毕业设计外文资料翻译译文
毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
毕业设计外文翻译译文

1 工程概论1.1 工程专业1.2 工业和技术1.3 现代制造业工程专业1 工程行业是历史上最古老的行业之一。
如果没有在广阔工程领域中应用的那些技术,我们现在的文明绝不会前进。
第一位把岩石凿削成箭和矛的工具匠是现代机械工程师的鼻祖。
那些发现地球上的金属并找到冶炼和使用金属的方法的工匠们是采矿和冶金工程师的先祖。
那些发明了灌溉系统并建造了远古世纪非凡的建筑物的技师是他们那个时代的土木工程师。
2 工程一般被定义为理论科学的实际应用,例如物理和数学。
许多早期的工程设计分支不是基于科学而是经验信息,这些经验信息取决于观察和经历,而不是理论知识。
这是一个倾斜面实际应用的例子,虽然这个概念没有被确切的理解,但是它可以被量化或者数字化的表达出来。
3 从16、17世纪当代初期,量化就已经成为科学知识大爆炸的首要原因之一。
另外一个重要因素是实验法验证理论的发展。
量化包含了把来源于实验的数据和信息转变成确切的数学术语。
这更加强调了数学是现代工程学的语言。
4 从19世纪开始,它的结果的实际而科学的应用已经逐步上升。
机械工程师现在有精确的能力去计算来源于许多不同机构之间错综复杂的相互作用的机械优势。
他拥有能一起工作的既新型又强硬的材料和巨大的新能源。
工业革命开始于使用水和蒸汽一起工作。
从此使用电、汽油和其他能源作动力的机器变得如此广泛以至于它们承担了世界上很大比例的工作。
5 科学知识迅速膨胀的结果之一就是科学和工程专业的数量的增加。
到19世纪末不仅机械、土木、矿业、冶金工程被建立而且更新的化学和电气工程专业出现了。
这种膨胀现象一直持续到现在。
我们现在拥有了核能、石油、航天航空空间以及电气工程等。
每种工程领域之内都有细分。
6 例如,土木工程自身领域之内有如下细分:涉及永久性结构的建筑工程、涉及水或其他液体流动与控制系统的水利工程、涉及供水、净化、排水系统的研究的环境工程。
机械工程主要的细分是工业工程,它涉及的是错综复杂的机械系统,这些系统是工业上的,而非单独的机器。
本科毕业设计外文翻译(中文)

本科生毕业设计(论文)外文翻译外文原文题目:Real-time interactive optical micromanipulation of a mixture of high- and low-index particles中文翻译题目:高低折射率微粒混合物的实时交互式光学微操作毕业设计(论文)题目:阵列光镊软件控制系统设计姓名:任有健学院:生命学院班级:06210501指导教师:李勤高低折射率微粒混合物的实时交互式光学微操作Peter John Rodrigo Vincent Ricardo Daria Jesper Glückstad丹麦罗斯基勒DK-4000号,Risø国家实验室光学和等离子研究系jesper.gluckstad@risoe.dkhttp://www.risoe.dk/ofd/competence/ppo.htm摘要:本文论证一种对于胶体的实时交互式光学微操作的方法,胶体中包含两种折射率的微粒,与悬浮介质(0n )相比,分别低于(0L n n <)、高于(0H n n >)悬浮介质的折射率。
球形的高低折射率微粒在横平板上被一批捕获激光束生成的约束光势能捕获,捕获激光束的横剖面可以分为“礼帽形”和“圆环形”两种光强剖面。
这种应用方法在光学捕获的空间分布和个体几何学方面提供了广泛的可重构性。
我们以实验为基础证实了同时捕获又独立操作悬浮于水(0 1.33n =)中不同尺寸的球形碳酸钠微壳( 1.2L n ≈)和聚苯乙烯微珠( 1.57H n =)的独特性质。
©2004 美国光学学会光学分类与标引体系编码:(140.7010)捕获、(170.4520)光学限制与操作和(230.6120)空间光调制器。
1 引言光带有动量和角动量。
伴随于光与物质相互作用的动量转移为我们提供了在介观量级捕获和操作微粒的方法。
过去数十年中的巨大发展已经导致了在生物和物理领域常规光学捕获的各种应用以及下一代光学微操作体系的出现[1-5]。
毕业设计论文外文文献翻译

毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
毕设设计类外文翻译

Interior Design Supports Art Education: A Case StudyInterior design, as a field of study, is a rapidly growing area of interest – particularly for teenagers in the United States. Part of this interest stems from the proliferation ofdesign-related reality shows available through television media. Some art educators and curriculum specialists in the nation perceive the study of interior spaces as a ‘practical application’ of the arts.This article discusses an experiential design problem, originally used in higher education interior design studio courses that was modified and shared with students in third grade to address national academic standards. Later, this same project was modified for use with high school students in the educator’s community a nd with international design students in South Korea.Lastly, the project was presented in a workshop to art education students at a higher education institution. The project was modified to address (1) the age group level and (2) a topic relevant to the audience. Goals of the design project were: (1) to explore creative problem-solving, (2) to explore the application of design elements and principles, and (3) to increase student understanding of spatial relationships within an interior environment. Findings indicate that the project supported several visual art standards, including perception and community. This project may be of interest to current and future art educators and others interested in the potential of interior design content supporting art education.IntroductionThe design of interior spaces is a growing area of interest in the United States. Studies indicate that people spend 90 per cent of their time indoors, thereby making the quality design of interiors critical to the health and welfare of the population. Youth have been unconsciously encouraged since their childhood to develop awareness of their personal interior spaces and furnishings through popular storybooks they read that introduce the awareness of scale, proportion and ergonomics at a very young age (e.g. Three Little Bears and Alice in Wonderland). More recently, teens in the United States have become unexpectedly ‘hooked’ on design related reality shows such as Trading Spaces, Changing Rooms and Design on a Dime. Although Trading Spaces was originally intended for adults, according to the Wall Street Journal article titled ‘The Teen-Room Makeover’ (18 October 2002) the audience has more than 125,000 viewers aged 12 to 17 [1]. In support of that finding, a survey conducted in 2003 for a national chain of hardware stores discovered 65 per cent of teens said they have watched home improvement-related television shows [2].Teens seemingly have a growing interest in the design of interior spaces.In the United States in 2002, a qualitative study was developed to determine if interior design subject-matter could support national academic standards in elementary and secondary schools (kindergarten – twelfth grade) [3]. Findings of the study indicated that art educators and curriculum specialists perceived interior design to be supportive in meeting their standards as a type of ‘practical application’ of the arts. Perceptions of the curriculum specialists indicated they were looking for new ways to interpret fine art standards in their existing curriculum and that interior design offered one solution. As a result, the researcher, who was an interior design educator, was encouraged to identify and develop a project or lesson plan that could introduce children and youth to the importance of well-designed interior spaces yet support an art education standard in the nation.This article discusses an experiential interior design project that was modified from an exercise used in the freshman and sophomore college studio classes and shared with students in third grade, high school, and with international students in South Korea by this interior design educator. The educator was later invited to present this project to art education teachers at her university. The project supported several school district visual art standards, including perception and community. It was modified to address (1) the age group level and (2) a topic relevant to the audience. Goals of the design project were: (1) to explore creative problem solving, (2) to explore the application of design elements and principles, and (3) to increase student understanding of spatial relationships within an interior environment. This project may be of interest to current and future art educators and others interested in the potential of interior design content supporting visual art standards.Review of literatureThe review of literature briefly discusses (1) experiential learning theory, (2) findings from a qualitative study involving art educators, and (3) the interior design link with art education. The interior design project description and process of application will follow.Experiential learningExperiential learning theory, as an application of cognitive/perceptual models, is a tool toenhance the cognitive process of students. Specifically, the experiential learning cycleinvolves a concrete experience that leads to observations and reflections then to formation of abstract concepts and generalisations, before finally testing implications from concepts in new situations [4].The Association for Experiential Education defines experiential education astheprocess by which a learner constructs knowledge, skill and value from direct experience [5]. Drengson [6] defines experiential education as the process of practical engagement withconcepts and skills applied in a practical setting and delivered through physical and practical mental activity.One of the key components to enhance student