垂径定理教学设计

合集下载

九年级数学上册《垂径定理》教案、教学设计

九年级数学上册《垂径定理》教案、教学设计
3.培养学生克服困难的意志,使其在面对挑战时保持积极向上的心态。
4.通过解决实际问题,使学生认识到数学在生活中的重要作用,增强学生的社会责任感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,能运用这些知识解决一些简单问题。但在垂径定理这一部分,学生可能会在理解与应用上存在一定的困难。因此,在教学过程中,要注意以下几点:
-在复杂问题中,如何识别和应用垂径定理,以及如何将垂径定理与圆的其他性质相结合解决综合问题。
(二)教学设想
1.教学策略:
-采用探究式教学法,引导学生通过观察、猜想、验证、总结的学习过程,自主发现垂径定理。
-利用多媒体和实物模型辅助教学,增强学生的直观体验,帮助学生建立起对圆的几何直觉。
-设计梯度性问题,由浅入深,逐步引导学生掌握垂径定理的运用,提高学生的解题技巧。
-总结反思:引导学生总结垂径定理的特点和应用方法,反思学习过程中的困惑和收获。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,关注学生的学习过程和结果。
-通过课堂问答、小组讨论、课后作业、阶段测试等多种形式,全面评估学生对垂径定理的理解和应用水平。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
3.关注学生的情感态度,激发学习兴趣,培养克服困难的意志。
4.突出数学与生活的联系,使学生认识到数学知识在实际生活中的重要性。
在此基础上,教师应制定针对性的教学策略,帮助学生在掌握垂径定理的基础上,提高解决实际问题的能力,培养他们热爱数学、勇于探索的精神。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及提高他们的解题技能,特此布置以下作业:
1.学生在理解垂径定理时,可能会对定理的证明过程感到困惑决问题时,可能会对如何找出垂径和弦的关系感到迷茫。教师应通过典型例题,帮助学生总结解题方法,提高解题能力。

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。

二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。

垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。

三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。

2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。

3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。

4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。

四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。

五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。

在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。

此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。

1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。

1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。

第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。

2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。

第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。

3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。

3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。

3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。

第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。

4.2 教学媒体:几何画板、实物模型、PPT等。

第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。

5.2 评价方式:课堂问答、练习题、小组讨论等。

第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。

6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。

第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。

7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。

7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。

7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。

7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。

第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。

8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。

垂径定理一等奖教学设计2篇

垂径定理一等奖教学设计2篇

第1篇教材分析本节课是九上《圆的基本性质》的学习内容,是学生在学习了圆的基本概念之后,研究的圆的第一个重要性质——垂径定理。

该定理是以圆的轴对称性为认识起点,在观察、猜想、操作的基础上探究得到的。

揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化。

垂径定理及其推论是证明圆内线段相等、角相等、弧相等、垂直关系的重要依据,同时也为与圆相关的计算和作图提供了方法和依据。

本课还重视圆的知识与三角形知识之间的转化,为后续的学习和探究奠定了基础。

学情分析本节课的授课对象是九年级的学生,经过两年的几何学习,有一定的合情说理能力。

通过本章前一部分的学习,掌握了圆的一些概念,已经历“探索、发现、猜想、证明”的过程,同时在以前的数学学习过程中,学生也有过很多合作学习的过程,具有一定的合作学习经验和合作交流的能力。

学习目标1.初步掌握垂径定理,会简单运用垂径定理解决相关数学问题。

2.经历垂径定理的探究过程,进一步体验“观察-猜想-实验-证明”的方法。

3.会把相关实际问题抽象为数学问题并加以解决,积累数学建模活动的基本经验。

重点难点学习重点:探究垂径定理并证明,能初步运用垂径定理解决相关数学问题。

学习难点:垂径定理的导出有一定难度,以及如何运用垂径定理分析和解决问题。

学习过程(一)探索垂径定理1.动一动:观察圆形纸片,老师找不到圆心了,不用工具只用折叠的办法,你能帮助找到圆心吗?2.想一想:两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质?【教师评价】圆是一个轴对称图形,它的对称轴是直径所在的直线。

【设计意图】本节课首先通过动一动,想一想,观察得到圆具有轴对称性。

3.已知:如图,CD是⊙O的直径,AB是⊙O的弦,CD⊥AB,垂足是点E.图中有哪些相等的线段和弧(半圆除外)?4.已知:如图,在⊙O中,直径CD⊥AB,垂足是点E。

