刘次华《随机过程及其应用(第三版)》课件6b剖析
合集下载
随机过程课件打印版

当An An 1 , n 1
当An An 1 , n 1
9
A1 A2
连续性定理
A1 A2
则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
An Ai 新事件:lim n i 1
lim An Ai
n i 1
3 对于R n中的任意区域, a1 , b1; a2 , b2 ;;a n , bn ,其中 ai bi , i 1,, n
F b1 , b2 ,, bn F b1 ,, bi 1 , ai , bi 1 ,bn F b1 ,, bi 1 , ai , bi 1 ,, b j 1 , a j , b j 1 ,, bn ,
d P({e : g( X ) y, e X }) dy
如果上式右端概率的导数对于y处处存在,那么这 个导数就给出了随机变量Y的概率密度
fY ( y)
19
20
n维联合分布函数F x1 , x 2 , x n 具有下列性质 :
三、边缘分布
若二维联合分布函数中有一个变元趋于无 穷,则其极限函数便是一维分布函数,对于这 种特殊性质,我们称其为边缘分布。 对于任意两个随机变量X,Y,其联合分布函数为: F ( x, y ) 则: FX ( x ) P ( X x ) P ( X x , Y ) F ( x , )
P( X x,Y y) P((X x) (Y y)) P( X x)P(Y y)kFra biblioteknpkq
nk
, k 0 ,1 , 2 n
p
P(X k)
k
k!
当An An 1 , n 1
9
A1 A2
连续性定理
A1 A2
则称P为(Ω,F)上的概率,(Ω,F,P)称 为概率空间,P(A)为事件A的概率。
An Ai 新事件:lim n i 1
lim An Ai
n i 1
3 对于R n中的任意区域, a1 , b1; a2 , b2 ;;a n , bn ,其中 ai bi , i 1,, n
F b1 , b2 ,, bn F b1 ,, bi 1 , ai , bi 1 ,bn F b1 ,, bi 1 , ai , bi 1 ,, b j 1 , a j , b j 1 ,, bn ,
d P({e : g( X ) y, e X }) dy
如果上式右端概率的导数对于y处处存在,那么这 个导数就给出了随机变量Y的概率密度
fY ( y)
19
20
n维联合分布函数F x1 , x 2 , x n 具有下列性质 :
三、边缘分布
若二维联合分布函数中有一个变元趋于无 穷,则其极限函数便是一维分布函数,对于这 种特殊性质,我们称其为边缘分布。 对于任意两个随机变量X,Y,其联合分布函数为: F ( x, y ) 则: FX ( x ) P ( X x ) P ( X x , Y ) F ( x , )
P( X x,Y y) P((X x) (Y y)) P( X x)P(Y y)kFra biblioteknpkq
nk
, k 0 ,1 , 2 n
p
P(X k)
k
k!
《随机过程及其应用》PPT课件

• 我们称这个极限limP(x(n)=0)= 为{x(n),n 0} 的绝灭概率,显然 0 1 • 定理2.5设{x(n),n 0}是一个初始状态为1的以 f(s)=p(0)+p(1)s+…为本原母函数的分枝过程。 为其绝灭概率,则 • (1) =f( ) =1 • (2)当 1,p(1)<1时有 • (3)当1< 时, 是s=f(s)在[0,1)内的唯一解
• 所以对于一个取非负整数值的随机变量x,只要 知道了它的母函数其分布也就完全知道了。 • 二、分枝过程 • • • • 设有一个反应堆,最初有n(0)个质点,由于质 点之间的相互碰撞或其它射线的轰击,每隔一 单位时间,一个质点可分离成k个质点 (k=0,1,2…)并设 • (1)这些质点的分离情况是相互独立的,具 有共同分布 • (2)质点的分离情况与其年龄无关
k
(5) 2 (1) n(0) 2 , 2 f " (1) f ' (1) ( f ' (1))2 (6) 当 1时, 2 (n) n(0) 2 n ( n 1) /( 2 ) 2 2 当 = 1时, (n) n0 n 从定理2.4可知,只要f(s)已知,则{X(n),n 0} 的一切信息都知道了。 对于某一时刻n,若x(n)=0,则该过程就灭绝了。 下面来讨论过程灭绝的概率 • 因为{X(n)=0} {x(n+1) =0} • 所以0 P(x(n)=0) P(x(n+1)=0)1,即 {P(x(n)=0),n=1,2,…}是一个单调有界序列,故 其极限一定存在。 • • • • • •
