垂径定理 优秀教学设计(教案)

合集下载

九年级数学上册《垂径定理》教案、教学设计

九年级数学上册《垂径定理》教案、教学设计
3.培养学生克服困难的意志,使其在面对挑战时保持积极向上的心态。
4.通过解决实际问题,使学生认识到数学在生活中的重要作用,增强学生的社会责任感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,能运用这些知识解决一些简单问题。但在垂径定理这一部分,学生可能会在理解与应用上存在一定的困难。因此,在教学过程中,要注意以下几点:
-在复杂问题中,如何识别和应用垂径定理,以及如何将垂径定理与圆的其他性质相结合解决综合问题。
(二)教学设想
1.教学策略:
-采用探究式教学法,引导学生通过观察、猜想、验证、总结的学习过程,自主发现垂径定理。
-利用多媒体和实物模型辅助教学,增强学生的直观体验,帮助学生建立起对圆的几何直觉。
-设计梯度性问题,由浅入深,逐步引导学生掌握垂径定理的运用,提高学生的解题技巧。
-总结反思:引导学生总结垂径定理的特点和应用方法,反思学习过程中的困惑和收获。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,关注学生的学习过程和结果。
-通过课堂问答、小组讨论、课后作业、阶段测试等多种形式,全面评估学生对垂径定理的理解和应用水平。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
3.关注学生的情感态度,激发学习兴趣,培养克服困难的意志。
4.突出数学与生活的联系,使学生认识到数学知识在实际生活中的重要性。
在此基础上,教师应制定针对性的教学策略,帮助学生在掌握垂径定理的基础上,提高解决实际问题的能力,培养他们热爱数学、勇于探索的精神。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及提高他们的解题技能,特此布置以下作业:
1.学生在理解垂径定理时,可能会对定理的证明过程感到困惑决问题时,可能会对如何找出垂径和弦的关系感到迷茫。教师应通过典型例题,帮助学生总结解题方法,提高解题能力。

垂径定理优秀教案

垂径定理优秀教案

垂径定理【教学目标】一、教学知识点。

(一)圆的轴对称性。

(二)垂径定理及其逆定理。

(三)运用垂径定理及其逆定理进行有关的计算和证明。

二、能力训练要求。

(一)经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

(二)培养学生独立探索,相互合作交流的精神。

三、情感与价值观要求。

通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。

【教学重点】垂径定理及其逆定理。

【教学难点】垂径定理及其逆定理的证明。

【教学方法】指导探索和自主探索相结合。

【教学过程】一、创设问题情境,引入新课。

[师]前面我们已探讨过轴对称图形,并且通过折叠研究出圆是轴对称图形,今天我们继续用前面的方法来进一步研究圆的对称性。

二、讲授新课。

下面我们一起来按下面的步骤做一做:(一)在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合。

(二)得到一条折痕CD.(三)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足。

(四)将纸打开,新的折痕与圆交于另一点B,如图。

[师]老师和大家一起动手。

(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴。

[师]很好。

在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM=BM,弧AC=弧BC,弧AD=弧BD。

[师]为什么呢?[生]因为折痕AM与BM互相重合,A点与D点重合。

[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如右图示,连接OA、OB得到等腰△OAB,即OA=OB。

因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM。

又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,弧AC与弧BC重合。

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。

二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。

垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。

三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。

2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。

3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。

4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。

四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。

五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。

在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。

此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。

1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。

1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。

第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。

2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。

第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。

3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。

3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。

3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。

第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。

4.2 教学媒体:几何画板、实物模型、PPT等。

第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。

5.2 评价方式:课堂问答、练习题、小组讨论等。

第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。

6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。

第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。

7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。

7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。

7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。

7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。

第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。

8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。

垂径定理一等奖教学设计2篇

垂径定理一等奖教学设计2篇

第1篇教材分析本节课是九上《圆的基本性质》的学习内容,是学生在学习了圆的基本概念之后,研究的圆的第一个重要性质——垂径定理。

该定理是以圆的轴对称性为认识起点,在观察、猜想、操作的基础上探究得到的。

揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化。

垂径定理及其推论是证明圆内线段相等、角相等、弧相等、垂直关系的重要依据,同时也为与圆相关的计算和作图提供了方法和依据。

本课还重视圆的知识与三角形知识之间的转化,为后续的学习和探究奠定了基础。

学情分析本节课的授课对象是九年级的学生,经过两年的几何学习,有一定的合情说理能力。

通过本章前一部分的学习,掌握了圆的一些概念,已经历“探索、发现、猜想、证明”的过程,同时在以前的数学学习过程中,学生也有过很多合作学习的过程,具有一定的合作学习经验和合作交流的能力。