求证:AE=BE,=,=。

图片【教师评价】在运用等腰三角形“三线合一”和圆的轴对称性来证明结论之后,特别指出当遇到“弦恰为直径”这一特殊情况时,无法构造等腰三角形,需另外证明。

高中数学垂径定理教案

高中数学垂径定理教案

高中数学垂径定理教案一、教学目标:1. 知识与能力:掌握垂径定理的概念,能够应用垂径定理解决相关问题。

2. 过程与方法:运用几何知识和推理方法,探究垂径定理的原理和应用。

3. 情感态度与价值观:培养学生的观察和推理能力,增强学生对几何学习的兴趣和自信心。

二、教学重难点:1. 掌握垂径定理的内容和概念。

2. 能够灵活运用垂径定理解决相关问题。

三、教学内容及方法:1. 垂径定理的概念:通过展示示意图,引导学生理解垂径定理的基本原理。

2. 垂径定理的证明:以几何推理为基础,让学生自行探究垂径定理的证明过程。

3. 垂径定理的应用:通过具体案例演练,让学生掌握灵活运用垂径定理解决相关问题的方法。

四、教学过程:1. 导入:通过展示一个圆和其直径的示意图,引出垂径定理的概念。

2. 学习:讲解垂径定理的内容和原理,引导学生思考垂线与半径的关系。

3. 实践:学生自行探究垂径定理的证明过程,进行思维导图整理。

4. 演练:通过案例分析和问题讨论,让学生灵活运用垂径定理,解决相关问题。

5. 总结:总结本节课的学习内容,强化垂径定理的重点和难点。

五、作业布置:1. 完成课堂练习,加深对垂径定理的理解。

2. 预习下节课内容,做好相关准备。

六、教学评价:1. 课堂表现:学生能够积极参与讨论,表达自己的观点和想法。

2. 作业质量:学生能够独立完成作业,运用垂径定理解决实际问题。

3. 考试成绩:学生在考试中能够准确运用垂径定理,获得理想的成绩。

七、教学反思:1. 教学方法:适当运用案例分析和问题讨论,提高学生对垂径定理的应用能力。

2. 教学内容:加强垂径定理的相关练习,巩固学生对垂径定理的理解和掌握。

以上是本次垂径定理教学范本,欢迎老师们根据实际情况进行调整和完善。

祝教学顺利!。

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。

教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。

二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生合作学习、积极思考的良好学习习惯。

三、教学难点与重点重点:掌握垂径定理及运用。

难点:理解并证明垂径定理。

四、教具与学具准备教具:PPT、黑板、粉笔。

学具:圆、直尺、三角板、圆规。

五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。

提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。

5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。

”学生独立完成练习,教师巡回指导,及时纠正错误。

6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。

”学生分组讨论,运用垂径定理解决问题。

7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。

2. 垂径定理:垂直于直径的线段也是直径。

七、作业设计1. 请用文字和图形描述垂径定理。

答案:垂径定理:垂直于直径的线段也是直径。

在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

答案:略。

八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。

在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。

课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。

垂径定理初中教案

垂径定理初中教案

垂径定理初中教案1. 知识与技能:通过观察、实验和证明,使学生理解圆的轴对称性,掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题。

2. 过程与方法:经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法。

3. 情感态度价值观:培养学生类比分析、猜想探索的能力,通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。

二、教学重难点1. 教学重点:利用圆的轴对称性研究垂径定理。

2. 教学难点:垂径定理的证明。

三、教学过程1. 导入:回顾轴对称图形的概念和性质,引出圆也是轴对称图形,并提问:圆的轴对称性有哪些应用?2. 探索:让学生分组进行实验,观察和记录圆中垂直于弦的直径的性质,引导学生发现垂径定理。

3. 证明:引导学生运用已学的三角形全等的知识,证明垂径定理。

在此过程中,教师应给予学生适当的提示和引导,帮助学生完成证明。

4. 应用:让学生运用垂径定理解决一些有关的证明与计算问题,巩固所学知识。

四、教学策略1. 采用问题驱动的教学方法,引导学生主动探索和发现垂径定理。

2. 利用分组实验,让学生亲身体验和观察圆的轴对称性,增强学生的实践能力。

3. 在证明过程中,引导学生运用已学的三角形全等的知识,培养学生的逻辑思维能力。

4. 设计一些有关的证明与计算问题,让学生运用所学知识解决实际问题,提高学生的应用能力。

五、教学评价1. 课堂讲解:关注学生的参与度和理解程度,观察学生在探索和证明过程中的表现。

2. 课后作业:布置一些有关的证明与计算问题,检验学生对垂径定理的掌握程度。

3. 学生互评:鼓励学生之间相互评价,共同提高。

六、教学反思本节课通过观察、实验和证明,使学生掌握了垂径定理,并能够运用它解决有关的证明与计算问题。

在教学过程中,注重了学生的参与和实践,培养了学生的逻辑思维能力和应用能力。

同时,通过问题驱动的教学方法,激发了学生的学习兴趣和探索精神。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。

