过滤器,以除去其
中的机械杂质和降解产物。
5.过滤后的富液经TEG缓冲罐与热的贫TEG换热后进入富液精
馏柱,与来自重沸器的蒸汽逆流接触而得到部分提浓。
6.在重沸器内,富液被加热至约200℃。
7.TEG溶液经贫液精馏柱进入缓冲罐,与自下而上的气提气在贫
液精馏柱中逆流接触,以进一步提高贫TEG浓度。
8.高温TEG贫液在缓冲罐内与冷的TEG富液换热后,经冷却器
冷却。
9.TEG循环泵升压后送至吸收塔上部完成TEG吸收和再生循环
过程。
天然气的脱水三甘醇

三甘醇脱水是利用其吸水性质,将天然气中的水分吸收并脱除的过程。在天然气处理过程中,三甘醇 作为脱水剂被喷洒到天然气中,与天然气充分接触,吸收其中的水分,然后通过分离器将吸收了水分 的三甘醇与天然气分离,从而达到脱水的目的。
三甘醇脱水工艺流程
预处理
首先,对天然气进行预处理,去除其中的杂质和 固体颗粒,以免对后续设备和管道造成堵塞或损 坏。
分离器
分离器用于将吸收了水分的三甘醇与天然气分离。分离器应具有合理的结构和尺寸,以确 保三甘醇和天然气的有效分离,并减少三甘醇的夹带损失。
加热器
加热器用于对吸收了水分的三甘醇进行加热再生。加热器应具有足够的加热功率和温度控 制精度,以确保三甘醇中的水分被完全蒸发掉,同时避免过高的温度对三甘醇造成热分解 或氧化等不良影响。
余热回收技术
对脱水过程中产生的余热进行回收利用,如用于加热原料气或生 产热水等,以减少能源消耗。
智能化控制技术
应用智能化控制技术对脱水过程进行实时监控和优化控制,提高 生产效率和能源利用效率。
THANKS
感谢观看
03
三甘醇脱水系统操作与维护
系统启动与停止操作
启动前准备
检查系统各部件是否完好,确认 电源、气源等供应是否正常,准 备好所需工具和材料。
启动步骤
按照操作规程逐步启动系统,包 括开启进料阀、启动循环泵、调 整操作参数等。
停止操作
在停止系统前,需要先关闭进料 阀,停止循环泵,然后按照操作 规程逐步停止系统。
吸收法
利用吸湿剂吸收水分,适用于低压、 中温环境,需定期更换吸湿剂。
膜分离法
利用特殊膜材料对水分子的选择性 透过性实现脱水,适用于各种压力、 温度条件,但投资成本较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气脱水原理及工艺流程
一、天然气水合物
1、H2O存在的危害
(1)减少商品天然气管道的输送能力;
(2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备;
(3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断;
(4)作为燃料使用,降低天然气的热值。
2、什么是天然气水合物
天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。
最大的危害是堵塞管道。
(1)物理性质
①白色固体结晶,外观类似压实的冰雪;
②轻于水、重于液烃,相对密度为0.960.98;
③半稳定性,在大气环境下很快分解。
(2)结构
采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:
I、II、H型。
3、天然气水合物生成条件
具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分
天然气中水的存在:液态水是生成水化物的必要条件。
天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。
这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。
一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。
3、天然气水合物生成条件
足够低的温度:低温是形成水化物的重要条件。
气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。
温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。
足够高的压力:水化物生成的温度随压力升高而升高,随压力降低而降低,也就是压力越高易生成水化物。
其它辅助条件:如气体流速和流向的突变产生的扰动、压力的波动和晶种的存在等。
4、防止水合物生成的方法
破坏生成水合物的必要条件即可防止水合物的生成。
1)长距离输气管线水合物的预防措施