学习目标1.初步掌握垂径定理,会简单运用垂径定理解决相关数学问题。

2.经历垂径定理的探究过程,进一步体验“观察-猜想-实验-证明”的方法。

3.会把相关实际问题抽象为数学问题并加以解决,积累数学建模活动的基本经验。

重点难点学习重点:探究垂径定理并证明,能初步运用垂径定理解决相关数学问题。

学习难点:垂径定理的导出有一定难度,以及如何运用垂径定理分析和解决问题。

学习过程(一)探索垂径定理1.动一动:观察圆形纸片,老师找不到圆心了,不用工具只用折叠的办法,你能帮助找到圆心吗?2.想一想:两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质?【教师评价】圆是一个轴对称图形,它的对称轴是直径所在的直线。

【设计意图】本节课首先通过动一动,想一想,观察得到圆具有轴对称性。

3.已知:如图,CD是⊙O的直径,AB是⊙O的弦,CD⊥AB,垂足是点E.图中有哪些相等的线段和弧(半圆除外)?4.已知:如图,在⊙O中,直径CD⊥AB,垂足是点E。

求证:AE=BE,=,=。

图片【教师评价】在运用等腰三角形“三线合一”和圆的轴对称性来证明结论之后,特别指出当遇到“弦恰为直径”这一特殊情况时,无法构造等腰三角形,需另外证明。

北师大版九年级下册3.3垂径定理优秀教学案例

北师大版九年级下册3.3垂径定理优秀教学案例
在教学过程中,我注重引导学生从实际问题出发,通过观察和操作,发现垂径定理的内在规律。我设计了一系列的教学活动,包括直观演示、小组讨论、几何画板软件操作等,旨在激发学生的学习兴趣,提高学生的参与度。
同时,我还注重培养学生的逻辑思维能力,引导学生从特殊到一般,从具体到抽象的思考问题,让学生在理解垂径定理的同时,能够灵活运用该定理解决实际问题。
(三)学生小组讨论
1.设计具有挑战性和综合性的小组合作任务,让学生在合作中思考、交流、探究,提高学生的学习效果。
2.组织学生进行小组讨论,鼓励学生提出问题、分享思路、互相启发、互相学习,培养学生的批判性思维和问题解决能力。
3.教师在小组讨论过程中给予及时的反馈和指导,帮助学生更好地理解和掌握垂径定理。
(四)反思与评价
1.引导学生对学习过程进行反思,培养学生自我评价和自我调整的能力。
2.设计具有针对性和全面性的评价指标体系,对学生的知识与技能、过程与方法、情感态度与价值观进行全面评价。
3.利用自评、互评、师评等多种评价方式,给予学生客观、公正的评价,提高学生的自信心和积极性。
4.根据评价结果,调整教学策略和教学方法,为下一阶段的教学提供有益的参考。
北师大版九年级下册3.3垂径定理优秀教学案例
一、案例背景
北师大版九年级下册3.3垂径定理是圆的知识点中的一个重要定理,它揭示了圆中关于垂直于弦的直径的一系列性质。在本节课中,学生需要理解和掌握垂径定理的内容,并能够运用该定理解决相关问题。
在进行本节课的教学设计时,我充分考虑了学生的年龄特点和学习需求,以提高学生的几何思维能力和解决问题的能力为目标,力求通过丰富的教学活动和合理的教学设计,帮助学生理解和掌握垂径定理。
2.要求学生对自己的作业进行自我评价,培养学生的自我反思和自我调整能力。