2. 引导学生通过实际问题发现垂径定理。

教学内容:1. 引导学生回顾圆的性质和基本概念。

2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。

2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。

教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。

第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。

2. 培养学生通过几何推理解决问题的能力。

教学内容:1. 引导学生通过几何推理,探索垂径定理。

2. 引导学生验证垂径定理的正确性。

教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。

2. 组织学生进行小组讨论,分享各自的解题思路和方法。

教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。

第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。

2. 培养学生解决实际问题的能力。

教学内容:1. 引导学生学习和掌握垂径定理的应用方法。

2. 引导学生运用垂径定理解决实际问题。

教学活动:1. 引导学生学习和掌握垂径定理的应用方法。

2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。

教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。

第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。

2. 提高学生解决实际问题的能力。

教学内容:1. 引导学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学活动:1. 组织学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。

2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。

第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章圆
《垂径定理》教学设计说明
广东省佛山市华英学校罗建辉
一、学生起点分析
学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能.
学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力.
二、教学任务分析
该节内容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆定理.具体地说,本节课的教学目标是:
知识与技能
1.利用圆的轴对称性研究垂径定理及其逆定理;
2.运用垂径定理及其逆定理解决问题.
过程与方法
1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法.
情感与态度
1. 培养学生类比分析,猜想探索的能力.
2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神.教学重点:利用圆的轴对称性研究垂径定理及其逆定理.
教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.
三、教学设计分析
本节课设计了四个教学环节:
类比引入,猜想探索,知识应用,归纳小结.
第一环节 类比引入
活动内容:
1.等腰三角形是轴对称图形吗?
2.如果将一等腰三角形沿底边上的高对折,
3.圆,得到的图形是否是轴对称图形呢?
活动目的:
通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力.
第二环节 猜想探索
活动内容:
1.如图,AB 是⊙O 的一条弦,作直径CD ,使CD
⊥AB ,垂足为M .
(1)该图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能图中有哪些等量关系?说一说你的理由.
条件:① CD 是直径;② CD ⊥AB
结论(等量关系):③AM =BM ;
④⌒AC
=⌒BC ;⑤⌒AD =⌒BD . 证明:连接OA ,OB ,则OA =OB .
在Rt △OAM 和Rt △OBM 中,
∵OA =OB ,OM =OM ,
∴Rt △OAM ≌Rt △OBM .
∴AM =BM .
∴点A 和点B 关于CD 对称.
∵⊙O 关于直径CD 对称,
∴当圆沿着直径CD 对折时, 点A 与点B 重合,
⌒AC 和⌒BC 重合,⌒AD
和⌒BD 重合. ∴ ⌒AC
=⌒BC ,⌒AD =⌒BD .
2.证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容——垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
3.辨析:判断下列图形,能否使用垂径定理?
注意:定理中的两个条件缺一不可——直径(半径),垂直于弦.
通过以上辨析,让学生对垂径定理的两个条件的必要性有更充分的认识.
4.垂径定理逆定理的探索
如图,AB 是⊙O 的弦(不是直径),作一条平分AB 的直径CD ,交AB 于点M .