learning is reflection. Dewey [7] suggests that to have meaning, an experience must be combined with thought. Kolb [8] suggests that reflections can offer a potential source of powerful data to link theory to practice. The mental engagement of an experiential learner can involve questioning, investigation, experimentation, curiosity, problem-solving, assuming responsibility, creativity and the construction of meaning [9].Experiential learning offers the spontaneous opportunity for learning, whether from unplanned moments, natural consequences, mistakes or successes [10]. Holistically, it involves not only the cognitive but also any combination of the senses, the emotions, and the physical [11].Qualitative study involving art educatorsIn 2001, a study was conducted to determine if interior design may be supportive tokindergarten – twelfth grade (K–12) teachers in meeting national academic standards,including the arts [12]. To understand perceptions of experts in interior design and elementary and secondary education, five focus group session sand six personal interviews were conducted with interior design educators, practitioners,K–12 teachers (elementary, junior high, and high school levels), national standards curriculum specialists (local and state level), and school-to-career curriculum specialists from June 2001 to April 2002[13].Focus group findings indicated that K–12teachers, at both elementary and secondary levels, felt that interior design could be supportive in meeting visual art standards because youth are frequently analysing their personal and public spaces. Participants described specific examples of interior design materials they currently needed in their course work to include: examples of good and bad interior spaces, information about elements and principles of design as they relate to interior spaces, and hands-on col our wheels of sturdy materials. In addition they requested that the materials be low cost, stimulating,‘touchable’,recyclable, self-contained, and fun. Lesson plans the visual art teachers suggested included:• reinvention of the ‘shoe box’ projec t;• development of well-known stories (The Three Pigs, Three Little Bears, and Alice in Wonderland) into space models to teach proportion and scale. In addition, it was suggestedthe following lesson plan: use of Goldilocks story to analyse ‘client or consumer needs’;• use of a Dr Seuss story (literary passage) to generate a conceptual model that enhances creativity;• study of cultural spaces at the junior high level that would enhance study of personal expression of identity in interiors [14].The visual arts curriculum specialists indicated hat interior design –as a ‘practical application’ should be introduced in elementary levels where there is a ‘small window of opportunity’ to give good information about the visual arts. See Table 1 fo r an example of the visual art standards in kindergarten – third grade levels. One visual art specialist advocated that the design process was more important to teach than a particular design method. He suggested moving students from designing personal spaces – and the study of elements and principles of design – in elementary levels to the analysis of private and public spaces in the junior high level. Then the high school levels could be reserved for additional indepth Exploration.Today, junior high and high school students are quite attracted to design-related reality shows. Over the last five years, the number of designrelated television shows has increased dramatically [15]. Why are these shows so attractive to teens and young adults? Rodriguez [16]has suggested that this interest is linked to the teens need for expression of self andself-identity.An individual’s unique identity is established through personalisation of space, which is critical to overall development of self [17]. Developing a sense of self involves the use of symbols to communicate to others one’s personal underlying identity.Interior design link with art educationIt is not common for interior design to be linked with art education in K–12 grade levels in the United States. However, the Foundation for Interior Design EducationResearch[18]standards and guidelines – the accreditation organization for higher education interior design programmes in the nation – reveal that there are many shared areas between visual arts and interior design (e.g.elements and principles of design).Rasmussen and Wright [19]advocate the need for a new model for art education. The new model should offer youth an aesthetic education that does more than just serve the traditional concerns of established arts curriculum. Experiences indicate that young people try to make sense of their own lives by creating contextual understanding through actively, and intentionally, making connections to signs, perceptions and experiences. This is a challenge to develop a new art education model that creates a balance between social andcontextual needs, knowledge of young people, and theaesthetic medium itself.The study of interior spaces offers one such context for learning in the physical environment.People spend 90 per cent of their time in interior spaces [20]. Youth consciously or unconsciously, analyse and respond to their near environment. They also learn best if they understand why they are learning what they are learning. Application of design and art to everyday life can assist in making connections in student learning, and develop more awareness of good design as well as an appreciation of the arts. Youth need theopportunity to learn more about design and human behavior so they can learn they have choices about how supportive their environments can be. Children can [determine] how design influences their behaviors; howdesign can be used to manipulate behavior; how design can encourage or discourage conversation, establish status, put people in power positions, increase or decrease anxiety [21].Therefore, based on (1) the experiential learning theoretical underpinnings, (2) recommendations made by art educators and curriculum specialists, and (3) a call for a new ways of teaching art education, an interior design educator at a higher education institution modified an experiential design project that involved the use of elements and principles of design and an opportunity for self-expression of personal spaces. The designproblem of the personal space was changed based on the grade level.Case study project descriptionAlthough art educators and curriculum specialists perceived that interior design content could be supportive to visual art standards, it was determined that a case study project needed to be developed and presented to various grade levels. It was also determined that a conceptual model of interior spaces should be used toenhance student creativity and exploration rather than a finite model that would offer too many rules and boundaries. Project descriptionThe experiential interior design project involved the construction of athree-dimensional concept model using 44 triangular and rectangular pieces of cardstock (stiff) paper in a neutral colour [22]. The objective was to discover, manipulate and create interior spaces based on a given design problem (e.g. design your space station on a planet of your choice or design your home in the Rocky Mountains of Colorado). The purpose ofthe project was to encourage students to design a conceptual structure from the interior out, keep-ing in mind the function of the building. The student’s model had to incorporate a minimum of six spaces and three levels to encourage vertical as