• Z(n+1,i)表示时刻n存在的第i个质点在下一时刻 (n+1)时刻分离出的质点数。 • X(n)表示n时刻反应堆中的质点数,则有 • X(0)=n(0) • X(1)=Z(1,1)+Z(1,2)+…+Z(1,n(0)) • X(2)=Z(2,1)+Z(2,2)+…Z(2,x(1)) • ……………. • X(n+1)=Z(n+1,1)+Z(n+1,2)+…+Z(n+1),x(n)) • 上面的假设(1)、(2)说明{z(n+1,i),i 1,n 0}是一族相互独立具有共同分布的取非负整数 的随机变量。令其共同分布为p(k)=P(z(n,i)=k)
《随机过程及其应用(第三版)》课件SJGC6-2

13
1 p1 j = P{ X (n + 1) = j | X ( n) = 1} = , j = 1, 2, L , 6 6 而又当X(n)=2时 由题意应知条件概率
p 21 = P{ X ( n + 1) = 1 | X ( n ) = 2} = 0 p2 j = 1 , j = 3, 4, 5, 6 6
1) pij ( k ) ≥ 0 2) ∑ p ij ( k ) = 1
j∈E
∀ i, j ∈ E ∀i ∈ E
第1)条性质是由概率定义所决定的; 第2)条性质利用全概率公式可知其正确性 实际上 ∀i ∈ E , ∑ pij (k ) = ∑ P{ X (k + 1) = j | X (k ) = i}
2
一 马氏链的定义
1 可列状态与有限状态马氏链
定义2.1 设{X(n),n 0}为一随机序列 其状态集为 E= {i0,i1,i2,…} 若对于任意的n 及i0,i1,i2,…in+1 对应的随机变量X(0),X(1),X(2),...,X(n+1)满足
P{X (n +1) = j | X (n) = in , X (n −1) = in−1,L, X (1) = i1, X (0) = i0} = P{X (n +1) = j | X (n) = in )
= P{X (n +1) = in+1 | X (0) = i0 , X (1) = i1,L, X (n) = in }P{X (0) = i0 ,
X (1) = i1,L, X (n) = in } = P{X (n +1) = in+1 | X (n) = in }P{X (0) = i0 , X (1) = i1,L, X (n) = in }
1 p1 j = P{ X (n + 1) = j | X ( n) = 1} = , j = 1, 2, L , 6 6 而又当X(n)=2时 由题意应知条件概率
p 21 = P{ X ( n + 1) = 1 | X ( n ) = 2} = 0 p2 j = 1 , j = 3, 4, 5, 6 6
1) pij ( k ) ≥ 0 2) ∑ p ij ( k ) = 1
j∈E
∀ i, j ∈ E ∀i ∈ E
第1)条性质是由概率定义所决定的; 第2)条性质利用全概率公式可知其正确性 实际上 ∀i ∈ E , ∑ pij (k ) = ∑ P{ X (k + 1) = j | X (k ) = i}
2
一 马氏链的定义
1 可列状态与有限状态马氏链
定义2.1 设{X(n),n 0}为一随机序列 其状态集为 E= {i0,i1,i2,…} 若对于任意的n 及i0,i1,i2,…in+1 对应的随机变量X(0),X(1),X(2),...,X(n+1)满足
P{X (n +1) = j | X (n) = in , X (n −1) = in−1,L, X (1) = i1, X (0) = i0} = P{X (n +1) = j | X (n) = in )
= P{X (n +1) = in+1 | X (0) = i0 , X (1) = i1,L, X (n) = in }P{X (0) = i0 ,
X (1) = i1,L, X (n) = in } = P{X (n +1) = in+1 | X (n) = in }P{X (0) = i0 , X (1) = i1,L, X (n) = in }
随机过程课件第一章概率复习

( x a )2 2 2
f ( x)
1 2
e
指数分布
e x , f ( x) 0,
x0 x0
随机变量函数的分布
在给定某任意的随机变量X,以及它的概率分布函数FX(x),希望进一步求 出给定的随机变量的某些可测函数(如Y=g(X))的概率分布函数。
X
非线性放大器
X(e)就是一个函数,它把样本点映射到实数轴上, 随机变量就是从原样本空间Ω到新样本空间的一
种映射,我们通常把这样一种对应关系称之为在
概率空间上的一个随机变量。
离散型随机变量: 只取有限个数值或可列无穷多个值。 连续型随机变量: 从原样本空间到新样本空间的映射是某一 个范围,是一段(或几段)实线(也可能 是整个坐标轴)。
fA
nA n
f A P( A)
当试验次数n增大时,其中大量的频率聚集在一个常数周围; 这个常数是客观存在的,反映了事件A出现可能性的大小, 我们认为这个常数就是事件的概率。
公理化定义概率
1. 2. 3.