(1)下图是轴对称图形吗?如果是,其对称轴是什么?
(2)图中有哪些等量关系?说一说你的理由.
条件:① CD 是直径;② AM =BM
结论(等量关系):③CD ⊥AB ;
④⌒AC
=⌒BC ;⑤⌒AD =⌒BD . 让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容
——平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
5.辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理少了“不是直径”,是否也能成立?
反例:
活动目的:
活动1的主要目的是通过让学生猜想、类比、探索和证明获得新知,从而得到研究数学的多种方法的体会,获取经验;活动 2 的主要目的是让学生通过对定理表述反复的语言提炼,锻炼学生的归纳能力和严谨的表述能力,并对定理的条件和结论有更深刻的理解和认识;活动3的主要目的是通过反例使学生对定理的严谨性有更深的认识;活动4的主要目的与活动1相似,并让学生与活动1类比,提高探索能力;活动5的主要目的与活动3相似.
实际教学效果:
在活动1中的证明时,学生对如何证明平分弦,可能会有一定困难,此时应引导学生类比等腰三角形,通过连接OA 、OB ,构造等腰三角形,并利用三角形全等的知识来证明;另外,在证明直径平分弦所对的弧,也是一个难点,学生会觉得比较难表述,这时应类比等腰三角形的轴对称性,运用圆的轴对称性启发引导;在活动2中,学生的说法可能不够准确、精炼,但教师应该鼓励学生坚持勇于尝试,让学生互相指出说法的不足和缺陷,互相加以修正,在反复的语言提炼中对定理的条件和结论有更深刻的理解和认识,这也是一个自主构建的过程;活动3是通过反例说明定理的条件的必要性和严谨性,要注意让学生学会通过反例找出对应缺失的条件,提高学生对定理的理解;在活动4中,学生已经有了活动1的经验,教师应放手让学生去猜想、类比、探索和证明,增加学生对数学知识的探索的领悟和经验;活动5与活动3相似.
第三环节 知识应用
活动内容:
讲解例题及完成随堂练习.
1.例:如图,一条公路的转弯处是一段圆弧(即图中⌒CD
,点0是⌒CD 所在圆的圆心),其中CD =600m ,E 为⌒CD
上的一点,且OE ⊥CD ,垂足为F ,EF =90m.求这段弯路的半径.
解:连接OC ,设弯路的半径为R m,则OF =(R -90)m .
∵OE ⊥CD
3006002
121=⨯==∴CD CF 根据勾股定理,得
OC ²=CF ² +OF ²
即 R ²=300²+(R -90)².
解这个方程,得R =545.
所以,这段弯路的半径为545m.
2.随堂练习1.1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径.(结果精确到0.1米).
3.随堂练习2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?
为什么?
有三种情况:(1)圆心在平行弦外;
(2)圆心在其中一条弦上;
(3)圆心在平行弦内.
活动目的:活动1、2的主要目的是让学生应用新知识构造直角三角形,并通过方程的方法去解决几何问题;活动3的主要目的是让学生通过作垂线段构造符合定理使用的条件,从而运用定理解决问题,以及培养学生解题中的分类思想.
实际教学效果:
在活动4中,对于例题和随堂练习1教师要引导学生如何够造可以应用垂径定理的几何构图,让学生积累如何添加辅助线的经验,以及体会到构造直角三角形并利用勾股定理列方程在解决几何问题中的作用,培养数形结合的思想.对于随堂练习2,教师要引导学生通过自行画图,探索分析符合条件图形有多少种情况:圆心在平行弦外,在其中一条弦上、在平行弦内,并通过添加辅助线构造可以应用垂径定理的条件,以及比较三种构图的共同点,得出说理的思路都是一样的结论.
第四环节 归纳小结
活动内容:
学生交流总结
1.利用圆的轴对称性研究了垂径定理及其逆定理.
2.解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.
活动目的:
通过回顾本节课的各个环节,鼓励学生交流自己的收获和感想,加深对本节课知识和探索方法的理解和掌握,培养学生养成归纳反思的学习习惯.
实际教学效果:
学生在互相交流中,对于归纳出来的内容,会有各种表述,大多都是围绕知识本身,教师应引导学生对探索知识的方法也能归纳反思.
四、教学设计反思
1.要从培养学生学习方法的角度使用教材
教材为教师提供了基本的教学素材,但如何使用这些素材,教师完全可以根据学生的实际情况进行适当调整.学生在探索垂径定理的时候,其中一个难点在于如何证明垂径定理,这时通过类比等腰三角形的轴对称性,可以使学生对证明的思考得到突破,从而寻找出合理的证明方向.这既使学生掌握了新知识,也培养了学生的学习数学的类比思想和观察、猜想的能力.
2.要鼓励学生敢于表述和善于纠错
垂径定理及其逆定理的文字表述是一个难点,教师如果直接给出,则学生就少了一个锻炼表述能力和严谨地分析的机会.因此,应该让学生大胆表述,并对各人的表述严谨分析,找出漏洞,反复提炼,直至得出正确的说法,使学生得到更好的锻炼.
3.注意改进的方面
本节课的另一个难点是如何添加辅助线,这在最后的归纳反思中应该要有足够的时间让学生交流讨论,但是限于本节课的时间,这是一个客观限制,不应该勉强在课堂上完成,效果并不理想,应该留作课后作业,让学生能通过更充分的讨论才得出结论,这样才能起到更好地交流和反思的作用.。

相关文档
最新文档