well as horizontal volumes. All 44 pieces of cardstock had to be used in the finished model, which sometimes posed achallenge to the youth. The cardstock pieces could not be ripped, torn, or pierced. However, they could be bent and shapedaccording to the whim of the student.Flow from one space to another and one level to another was emphasized. The decision-making design process was explained and encouraged.Outcomes consisted of a three-dimensional abstract model which, if successfully executed, demonstrated the break-down of traditional spatial paradigms. Design problemsEach student grade level was given a different design problem based on the academic standards that were to be met in that class. In some cases, several academic standards were addressed at the same time. Two national standards for visual arts in the United States were selected to be supported with this project: communication and perception. The communication standard indicates that students in kindergarten – third grade should recognise the use of the visual arts as a means of communication (e.g. select and use visual images, themes and ideas in their own work). The perception standard indicates that students know, understand and apply elements of visual arts and principles of design (e.g. Identify elements and principles of design).Third grade studentsAfter procuring appropriate permission, the design educator brought volunteer college-age interior design students to the elementary school to help administer the project. Three third grade classes (twenty students in each class) had just finished a science unit on space and orbits and were studying specific visual art standards. The children were asked to design a personal space station on a planet of their choice. The goal was to help students relate the newly learned science information to something in real life (e.g. Their home), yet encourage exploration of visual arts (see Figs. 2–4).Each team of students was given the same 44 pieces of cardstock (all cut out) in a plastic bag, a cardboard base (15” x 15” square) on which to build the model, and cellophane tape to use in constructing the model. To enhance reflection of this experiential project, each team of three students was asked to give a two-minute verbal presentation in front of the class on their finished model. In this manner, they could discuss their design solution and the design educator could assess their use of creativity through design elements and principles.The college students and design educator rotated through the three classrooms of students to answer questions, encourage use of design elements and principles, and applaud their creative exploration. The third grade teachers assisted in supporting the structure of the class and encouraging shy students who were reluctant to begin.It was interesting to observe that the children rarely built the models on their provided classroom tables. Instead,they moved to the floor space, located the base for the model in between team members, and began construction. Each team member assumed a role in the process. One team member seemed t o act as the ‘designer’, one as the ‘builder/construction crew’ and the last as the ‘supplier’ of materials. Students excitedlydiscussed the positioning of the triangular pieces of cardstock in their model, their rooms in their space stations, and the different ways to turn the model to create different vantage points.The teams of third graders had one hour to complete the models. Then their verbal presentations began, interspersed with questions and comments from the design educator and third grade teachers. Informal observations indicatedthat application of design elements and principles was strong – perhaps due to the consistent rectangular and triangular shapes that had been provided – thereby supporting the visual arts perception standard. Manipulation of shapes was innovative. Line, shape and form were used to provide movement through adjoining spaces and offered a sense of verticality. Interior volumes were created that supported human behaveour in interior spaces. For example, one team’s presentation discussed how their space station boasted an exercise room with trampolines to strengthen human muscles that weakened as a result of zero gravity in outer space. The communication standard was supported in their finished models in a couple ways. First there was a theme of design as it relates to protection from foreign objects. For example, one team’s space station on Saturn incorporated a force field to protect it from flying rocks. Other visual themes of security and safety evoked the implementation of security cameras, alien detectors, missile launchers, telescope laboratories, control stations and transport rooms. Another visual theme related to circulation. Circulation within the structure was depicted by the third graders through the use of escalators, stairs, elevators and poles. A third visual theme was unique human needs as they relate to interior spaces. Almost every team’s space station incorporated a room for their mothers! In addition, depending on the students’ personal interests, unique space station features ranged from chemical rooms to sandboxes. It was obvious in their multiple unique design solutions their use of creativity had been explored and enhanced.Evaluation and assessment that took place, after the classes were dismissed, indicated that the third grade teachers perceived that this experiential design project supported the visual arts standards in both the communication and perception components as well as the third grade science academic standard concerning space and orbits. In addition, the experiential component of the project had unexpected results when certain quiet, unassuming students in the class became animated and highly engaged in learning. One teacher shared her excitement with the design educator about a new connection that wasformed with one of students that she had not been able to connect with before the design exercise.High school studentsAfter the case study with the third grade students, it was determined to offer this project to high school students. Diversity students in a nearby community were invited to attend a complimentary design workshop at a local library. The interior design educator was asked to present a design problem that would relate to arteducation (see Figs. 6–8).Their problem was to use the same experiential project and shapes to design and construct a conceptual model of their new home or cabin in the Rocky Mountain region. The same project constraints existed. Due to the students’ ages, discussions took place prior to the exercise about innovative problem-solving, the exploration of creativity and the elements and principles of design used within the design process. Some of these elements and principles included:Scale. Awareness of human scale was addressed to develop understanding of proportion and scale of the structure and interior spaces. Shape. Triangular shapes were deliberately selected to encourage students to break paradigms of rectangular interior spaces.Colour. The cardstock pieces were of a neutral colour to enhance spatial composition rather than draw attention to colour usage or juxtaposition. Volume/Mass. The mass of thethree-dimensional model was important in communicating the use of common elements and principles of design (e.g. line, rhythm). Line. A variety of different lines (e.g. diagonal, horizontal) were investigated in the manipulation of the shapes. Space. Space was created through the manipulation of shapes. Theories of