对于一个事件A∈样本空间Ω,假定满足以下3个 条件的数P(A): 0≤P(A) ≤1; P(Ω)=1; 若A1,A2,……..,Ak两两互斥,则
P ( Ai | B ) P ( Ai ) P ( B | Ai )
P( A ) P( B | A )
i 1 i i
N
独立事件
P( A B) P( A) P( B)
随机变量
定义:
设( Ω ,F,P)是概率空间,X=X(e)是定义在Ω 上的实函数,如果对任意实数x,{e:X(e) ≤x} ∈F, 则称X(e)是F上的随机变量。 由于数学分析不能直接利用来研究集合函数, 这样影响对随机现象的研究。解决这个问题的方 法,主要是设法在集合函数与数学分析中所研究 的点函数间建立某种联系,从而能用数学分析法 研究随机现象。
f ( x)
1 2
e
指数分布
e x , f ( x) 0,
x0 x0
随机变量函数的分布
在给定某任意的随机变量X,以及它的概率分布函数FX(x),希望进一步求 出给定的随机变量的某些可测函数(如Y=g(X))的概率分布函数。
X
非线性放大器
X(e)就是一个函数,它把样本点映射到实数轴上, 随机变量就是从原样本空间Ω到新样本空间的一
种映射,我们通常把这样一种对应关系称之为在
概率空间上的一个随机变量。
离散型随机变量: 只取有限个数值或可列无穷多个值。 连续型随机变量: 从原样本空间到新样本空间的映射是某一 个范围,是一段(或几段)实线(也可能 是整个坐标轴)。
fA
nA n
f A P( A)
当试验次数n增大时,其中大量的频率聚集在一个常数周围; 这个常数是客观存在的,反映了事件A出现可能性的大小, 我们认为这个常数就是事件的概率。
公理化定义概率
1. 2. 3.
对于一个事件A∈样本空间Ω,假定满足以下3个 条件的数P(A): 0≤P(A) ≤1; P(Ω)=1; 若A1,A2,……..,Ak两两互斥,则
P ( Ai | B ) P ( Ai ) P ( B | Ai )
P( A ) P( B | A )
i 1 i i
N
独立事件
P( A B) P( A) P( B)
随机变量
定义:
设( Ω ,F,P)是概率空间,X=X(e)是定义在Ω 上的实函数,如果对任意实数x,{e:X(e) ≤x} ∈F, 则称X(e)是F上的随机变量。 由于数学分析不能直接利用来研究集合函数, 这样影响对随机现象的研究。解决这个问题的方 法,主要是设法在集合函数与数学分析中所研究 的点函数间建立某种联系,从而能用数学分析法 研究随机现象。
刘次华 随机过程 第二章

x12 +s
2
−
2ρ
(1 +
x1 x2 s2 )(1+
t
2)
+
x
2 2
1+ t
2
⎥⎤⎪⎬⎫ ⎥⎦⎪⎭
s, t > 0
2.2 随机过程的分布律和数字特征
例:设X(t)=g1(t+ε), Y(t)=g2(t+ε), g1(t), g2(t)是周期为L的函数,ε~U(0, L)
求互相关函数RXY(t, t+τ)。
BX
(s,
t)
=
RX
(s,
t)
=
σ
2 X
(min(s,
t ))
2.4 几种重要的随机过程
证明:设T=[a,b] , 规定X(a)=0, 对于a<s<t<b , BX (s, t) = RX (s, t) − mX (s)mX (t) = RX (s, t) = E[ X (s) X (t)] = E[( X (s) − X (a))( X (t) − X (s) + X (s))]
=1+ 0+ 0+ st =1+ st
2.2 随机过程的分布律和数字特征
ρ X (s, t) =
BX (s, t) = DX (s) DX (t)
1+ st (1+ s2 )(1+ t 2 )
随机过程{X(t), t >0}的一维概率密度
ft (x) =
1
2πσ
exp{−
(
x−µ 2σ 2
)2
}
=
解: RXY (t, t + τ ) = E[ X (t)Y (t + τ )]