对于长距离输气管线要防止水合物的生成可以采用如下方法:①天然气脱水:降低气体内水含量和露点,是防止水合物生成的最有效和最彻底的方法。
②提高输送温度:使气体温度高于水露点而不产生液态水。
③注入水合物抑制剂:抑制剂的种类很多,有甲醇、乙二醇、二甘醇、三甘醇、氯化钙水溶液等,由于使用乙二醇和二甘醇时甘醇的损失较大,而三甘醇以它较大的露点降、技术上的可靠性和经济上的合理性而在天然气脱水中普遍使用。
二、分子筛脱水
分子筛法是一种深度脱水的方法,它的露点降可达120℃以上,即脱水后的干天然气露点甚至可降到-100 ℃以下;所以常用于低温冷凝(NGL)回收及生产液化天然气(LNG)中的脱水工序;此外,生产供汽车作燃料的压缩天然气也需用分子筛脱水。
分子筛除用于脱水外,还可用于脱除天然气中的微量H2S及有机硫化合物,甚至可同时脱硫脱水。
除分子筛外,其他的一些固体吸附剂如活性氧化铝及硅胶等在天然气脱水中也有应用。
1、分子筛的结构
分子筛是一种人工合成的碱金属或碱土金属的硅铝酸盐晶体。
分子筛作为一种结晶硅铝酸盐,其骨架最基本的结构是奎氧(SiO4)和铝氧(AlO4)四面体;它们按一定的方式通过公用顶点氧联结在一起,形成首尾相接的环状,具有许多排列整齐的晶穴、晶孔和孔道。
分子筛中阳离子可被其它阳离子所交换,水可通过加热脱去,
硅(铝)氧骨架也可在一定条件下发生变化。
其分子式的通式为:
用于天然气脱水及脱硫的主要是A型及X型分子。
NaA型分子筛的有效孔径为0.4nm,即4A,所以NaA型分子筛又叫4A型分子筛。
2、分子筛的吸附性能(选择性吸附)
分子筛是具有均一孔径的吸附剂,当被吸附分子的直径小于分子筛孔径时,它才能进入孔内而被吸附,分子“筛”因而得名,所以,分子筛是具有选择性的吸附剂,几种分子筛能够吸附与不能吸附的分子见表。
当用于富天然气脱水时,为防止乙烷以上烃类被吸,可使用3A 分子筛;如用于干天然气以及用于脱硫则需要使用4A乃至更大孔径的分子筛。
分子筛是具有非常大的内表面积,约为600~1000m2/g,其表面由于离子晶格的特点具有高度的极性,因而对极性分子和可极化的分子具有较强的吸附力及较高的吸附容量。
天然气中的水、含硫化合物、二氧化碳就属于极性分子一类,因此,分子筛对它们具有较强的吸附力,分子筛对一些物质的吸附强度顺序如下:
H2O>NH3>CH3OH>CH3SH>H2S>COS>CO2>N2>CH4
可见,水最易为分子筛所吸附,而CH4则不易被吸附。
作为脱水的吸附剂,分子筛虽然在高的相对温度下的平衡湿容量低于活性氧化铝和硅胶,但在低的相对温度下却大大高于它们。
随温度升高,所有吸附湿容量均显著下降,但分子筛在较高的吸附温度下仍然有较高的湿容量。
3、分子筛脱水工艺
分子筛脱水使用固定床吸附器,因此装置至少应有两台吸附器,一个负责吸附脱水阶段,另一个则负责再生及冷却阶段。
当用分子筛用于天然气脱水时,分子筛对水有最高的吸附强度,就水分而言,在吸附过程中分子筛床层存在饱和段、吸附段及未吸附段三个区域;未吸附段虽未吸附水,但却可能吸附了酸气或烃类组分。
随时间增长,饱和段及吸附段不断向前延伸,当吸附段前端抵达出口处时,出口气中水含量达到转效点而迅速上升,此时继续吸附操作已
不能达到所要求的脱水深度而应切换再生。
分子筛的再生均使用加热再生,以脱水后的一部分干气或进料湿气加热后进入吸附器赶出分子筛内的水分,再生气可与进料湿天然气混合进入吸附器脱水。
便在脱水深度要求高的下应使用已脱水的干气作为再生气。
再生结束后冷却至常温,然后转入一下个吸附阶段。
4、分子筛吸附脱水工艺的其它问题
(1)吸附剂的再生
吸附剂的再生是为了除去吸附质,恢复吸附剂活性。
吸附剂的再生过程就是吸附剂的脱附过程。
工业上常用的再生方法是升温脱附,因为温度愈高,湿容量愈小。
通常是用脱过水的天然气作为再生气体,将其加热到一定高温,从塔底进入,自下而上穿过整个床层,利用再生气所具有的高温使吸附剂在吸附过程中所吸附的水分汽化,并被再生气携带从顶部出塔。
脱附完成后,吸附床层的温度很高,不利于吸附。
因此需要用冷干气进行冷却,这一过程称为冷吹。
冷却后的塔方可进行吸附操作。
再生气和冷吹气都是从塔底进入,这样可以确保在吸附操作中未吸附脱水的床层区域在再生操作中没有含水气流过,使吸附床层底部的吸附剂得到完全再生。
(2)吸附剂的内部结构
支撑隔栅:支撑吸附剂和瓷球重量。
瓷球:使气流比较均匀分布,再生时顶部瓷球还有压住吸附剂、防止吸附剂被吹跑的作用。
支撑隔栅上的丝网:防止瓷球漏下。
吸附剂床层上、下丝网:防止吸附剂漏出。