complexity, mystery and refuge within interior spaces were discussed. Informal assessment of the finished design models indicated that the design solutions werevery creative.Later that semester, by invitation, the same design project was taken to college students training to be art educators in a mini-workshop format. The art education students found the exercise effective in enhancing creativity and understanding how interior design can enhance understanding of visual arts.International studentsAlthough there was no intention to meet a national visual arts academic standard at a specific grade level, this same experiential design project was presented in Seoul, South Korea to college-aged international students. The design problem was to use the same 44 pieces to develop a design concept model for acommercial building in Seoul. Language translators were used to help the design educatorintroduce the project, guide the students through the process, and understand their verbal presentations at the end of the workshop.Students commented during and after the workshop how the model enhanced their visual literacy skills (they used different words) and creativity within the context of everyday life. The experiential nature of the workshop was seemingly a pleasure to them (see Figs.9–11).Discussion and conclusionThis interior design case study project was designed to be experiential in nature to enhance student learning of the visual arts. Student and teacher assessment of the various groups indicated enthusiasm for the design project because it enhanced creativity, explored multiple design solutions, related to real life, and increased their understanding of human behaviour within the context of the physical environment. Teacherassessment of the age groups indicated that the project did support visual art standards at the appropriate grade level. In addition, their assessment indicated satisfaction with the manner in which the interior design project encouraged student usage of the design elements and principles and the application of design to everyday living. Several instructors indicated that quiet and shy students in their class became engaged in the learning process, which had not been previously observed. Perception of art educators and art education students was that this project supported a variety of visual art standards such as perception and communication. This interior design case study project can be modified for various age and cultural groups and may be of interest to educators who are interested in working collaboratively with colleagues from other disciplines.Visual art programmes in the United States are being cut from the K–12 curriculum. By linking visual arts to an up-and-coming aesthetic field, such as interior design, there may be new ways to sustain and grow visual art programmes in the nation.References1. Orndoff, K. (2003) ASID American Society of Interior Designers 2003 Strategic Environment Report. Future Impact Education, p. 9.2. Levitz, S. (2004) Teens Hooked on Home Décor, London Free Press (Ontario, CA), 24 June, p. D2.3. Clemons, S. (2002) Collaborative Links with K–12: A Proposed Model Integrating Interior Design with National Education Standards, Journal of Interior Design, Vol. 28, No. 1, pp.40–8.4. Rubin, S. G. (1983) Overcoming Obstacles to Institutionalization of Experiential Learning Programs, New Directions for Experiential Learning, Vol. 20, pp. 43–54.5. Luckman, C. (1996) Defining Experiential Education, Journal of Experiential Education, Vol. 19, No. 1, pp. 6–7.6. Drengson, A. R. (1995) What Means this Experience? in Kraft, R. J. & Sokofs, M. [Eds] The Theory of Experiential Education. Boulder, CO: Association for Experiential Education, pp. 87–93.7. Dewey, J. (1916) Democracy and Education. New York: Macmillan.8. Kolb, D. A. (1984). Experiential Learning: Experience as the Sources of Learning and Development. Englewood Cliffs, NJ: Prentice-Hall.9. Luckmann, C. op. cit.10. Ibid.11. Carver, R. (1996) Theory for Practice: A Framework for Thinking about Experiential Education, Journal of Experiential Education, Vol. 19, No. 1, pp. 8–13.12. Clemons, S. op. cit.13. Ibid.14. Ibid.15. Bien, L. (2003) Renovating how-to TV Shows in a Race to Duplicate Success of ‘Trading Spaces’. The Post Standard (Syracuse, NY), 31 October, p. E1.16. Rodriguez, E. M. (2003) Starting Young, Miami Herald, 28 December, p. H–1.17. Baillie S. & Goeters, P. (1997) Home as a Developmental Environment. Proceedings of the American Association of Housing Educators, New Orleans, LA, pp. 32–6.18. Foundation of Interior Design Education Research (FIDER) home page. Available from URL: / (Accessed 4th January 2005).19. Rasmussen, B & Wright, P. (2001) The theatre workshop as educational space: How imagined reality is voiced and conceived, International Journal of Education & the Arts, Vol. 2, No. 2, pp.1–13.20. Environmental Protection Agency (2006) An Introduction to Indoor Air Quality (online). Available from URL: /iaq/ ia-intro.html (Accessed 26th September 2006).21. InformeDesign (n.d.) Implications, Vol. 1, No. 2, p. 2 (online). Available from URL: /# (Accessed 4th January 2005).22. Curfman, J. & Clemons, S. (1992) From Forty-Four Pieces to a New Spatial Paradigm, in Birdsong, C. [Ed.] Proceedings of the Interior Design Educators Council Southwest Regional Meeting, New Orleans, pp. 2–4./detail/refdetail?tablename=SJWD_U&filename=SJWD00000744102&uid=WEEvR EcwSlJHSldSdnQ0SWZDdUlMV1dWZi9tOGkyYTBaTzBVQjVYeENXYVp4MVRJQjI3cmZRYS9YRmhvdnlxazJRPT 0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!Interior Design in Augmented Reality EnvironmentABSTRACTThis article presents an application of Augmented Realitytechnology for interior design. Plus, an Educational InteriorDesign Project is reviewed. Along with the dramatic progress ofdigital technology, virtual information techniques are alsorequired for architectural projects. Thus, the new technology ofAugmented Reality offers many advantages for digitalarchitectural design and construction fields. AR is also beingconsidered as a new design approach for interior design. In an ARenvironment, the virtual furniture can be displayed and modifiedin real-time on the screen, allowing the user to have an interactiveexperience with the virtual furniture in a real-world environment.Here, AR environment is exploited as the new workingenvironment for architects in architectural design works, and thenthey can do their work conveniently as such collaborativediscussion through AR environment. Finally, this study proposesa newmethod for applying AR technology to interior designwork, where a user can view virtual furniture and communicatewith 3D virtual furniture data using a dynamic and flexible userinterface. Plus, all the properties of the virtual furniture can beadjusted using occlusion- based interaction method for a TangibleAugmented Reality. General TermsApplications of computer science in modeling, visualization andmultimedia, graphics and imaging, computer vision, human-computerinteraction, et al.KeywordsAugmented Reality, Tangible AR, CAAD, ARToolKit, Interiordesign.1. INTRODUCTIONVisualizing how a particular table or chair will look in a roombefore it is decorated is a difficult challenge for anyone. Hence,Augmented Reality (AR) technology has been proposed forinterior design applications by few previous authors, for example,Koller, C. Wooward, A. Petrovski; K. Hirokazu, et al. The relateddevices typically include data glassesconnected to a。
毕业设计中英文翻译