《随机过程及其应用(第三版)》课件SJGC5-1

6
3. 严平稳过程的数字特征
(1)均值函数 m X ( t ) = E [ X ( t )]
=∫
2
+∞
−∞
xf ( x, t )dx = ∫
+∞
−∞
xf ( x)dx = 常数= mX
均方值函数
2 (t) = E[X 2 (t)]= ψX
∫
+∞
−∞
x f (x, t)dx =
+∞ −∞ 2
2
∫
+∞
一 二 三
平稳过程 宽平稳过程 联合平稳过程
1
一
平稳过程
为一随机过程 若对任
1. 严平稳过程定义
定义1.1 设{X (t) ,t 意整数n 任意的
t1 , t 2 , L , t n ∈ T ,
即
t1 + ε, t2 + ε ,L, tn + ε ∈T
其n维分布函数相等
F , xn,t1,t2,L ,tn) = F(x1, x2,L , xn,t1 +ε,t2 +ε,L ,tn +ε) n(x 1, x2,L
[
]
[
] [
]
14
2 ) R X ( −τ ) = R X (τ )
பைடு நூலகம்
因为R X (τ ) = E X (t ) X (t + τ ) = E X (t )X (t + τ )
= E X (t + τ ) X (t ) = E ( X ( s ) X ( s − τ )] = R X ( −τ )
[
CX (t1 , t2 ) = Cov( X (t), X (t2 )) = RX (t1 , t2 ) − mX (t1 )mX (t 2 ) = RX (t2 − t1 ) − mX mX = CX (t2 − t1 )
3. 严平稳过程的数字特征
(1)均值函数 m X ( t ) = E [ X ( t )]
=∫
2
+∞
−∞
xf ( x, t )dx = ∫
+∞
−∞
xf ( x)dx = 常数= mX
均方值函数
2 (t) = E[X 2 (t)]= ψX
∫
+∞
−∞
x f (x, t)dx =
+∞ −∞ 2
2
∫
+∞
一 二 三
平稳过程 宽平稳过程 联合平稳过程
1
一
平稳过程
为一随机过程 若对任
1. 严平稳过程定义
定义1.1 设{X (t) ,t 意整数n 任意的
t1 , t 2 , L , t n ∈ T ,
即
t1 + ε, t2 + ε ,L, tn + ε ∈T
其n维分布函数相等
F , xn,t1,t2,L ,tn) = F(x1, x2,L , xn,t1 +ε,t2 +ε,L ,tn +ε) n(x 1, x2,L
[
]
[
] [
]
14
2 ) R X ( −τ ) = R X (τ )
பைடு நூலகம்
因为R X (τ ) = E X (t ) X (t + τ ) = E X (t )X (t + τ )
= E X (t + τ ) X (t ) = E ( X ( s ) X ( s − τ )] = R X ( −τ )
[
CX (t1 , t2 ) = Cov( X (t), X (t2 )) = RX (t1 , t2 ) − mX (t1 )mX (t 2 ) = RX (t2 − t1 ) − mX mX = CX (t2 − t1 )
随机过程 课件

fY
y
f
X
0
h
y
h
'
y , y
其它情况
,
h(y)是g(x)的反函数, min g x , max g x 。
1.2 二维随机变量及其概率分布
1.2.1 分布函数
定义1:二维分布函数
设X,Y为定义在同一概率空间 S,, P 上的两个随机变量,
则(X,Y)称为二维随机变量,对任意 x, y R ,令
,则n维向量 Y Y1,,Yn 的概率密度函数为
fY
y
fX hy
h
y
h1
h
y
y1
hn
y1
hn yn
hn yn
1.4 随机变量的数字特征