Bridge Waterway OpeningsIn a majority of cases the height and length of a bridge depend solely upon the amount of clear waterway opening that must be provided to accommodate the floodwaters of the stream. Actually, the problem goes beyond that of merely accommodating the floodwaters and requires prediction of the various magnitudes of floods for given time intervals. It would be impossible to state that some given magnitude is the maximum that will ever occur, and it is therefore impossible to design for the maximum, since it cannot be ascertained. It seems more logical to design for a predicted flood of some selected interval ---a flood magnitude that could reasonably be expected to occur once within a given number of years. For example, a bridge may be designed for a 50-year flood interval; that is, for a flood which is expected (according to the laws of probability) to occur on the average of one time in 50 years. Once this design flood frequency, or interval of expected occurrence, has been decided, the analysis to determine a magnitude is made. Whenever possible, this analysis is based upon gauged stream records. In areas and for streams where flood frequency and magnitude records are not available, an analysis can still be made. With data from gauged streams in the vicinity, regional flood frequencies can be worked out; with a correlation between the computed discharge for the ungauged stream and the regional flood frequency, a flood frequency curve can be computed for the stream in question. Highway CulvertsAny closed conduit used to conduct surface runoff from one side of a roadway to the other is referred to as a culvert. Culverts vary in size from large multiple installations used in lieu of a bridge to small circular or elliptical pipe, and their design varies in significance. Accepted practice treats conduits under the roadway as culverts. Although the unit cost of culverts is much less than that of bridges, they are far more numerous, normally averaging about eight to the mile, and represent a greater cost in highway. Statistics show that about 15 cents of the highway construction dollar goes to culverts, as compared with 10 cents for bridge. Culvert design then is equally as important as that of bridges or other phases of highway and should be treated accordingly.Municipal Storm DrainageIn urban and suburban areas, runoff waters are handled through a system of drainage structures referred to as storm sewers and their appurtenances. The drainage problem is increased in these areas primarily for two reasons: the impervious nature of the area creates a very high runoff; and there is little room for natural water courses. It is often necessary to collect the entire storm water into a system of pipes and transmit it over considerable distances before it can be loosed again as surface runoff. This collection and transmission further increase the problem, since all of the water must be collected with virtually no ponding, thus eliminating any natural storage; and though increased velocity the peak runoffs are reached more quickly. Also, the shorter times of peaks cause the system to be more sensitive to short-duration, high-intensity rainfall. Storm sewers, like culverts and bridges, are designed for storms of various intensity –return-period relationship, depending upon the economy and amount of ponding that can be tolerated.Airport DrainageThe problem of providing proper drainage facilities for airports is similar in many ways to that of highways and streets. However, because of the large and relatively flat surface involved the varying soil conditions, the absence of natural water courses and possible side ditches, and the greater concentration of discharge at the terminus of the construction area, some phases of the problem are more complex. For the average airport the overall area to be drained is relatively large and an extensive drainage system is required. The magnitude of such a system makes it even more imperative that sound engineeringprinciples based on all of the best available data be used to ensure the most economical design. Overdesign of facilities results in excessive money investment with no return, and underdesign can result in conditions hazardous to the air traffic using the airport.In other to ensure surfaces that are smooth, firm, stable, and reasonably free from flooding, it is necessary to provide a system which will do several things. It must collect and remove the surface water from the airport surface; intercept and remove surface water flowing toward the airport from adjacent areas; collect and remove any excessive subsurface water beneath the surface of the airport facilities and in many cases lower the ground-water table; and provide protection against erosion of the sloping areas. Ditches and Cut-slope DrainageA highway cross section normally includes one and often two ditches paralleling the roadway. Generally referred to as side ditches these serve to intercept the drainage from slopes and to conduct it to where it can be carried under the roadway or away from the highway section, depending upon the natural drainage. To a limited extent they also serve to conduct subsurface drainage from beneath the roadway to points where it can be carried away from the highway section.A second type of ditch, generally referred to as a crown ditch, is often used for the erosion protection of cut slopes. This ditch along the top of the cut slope serves to intercept surface runoff from the slopes above and conduct it to natural water courses on milder slopes, thus preventing the erosion that would be caused by permitting the runoff to spill down the cut faces.12 Construction techniquesThe decision of how a bridge should be built depends mainly on local conditions. These include cost of materials, available equipment, allowable construction time and environmental restriction. Since all these vary with location and time, the best construction technique for a given structure may also vary. Incremental launching or Push-out MethodIn this form of construction the deck is pushed across the span with hydraulic rams or winches. Decks of prestressed post-tensioned precast segments, steel or girders have been erected. Usually spans are limited to 50~60 m to avoid excessive deflection and cantilever stresses , although greater distances have been bridged by installing temporary support towers . Typically the method is most appropriate for long, multi-span bridges in the range 300 ~ 600 m ,but ,much shorter and longer bridges have been constructed . Unfortunately, this very economical mode of construction can only be applied when both the horizontal and vertical alignments of the deck are perfectly straight, or alternatively of constant radius. Where pushing involves a small downward grade (4% ~ 5%) then a braking system should be installed to prevent the deck slipping away uncontrolled and heavy bracing is then needed at the restraining piers.Bridge launching demands very careful surveying and setting out with continuous and precise checks made of deck deflections. A light aluminum or steel-launching nose forms the head of the deck to provide guidance over the pier. Special teflon or chrome-nickel steel plate bearings are used to reduce sliding friction to about 5% of the weight, thus slender piers would normally be supplemented with braced columns to avoid cracking and other damage. These columns would generally also support the temporary friction bearings and help steer the nose.In the case of precast construction, ideally segments should be cast on beds near the abutments and transferred by rail to the post-tensioning bed, the actual transport distance obviously being kept to the minimum. Usually a segment is cast against the face of the previously concerted unit to ensure a good fit when finally glued in place with an epoxy resin. If this procedure is not adopted , gaps of approximately 500mm shold be left between segments with the reinforcements running through andstressed together to form a complete unit , but when access or space on the embankment is at a premium it may be necessary to launch the deck intermittently to allow sections to be added progressively .The correponding prestressing arrangements , both for the temporary and permanent conditions would be more complicated and careful calculations needed at all positions .The pricipal advantage of the bridge-launching technique is the saving in falsework, especially for high decks. Segments can also be fabricated or precast in a protected environment using highly productive equipment. For concrete segment, typically two segment are laid each week (usually 10 ~ 30 m in length and perhaps 300 to 400 tonnes in weight) and after posttensioning incrementally launched at about 20 m per day depending upon the winching/jacking equipment.Balanced Cantiulever ConstructionDevelopment in box section and prestressed concrete led to short segment being assembled or cast in place on falsework to form a beam of full roadway width. Subsequently the method was refined virtually to eliminate the falsework by using a previously constructed section of the beam to provide the fixing for a subsequently cantilevered section. The principle is demonsrated step-by-step in the example shown in Fig.1.In the simple case illustrated, the bridge consists of three spans in the ratio 1:1:2. First the abutments and piers are constructed independently from the bridge superstructure. The segment immediately above each pier is then either cast in situ or placed as a precast unit .The deck is subsequently formed by adding sections symmetrically either side.Ideally sections either side should be placed simultaneously but this is usually impracticable and some inbalance will result from the extra segment weight, wind forces, construction plant and material. When the cantilever has reached both the abutment and centre span,work can begin from the other pier , and the remainder of the deck completed in a similar manner . Finally the two individual cantilevers are linked at the centre by a key segment to form a single span. The key is normally cast in situ.The procedure initially requires the first sections above the column and perhaps one or two each side to be erected conventionally either in situ concrete or precast and temporarily supported while steel tendons are threaded and post-tensioned . Subsequent pairs of section are added and held in place by post-tensioning followed by grouting of the ducts. During this phase only the cantilever tendons in the upper flange and webs are tensioned. Continuity tendons are stressed after the key section has been cast in place. The final gap left between the two half spans should be wide enough to enable the jacking equipment to be inserted. When the individual cantilevers are completed and the key section inserted the continuity tendons are anchored symmetrically about the centre of the span and serve to resist superimposed loads, live loads, redistribution of dead loads and cantilever prestressing forces.The earlier bridges were designed on the free cantilever principle with an expansion joint incorporated at the center .Unfortunately,settlements , deformations , concrete creep and prestress relaxation tended to produce deflection in each half span , disfiguring the general appearance of the bridge and causing discomfort to drivers .These effects coupled with the difficulties in designing a suitable joint led designers to choose a continuous connection, resulting in a more uniform distribution of the loads and reduced deflection. The natural movements were provided for at the bridge abutments using sliding bearings or in the case of long multi-span bridges, joints at about 500 m centres.Special Requirements in Advanced Construction TechniquesThere are three important areas that the engineering and construction team has to consider:(1) Stress analysis during construction: Because the loadings and support conditions of the bridge are different from the finished bridge, stresses in each construction stage must be calculated to ensurethe safety of the structure .For this purpose, realistic construction loads must be used and site personnel must be informed on all the loading limitations. Wind and temperature are usually significant for construction stage.(2) Camber: In order to obtain a bridge with the right elevation, the required camber of the bridge at each construction stage must be calculated. It is required that due consideration be given to creep and shrinkage of the concrete. This kind of the concrete. This kind of calculation, although cumbersome, has been simplified by the use of the compiters.(3) Quality control: This is important for any method construction, but it is more so for the complicated construction techniques. Curing of concrete, post-tensioning, joint preparation, etc. are detrimental to a successful structure. The site personnel must be made aware of the minimum concrete strengths required for post-tensioning, form removal, falsework removal, launching and other steps of operations.Generally speaking, these advanced construction techniques require more engineering work than the conventional falsework type construction, but the saving could be significant.大桥涵洞在大多数情况中桥梁的高度和跨度完全取决于河流的流量,桥梁的高度和跨度必须能够容纳最大洪水量.事实上,这不仅仅是洪水最大流量的问题,还需要在不同时间间隔预测不同程度的水灾。
毕业设计(论文)外文资料翻译(学生用)

毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。
程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。
一般地,我们需要理解连网协议中不同的“层”(Layer)。
而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。
这是一项令人痛苦的工作。
但是,连网本身的概念并不是很难。
我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。
这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。
Java最出色的一个地方就是它的“无痛苦连网”概念。
有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。
我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。
除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。
本章将用一系列易懂的例子解释Java的连网支持。
15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。
早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。
但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。
为达到这个目的,我们采用了IP(互联网地址)的概念。
IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。
我自己的域名是。
所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。
本科毕业设计(论文)外文翻译

重金属污染存在于很多工业的废水中,如电镀,采矿,和制革。
2.实验
2.1化学药剂
本实验所使用的药剂均为分析纯,如无特别说明均购买自日本片山化工。铅离子储备液通过溶解Pb(NO3)2配制,使用时稀释到需要的浓度。HEPES缓冲液购买自Sigma–Aldrich。5 mol/L的HCl和NaOH用来调整pH。
附5
华南理工大学
本科毕业设计(论文)翻译
班级2011环境工程一班
姓名陈光耀
学号201130720022
指导教师韦朝海
填表日期
中文译名
(1)巯基改性纤维素对葡萄糖溶液中铅的吸附(2)黄原酸化橘子皮应用于吸附水中的铅离子
外文原文名
(1)Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass
2.5分析方法
铅离子的浓度用分光光度计在616 nm波长处用铅与偶氮氯膦-III络合物进行分析。葡萄糖含量采用苯酚—硫酸分光光度法测定。所有的实验均进行三次,已经考虑好误差。
3.结果和讨论
3.1FTIR分析和改性脱脂棉对铅(II)的吸附机制
图1是脱脂棉、改性脱脂棉在400-4000 cm-1(A)和2540-2560 cm-1(B)范围内的红外光谱图。可以看出,改性后改性脱脂棉的红外光谱图中在1735.71 cm-1处出现了一个新的吸收峰是酯基C=O的拉伸振动峰,可见改性脱脂棉中已经成功引入巯基官能团。同时,在2550.52 cm-1出现的一个新吸收峰代表的是S-H官能团的弱吸收峰,更深一层的证明了巯基已经嫁接到脱脂棉上。图1(b)是2540-2560 cm-1光谱范围的一个放大图像,可以清楚的观察到S-H官能团的弱吸收峰。进一步证明了酯化改性脱脂棉引入巯基是成功的。而从吸附后的曲线可以看到,2550.52cm-1处S-H的吸收峰消失,证明了硫原子和Pb(II)络合物的形成,同时1735.71cm-1处C=O的吸收峰强度看起来有轻微的减弱可能也是和Pb(II)的络合吸附有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件1:外文资料翻译译文包装对食品发展的影响一个消费者对某个产品的第一印象来说包装是至关重要的,包括沟通的可取性,可接受性,健康饮食形象等。
食品能够提供广泛的产品和包装组合,传达自己加工的形象感知给消费者,例如新鲜包装/准备,冷藏,冷冻,超高温无菌,消毒(灭菌),烘干产品。