1.4.1数字期望(expected value, probabilistic average, mean) 1、一维随机变量的数学期望
E
X
x xpX
xf
则
P n1
An
n1
P
An
则称P(A)为事件A出现的概率,称(S, Ω, P)为一个概率空间。
定义2:随机变量
设已知一个概率空间 S,, P ,对于 s S , X(s)是一个取实数值的单值函数,若对于任意实数x,s : X s x 是一个随机事件,也就是 s : X s x ,则称X(s)为随机变量。
1.3.2 边沿分布
F xk F ,, xk ,,
1.3.3 独立性
定义2:如果 P X1 x1,, X n xn P X1 x1 P Xn xn
,则 X1,, X n 是相互独立得。
离散型:
P X1 x1,, X n xn P X1 x1 P X n xn
第11讲 随机过程及其应用(第三版) 刘次华第4章马尔科夫链(3)

其中 D = {1} 是非常返集
C1 = {2 ,3,4},C2 = {5,6,7}
2 3 4
1 5 7 6
是常返闭集,非周期
lim (1)求每一个不可约闭集的极限分布(2)求 n →∞ p12
( n)
解(1):这是一个可约马氏链。根据状态空间的分解 定理,状态空间分解为: I = {1} + {2,3, 4} + {5, 6, 7}
5
6
1
二、平稳分布
定义4.11
例1 :设马尔科夫链的转移概率矩阵为
⎡ 0.7 0.1 0.2⎤ P = ⎢ 0.1 0.8 0.1⎥ ⎢ ⎥ ⎢ ⎦ ⎣0.05 0.05 0.9⎥
设齐次马氏链转移概率矩阵为P,
且
若π = (π 1 , π 2 , )满足方程:
π =πP
∑π
j
j
=1
则称 π = (π 1 , π 2 , ) 为该马氏链的 平稳分布 定理4.16 不可约非周期的马氏链,其极限分布存 在(或状态是正常返)的充要条件是存在平稳分 布,且此平稳分布就是极限分布。即 1 πj =
15
故从上式可解得:
16
2 lim p12 ( n ) = n →∞ 9
注: 对于一般可约马氏链, lim pij (
n →∞
n)
的情形如下:
例4 马氏链的概率转移图所示,分析转移概率极限:
I = D + C1 + C2 = {1, 5} + {2,3} + {4,, 6}
先进行状态空间分解: I = D + C1 + C2 +
,
(设j ∈ C
m
, Cm为不可约非周期常返闭集 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协方差函数 CX (s, t) RX (s, t) mX (s)mX (t)
min( s,t) s , (s t)
(2) 时间间隔与等待时间
设 {X (t), t 0 }是泊松过程,令X (t)表示 t 时刻事件A
发生的次数, T1 T2 T3
n
Wn Ti (n 1)
Tn
i 1
考虑机器在 (t, t+h] 内发生故障这一事件。若机器发生故障, 立即修理后继续工作,则在 (t, t+h] 内机器发生故障而停止 工作的事件数构成一个随机点过程,它可以用泊松过程来描 述。
6.2 泊松过程的基本性质
泊松分布:
P{X (t s) X (s) n} (t)n et , n 0,1,
fT
(t )
et
(t)k 1 ,
(k 1)!
t
0
0 ,
t 0
故仪器在时刻 t0 正常工作的概率为:
P P(T t0 )
e
t
(t)k 1
dt
t0
(k 1)!
P[ X (t0 )
k]
k 1
e t0
n0
(t0 )n
n!
(3) 到达时间的条件分布
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P( X
k)
n kpkqnkE( X ) np, D( X ) npq
[泊松定理] 在二项分布中,设 np= 是常数,则有
lim P( X k ) ke
n
k!