食物的最重要的质量属性之一,是它的味道,其影响人类的感官知觉,即味觉和嗅觉。
味道可以很大程度作退化的处理和/或扩展存储。
其他质量属性,也可能受到影响,包括颜色,质地和营养成分。
食品质量不仅取决于原材料,添加剂,加工和包装的方法,而且其预期的货架寿命(保质期)过程中遇到的分布和储存条件的质量。
越来越多的竞争当中,食品生产商,零售商和供应商;和质量审核供应商有显着提高食品质量以及急剧增加包装食品的选择。
这些改进也得益于严格的冷藏链中的温度控制和越来越挑剔的消费者。
保质期的一个定义是:在食品加工和包装组合下,在食品的容器和条件,在销售点分布在特定系统的时间能保持令人满意的食味品质。
保质期,可以用来作为一个新鲜的概念,促进营销的工具。
延期或保质期长的产品,还提供产品的使用时间,方便以及减少浪费食物的风险,消费者和/或零售商。
包装产品的质量和保质期的主题是在第3章中详细讨论。
包装为消费者提供有关产品的重要信息,在许多情况下,使用的包装和/或产品,包括事实信息如重量,体积,配料,制造商的细节,营养价值,烹饪和开放的指示,除了法律准则的最小尺寸的文字和数字,有定义的各类产品。
消费者寻求更详细的产品信息,同时,许多标签已经成为多语种。
标签的可读性是为视障人士的问题,这很可能成为一个对越来越多的老年人口越来越重要的问题。
食物的选择和包装创新的一个主要驱动力是为了方便消费者的需求。
这里有许多方便的现代包装所提供的属性,这些措施包括易于接入和开放,处置和处理,产品的知名度,再密封性能,微波加热性,延长保质期等。
在英国和其他发达经济体显示出生率下降和快速增长的一个相对富裕的老人人口趋势,伴随着更加苛刻的年轻消费者,他们将要求和期望改进包装的功能,如方便包揭开(百货配送研究所,IGD)。
对零售商而言存在有一个高的成本,供应和服务的货架体系。
没有储备足够的产品品种或及时补充库存,特别是副食品,如鲜牛奶,可能导致客户不满和流失到竞争对手的商店,这正需要保证产品供应。
现代化的配送和包装系统,允许消费者在购买食品时,他们希望在他们想任何时间地点都能享用。
近几年消费者的选择已在急剧扩大。
例如在英国,20世纪60年代和90年代之间在一般超市的产品线的数量从2000年左右上升到超过18000人(INCPEN)。
自20世纪70年代以来,食品卫生和安全问题已成为日益重要的关注和选择食物的驱动力。
媒体所关注的一系列问题,如使用化学添加剂和食品污染事故已警示消费者,这些事件都是故意的,恶意篡改的,和在生产过程意外发生的。
然而,许多消费者都没有充分认识到包装在维护食品安全和质量过程中的重要作用。
明显更改之后的包装迅速推出,不仅为了保护消费者,而且为了品牌的一个效果,一直是许多预包装食品。
另一个影响一直激励消费者注重保质保鲜、最小加工和对产品的原产地(OECD)的标准给予更多的关注。
消费者直接通过他们的购买方式和它们所产生的包装废弃物对环境的影响。
消费者购买包装作为产品的一部分,包装的重量,多年来,所包含的产品,相对下降。
然而,消费模式产生了更大容量的包装,由于人口结构的变化和生活方式的变化,这些情况使得包装体积,而不是包装的重量,正成为吸引公众关注的关键。
此外,朝预包装食品和食品包装服务的发展趋势,增加了塑料包装废弃物进入固体废物流的金额。
零售商和制造商所使用的营销策略之一,是对环境的兼容性。
然而,消费者往往混淆或发现它很难界定什么是对环境负责的或友好的包装。
正是这种缺乏明确的含义,至今无法利用,以使零售商和包装公司获得竞争优势。
消费者需要明确的信息来指导他们的行动,使大多数的人差异化。
包装链的各部门负责解释的职能和自身包装的好处,厂家销售好的包装,他们的客户,产品的厂家,但这一特定的信息到达最终顾客相对较少。
包装在现代快速消费品零售上的发展,反过来成了促使以满足其需求的演变的关键。
最重要的发展为食品包装行业已出现大型零售集团。
这些群体产生巨大的影响和控制生产什么,如何介绍产品和它们是如何分配商店的。
大型零售商处理的包装食品杂货市场的主要份额对食品生产厂家相关的包装供应商施加相当大的影响。
因此,重要的包装供应商充分了解市场需求和快速响应变化。
此外,买方力量集中在零售层面是指制造商可能需要修改它们的分布和包装业务反应的结构变化的零售。
论包装多种食品零售环境可考虑其在品牌竞争和零售物流中的作用。
在食品销售流通中一个重要的关键,一个品牌的成功,或仅仅是生存在一个高度竞争的市场,包装起着至关重要的作用。
包装设计创新存在于一线之间的竞争品牌的主要零售商和产品制造商,已在近年来推动巨大的零售增长,行业激烈的竞争和日益苛刻和复杂的消费者。
在个人品牌/产品的基础上,成功取决于产品制造商的快速创新的反应的主要趋势。
一个最有效的回应方式是通过独特的包装,这已经成为一个品牌成功关键因素。
零售商自有品牌产品与制造商的品牌在几乎每一个产品类别竞争激烈。
品牌差异化可以提高创新的包装设计,赋予审美和/或功能属性。
包装在预测零售商的形象,赢得竞争优势方面起着重要的支撑作用。
一般零售商自己的品牌形象的目的是积极的消息,如高品质的,健康的饮食,新鲜,环保意识还是物有所值的整体。
例如,零售商是热衷于环保意识,推动部分为可生物降解、可堆肥包装成长的利基市场,他们正在使用它作为与客户的沟通点。
包装与广告是密切相关的,但它远远超过了广告,重点是因为它每天在家里和在零售货架上向消费者介绍产品。
商品显示,目前用一个有吸引力的或有趣的方式和媒体广告与包装的形象一致的包装设计也有利于促进品牌。
品牌的拥有者是经常负责采购操作,促销活动的关键是通过利用有效的包装,存在多种返还优惠的方式,如免费额外的产品,退返现金,特别版,新的改进产品,铝箔新鲜包装。
零售商的忠诚卡计划使用条码扫描信息购买和销售决策,对其产生了很大的影响。
他们的任务是更好地利用这一信息消费行为为目的,并建立品牌忠诚度。
零售商还可以使用此信息来评估新的包装设计有效性,返还促销和新产品销售。
包装的作用在多个零售物流配送和店内商品有严格的限制。
零售商是接受包装,降低经营成本,增加存货周转率,转化为吸引力商品显示器 - 如预组装或易于装配显示 - 满足物流服务水平(可靠性,响应速度和产品的可用性)。
例如,联合运输销售点包装节省商店劳动力通过更快货架载荷,从而避免需要使用有潜在危险的不安全的切割工具,提供方便的机会,并减少了污染源的可能。
总经销成本影响,通过对价格的影响(麦金农,1989)的需求总量。
对于一些快速移动商品型产品,如巴氏杀菌奶,分销及零售商品成本产品总成本占高达50%或更多的销售价格通常是一个相当大的比例。
包装材料和容器还增加了成本而设计出最佳包装系统可以大大降低在零售连锁配送的成本。
发展全球食品供应链意味着,许多生产点位置远离消费点,往往导致配送成本较高。
通过改善供应链运作效率,进行分销成本控制是一个零售商竞争优势关键。
零售商必须最大限度地发挥在分销渠道(西,1989年)的运作效率。
分配目标是以最少的成本为客户提供必要的服务水平,最具成本效益后勤包装标识变得更加重要。
配送成本领域,包括仓储,库存,运输,管理包装;仓储,库存,运输和储存劳动是零售商的主要成本区而运输,仓储包装食品制造商主要成本区。
多种零售食品供应链效率依赖于零售商,食品生产商和包装供应商之间密切沟通。
它还依赖于准确的订单预测可能的市场需求。
信息技术大规模投资,使更紧密的供应链的整合,并通过电子数据交换(EDI),确保股票上刚刚在实时(JIT)的基础上移动商店,出售届满前条形码是一个代码,使全行业的零售产品单位鉴定通过一个独特的参考号码,主要应用在零售结帐电子销售系统(EPOS)。
小学,中学和大专院校包装使用鉴定的条形码,使有效的分配管理和库存控制。
附件2:外文原文FOOD PACKING TECHNOLOGYPackaging is critical to a consumer’s first impression of a product, communi- cating desirability, acceptability, healthy eating image etc. Food is available in a wide range of product and pack combinations that convey their own processed image perception to the consumer e.g. freshly packed/prepared, chilled, frozen, ultra-heat treated (UHT) aseptic, in-can sterilised and dried products.One of the most important quality attributes of food, affecting human sen- sory perception, is its flavour, i.e. taste and smell. Flavour can be significantlydegraded by processing and/or extended storage. Other quality attributes that may also be affected include colour, texture and nutritional content. The quality of a food depends not only on the quality of raw ingredients, additives, methods of processing and packaging, but also on distribution and storage conditions encountered during its expected shelf life. Increasing competition amongst food producers, retailers and packaging suppliers; and quality audits of suppliers have resulted in significant improvements in food quality as well as a dramatic increase in the choice of packaged food. These improvements have also been aided by tighter temperature control in the cold chain and a more discerning consumer.One definition of shelf life is: the time during which a combination of food processing and packaging can maintain satisfactory eating quality under the particular system by which the food is distributed in the containers and the conditions at the point of sale. Shelf life can be used as a marketing tool for promoting the concept of freshness. Extended or long shelf life products also provide the consumer and/or retailer with the time convenience of pro duct use as well as a reduced risk of food wastage. The subject of Packaged product q u a l i t y a n d s h e l f l i f e i s d i s c u s s e d i n d e t a i l i n C h a p t e r 3.Packaging provides the consumer with important information about the product and, in many cases, use of the pack and/or product. These include facts such as weight,volu me, ingred ients,the manufac turer’s details, nutritional value, cooking and opening instructions. In addition to legal guidelines on the minimum size of lettering and numbers, there are definitions for the various types of product. Consumers are seeking more detailed nformation about products and, at the same time, many labels have become multilingual. Legibility of labels is an issue for the visually impaired and this is likely to become more important with an increasingly elderly population..A major driver of food choice and packaging innovation is the consumer demand for convenience. There are many convenience attributes offered by modern packaging. These include ease of access and opening, dispos al and handling, product visibility, resealability, microwaveability, prolonged shelflife etc. Demographic trends in the age profile of the UK and other advanced economies reveal a declining birth rate and rapid growth of a relatively afflu- ent elderly population. They, along with a more demanding young consumer, will require and expect improved pack functionality, such as ease of pack o p e n i n g(T h e I n s t i t u t e o f G r o c e r y D i s t r i b u t i o n,I G D).There is a high cost to supplying and servicing the retailer’s shel f. Failure to stock a sufficient variety of product or replenish stock in time, especially for staple foods such as fresh milk, can lead to customer dissatisfaction and defection to a competitor’s store, where product availability is assured. Mod- ern distribution and packaging systems allow consumers to buy food when and where they want them. Consumer choice has expanded dramatically in recent years. In the UK, for example, between the 1960s and 1990s the number of product lines in the average supermarket rose from around 2000 to over 18 000. . Since the 1970s, food health and safety have become increasingly major concerns and drivers of food choices. Media attention has alerted consumers to a range of issues such as the use of chemical additives and food contamination incidents. These incidents have been both deliberate, by malicious tampering, and accidental, occurring during the production process. However, many consumers are not fully aware of the importance of packaging in maintaining food safety and quality. One effect has been the rapid introduction of tamper evident closures for many pre-packaged foods in order to not only protect the consumer but also the brand. Another impact has been to motivate consumers to give more attention to the criteria of freshness/shelf life, minimum processing and the products oringin..Consumers ha ve dire ct environ mental imp act through the wa y the y purchase and the packaging waste they generate. Consumers purchase packaging as part of the product and, over the years, the weight of packaging has declined relative to that of the product contained. However, consumption patterns have generated larger volumes of packaging due to changing demo- graphics and lifestyles. It is the volume of packaging rather than the weightof packaging that is attracting critical public attention. In addition, the trend toward increased pre-packaged foods and food service packaging has increased the amount of plastics packaging waste entering the solid waste stream. Packaging has been a key to the evolution of modern fast-moving consu goods retailing that in turn has spurred on packaging developments to meet its requirements. The most significant development for the food packaging supply industries has been the emergence of large retail groups. These groups exert enormous influence and control over what is produced, how products are pre- sented and how they are distributed to stores. The large retailers handle a major share of the packaged grocery market and exert considerable influence on food manufacturers and associated packaging suppliers. It is, therefore, import ant for packaging suppliers to be fully aware of market demand and respond quickly to changes. In addition, the concentration of buyer power at the retail level means that manufacturers may have to modify their distribution and p a c k a g i n g o p e r a t io n s i n r e s p o n s e to s t r u c t u r a l c h a n g e s i n r e ta i l i n g.Packaging for fast-moving consumer goods (f.m.c.g.) has been referred to as part of the food retail marketing mix and thus closely affects all th e other marketing variables i.e. product, price, promotion, and place (Nickels & Jolsen,The discussion on packaging in the multiple food retail environment may be considered in terms of its role in brand competition and retail logistics. The role of packaging in brand competition.Packaging plays a vital role infood marketing representing a significant key to a brand’s success or mere sur- vival in a highly competitive marketplace. Packaging innovation and design are in the front line of competition between the brands of both major retailers and product manufacturers, having been driven in recent years by dramatic retail growth, intense industry competition and an increasingly demanding and sophisticated consumer. On an individual product/brand bas is, success is dependent on the product manufacturer’s rapid innovative response to major trends. One of the most effective ways to respond is through distinctive pack-aging, and this has become one key factor in the success of a brand. The retail- ers’ own brand products compete intensely with manufacturers’ brands in virtually every product category. Brand differentiation can be enhanced by drive the growing n i c h e m a r k e t f o r b i o d e g r a d a b l e a n d c o m p o s t a b l e p a c k a g i n g. The y a re us ing it as a poin t of co mmuni cation with th eir cus to me rs.Packaging is closely linked to advertising but it is far more focused than advertising because it presents the product to the consumer daily in the home and on the retail shelf. Merchandising displays that present the pack desi gn in an attractive or interesting way and media advertising consistent with the pack’s image also serve to promote the brand. The brand owner is frequently responsible for the merchandising operation. A key to promotional activities is through effective use of packaging and there exist many kinds of on-pack promotions such as free extra product, money-off, special edition, new improved Bar code scanning information linked to the use of retailers’ loyalty card schemes has made a big impact on buying and marketing decision-making by retailers. Their task is to make better use of this information on con- sumer behaviour for promotional purposes and to build store brand loyalty. Retailers can also use this information to evaluate the effectiveness of new pack designs, on-pack promotions and the sales appeal of new products. The role of packaging in multiple retail logistics.There are tight constraintson physical distribution and in-store merchandising. The retailer is receptive to packaging that reduces operating costs, increases inventory turnover, trans- forms to attractive merchandising displays –such as pre-assembled or easy- to-assemble aisle displays –and satisfies logistics service levels (reliability, responsiveness and product availability). For example, combined transit and point-of-sale packaging saves store labour through faster shelf loading, pro- vides ease of access to product thereby obviating the need to use potentially dangerous unsafe cutting t ools, and presents an opportunity for source reduce.The total distribution cost affects the total volume of demand through itsinfluence on price (McKinnon, 1989). For some fast-moving commodity type products, such as pasteurised milk, the cost of distrib ution and retail mer- chandising is usually a sizeable proportion of total product cost representing up to 50 per cent or more of the sales price. The cost of packaging materials and containers also adds slightly to the cost but design of the optimal packaging system can significantly reduce cost in the retail distribution chain. The development of global food supply chains has meant that many points of production have located further away from the points of consump- t i o n,o f t e n r e s u l t i n g i n h i g h e r d i s t r i b u t i o n c o s t.Controlling distribution cost through improved operational efficiency in the supply chain is a key to competitive advantage for a retailer. The retailer must maximise operational efficiency in the distribution channel (West, 1989). The goal of distribution is to deliver the requisite level of service to customers at the least cost. The identification of the most cost-effective logistical packaging is becoming more crucial. Cost areas in distribution include storage, inventory, transport, administration and packaging. Storage, inventory, transport and store labour are major cost areas for the retailer while transport, storage and p a c k a g i n g a r e t h e m a i n c o s t a r e a s f o r t h e f o o d m a n u f a c t u r e r.The efficiency of the multiple retail food supply chain relies on close com- munication between retailers, food manufacturers and packaging suppliers. It also relies on accurate order forecasting of likely demand. Massive investment in information technology has enabled closer integration of the supply chain and, through electronic data interchange (EDI), has ensured that stock moves to stores on a just-in-time (JIT) basis, and is sold well before the expiry date. The bar code is a code that allows the industry-wide identification of retail product units by means of a unique reference number, the major application being the electronic point of sale (EPoS) system at the retail checkout. The use of the bar code for identification of primary, secondary and tertiary packaging h a s e n a b l e d e f f i c i e n t d i s t r i b u t i o n m a n a g e m e n t a n d s t o c k c o n t r o l.。