泊松分布
[泊松分布] 随机变量X 的所有可能取值为0, 1, 2, … ,而 取各个值的概率为
P{X k} ke , k 0,1, 2, ( 0为常数)
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Wn , n1} 是对应的等待时间序列,则随机变量Wn 服从参数为n与 的 分布(又称为爱尔兰分布),其概率密度为
FWn
(t )
1
et
n1 k 0
(t ) k
k!
u (t )
fWn (t )
e t
(t)n1 u(t)
(n 1)!
P{W1
s
X
(t)
1}
P{W1 s, X (t) 1} P{X (t) 1}
P{X (s) 1, X (t) X (s) 0} P{X (t) 1}
ΦWn
( )
(
n j )n
E[Tn ] n
D[Tn ] n
2
[例1] 已知仪器在 [ 0 , t ] 内发生振动的次数 X(t) 是具有参
数的泊松过程。若仪器振动k (k 1)次就会出现故障,
求仪器在时刻 t0 正常工作的概率。
[解] 仪器发生第k振动的时刻Wk 就是故障时刻T ,
则T 的概率分布为 分布:
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程,
若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的
次数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
P{X (t s) X (s) n} (t)n et , n 0,1,
n!
P{X (t) n} (t)n et , n 0,1, 2,
n!
ΦX () E[ejX (t) ] et(ej 1)
(1) 泊松过程的数字特征
均值函数
mX (t) E[X (t)] t
方差函数 相关函数
2 X
(t)
DX
(t)
t
RX (s,t) E[ X (s) X (t)] s(t 1) , (s t)
泊松过程的几个例子
考虑某一电话交换台在某段时间接到的呼叫。令X(t)表示电 话交换台在 [0, t] 时间内收到的呼叫次数,则{ X(t), t 0 } 是 一个泊松过程。
考虑来到某火车站售票窗口购买车票的旅客。若记X(t) 为时 间 [0, t] 内到达售票窗口的旅客数,则{ X(t), t 0 } 是一个泊 松过程。
n!
泊松过程的另一个定义
[定义] 称计数过程{ X (t) , t 0 }为具有参数 >0 的泊松
过程,若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立、平稳增量过程; (3) X (t) 满足下列两式:
P{X (t h) X (t) 1} h o(h)
P{X (t h) X (t) 2} o(h)
t
0 W1 W2 W3
Wn-1 Wn
Wn —— 第n次事件A发生的时刻,或称等待时间, 或者到达时间
Tn —— 从第n-1次事件A发生到第n次事件A发生的 时间间隔,或称第n个时间间隔
时间间隔Tn
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Tn , n 1 }
是对应的时间间隔序列,则随机变量Tn (n=1,2,…)是独立同
分布的均值为1/ 的指数分布。
Tn 的分布函数: FTn (t) P{Tn t} (1 et )u(t)
Tn 的概率密度函数: fTn (t) etu(t)
Tn 的特征函数:
ΦTn (t) j
Tn 的数字特征: E[Tn ] 1 , D[Tn ] 1 2
等待时间(到达时间)Wn
6 泊松过程
内容提要
泊松过程的定义 泊松过程的基本性质 泊松脉冲列 散粒噪声 非齐次泊松过程 复合泊松过程
引言
[(0-1)分布] 随机变量 X 只可能有两个值: 0 和 1,其概率 分布为:
P(X 1) p, P(X 0) 1 p q E(X ) p, D(X ) pq
[二项分布] 随机变量 X 为n重贝努利试验中事件A发生的 次数,则 X ~ B (n, p)
k! 则随机变量X 服从参数为 的泊松分布,简记为 ()。
E( X ) , D( X )
6.1 泊松过程的定义
[定义] 称{ N (t), t 0 } 为计数过程,若N (t)表示到时间t 为止已发生的“事件A”的总数,且N (t)满足下列条件: (1) N (t) 0 ,且 N (0) = 0 ; (2) N (t) 取非负整数值; (3) 若 s < t ,N (s) N (t) ; (4) 当s < t 时, N (t) N (s)等于区间 (s, t] 中“事件A” 发生的次数。