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。

教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。

二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生合作学习、积极思考的良好学习习惯。

三、教学难点与重点重点:掌握垂径定理及运用。

难点:理解并证明垂径定理。

四、教具与学具准备教具:PPT、黑板、粉笔。

学具:圆、直尺、三角板、圆规。

五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。

提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。

5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。

”学生独立完成练习,教师巡回指导,及时纠正错误。

6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。

”学生分组讨论,运用垂径定理解决问题。

7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。

2. 垂径定理:垂直于直径的线段也是直径。

七、作业设计1. 请用文字和图形描述垂径定理。

答案:垂径定理:垂直于直径的线段也是直径。

在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

答案:略。

八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。

在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。

课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。

2. 引导学生通过实际问题发现垂径定理。

教学内容:1. 引导学生回顾圆的性质和基本概念。

2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。

2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。

教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。

第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。

2. 培养学生通过几何推理解决问题的能力。

教学内容:1. 引导学生通过几何推理,探索垂径定理。

2. 引导学生验证垂径定理的正确性。

教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。

2. 组织学生进行小组讨论,分享各自的解题思路和方法。

教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。

第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。

2. 培养学生解决实际问题的能力。

教学内容:1. 引导学生学习和掌握垂径定理的应用方法。

2. 引导学生运用垂径定理解决实际问题。

教学活动:1. 引导学生学习和掌握垂径定理的应用方法。

2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。

教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。

第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。

2. 提高学生解决实际问题的能力。

教学内容:1. 引导学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学活动:1. 组织学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。

2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。

第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C A
O
(图 5) 。 C
Ņ O B

〖变式二〗如图 6,在⊙O 中,半径 OC⊥AB,垂足为 E, 。 (图 6) 思考二:你能解决本课一开始提出的问题吗?(由学生口述方法)
O D B
(图 7)
分析:①证明两条线段相等,最常用的方法是什么?用这种方法怎样证明?
证法一:连结 OA、OB、OC、OD,用“三角形全等”证明。 证法二:过点 O 作 OE⊥AB 于 E,用“垂径定理”证明。 (详见课本 P77 例 2) 注 1:通过两种证明方法的比较,选择最优证法。 注 2:辅助线“过圆心作弦的垂线段”是第二种证法的关键,也是常用辅助线。 思考:在图 7 中,若 AC=2,AB=10,则圆环的面积是 〖变式一〗若将图 7 中的大圆隐去,还需什么条件, 才能保证 AC=BD? 〖变式二〗若将图 7 中的小圆隐去,还需什么条件, 才能保证 AC=BD? 〖变式三〗将图 7 变成图 8(三个同心圆) ,你可以 证明哪些线段相等? 〖例 3〗(选讲)如图 9,Rt△ABC 中,∠ACB=90°, Ń AC=3,BC= 6 2 ,以 C 为圆心、CA 长为半径画弧,交 斜边 AB 于 D,求 AD 的长。 (答案:2) 略解:过点 C 作 CE⊥AB 于 E,先用勾股定理求得
2.归纳定理: 根据上面的证明,请学生自己用文字语文进行归纳,并将其命名为“垂径定理” 。 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 3.巩固定理: 在下列图形(如图 4(a)~(d))中,AB 是⊙O 的弦,CD 是⊙O 的弦,它们是否适 用于“垂径定理”?若不适用,说明理由;若适用,能得到什么结论。 ୂ Ɂ C ୂ
ୂ A E ୂ D (a)AB⊥CD 于 E
A O ୂ
ୂ E
O
B
B

D (b)E 是 AB 中点


(c)OC⊥AB 于 E (图 4)
(d)OE⊥AB 于 E
向学生强调:(1)定理中的两个条件缺一不可;(2)定理的变式图形。 四、例题示范,变式练习 1.运用定理进行计算。 〖例 1〗如图 5,在⊙O 中,若弦 AB 的长为 8cm,圆心 O 到 AB 的距离为 3cm, A ୂ B 求⊙O 的半径。 分析:因为已知“圆心 O 到 AB 的距离为 3cm” ,所以要作 辅助线 OE⊥AB;因为要求半径,所以还要连结 OA。 解:(略)学生口述,教师板书。 〖变式一〗在图 5 中,若⊙O 的半径为 10cm,OE=6cm,则 AB= 思考一:若圆的半径为 R,一条弦长为 a,圆心到弦的距离为 d, 则 R、a、d 三者之间的关系式是 若 CE=2cm,AB=8cm,则⊙O 的半径= 2.运用定理进行证明 〖例 2〗已知:如图 7,在以 O 为圆心的两个同心圆中, 大圆的弦 AB 交小圆于 C、D 两点。 求证:AC=BD。 (证明△OAC≌△OBD 或证明△OAD≌△OBC) ②此外,还有更简捷的证明方法吗?若有,又怎样证明?(垂径定理)
二、尝试诱导,发现定理 1.复习过渡: ①如图 2(a),弦 AB 将⊙O 分成几部分?各部分的名称是什么? ቤተ መጻሕፍቲ ባይዱ如图 2(b),将弦 AB 变成直径,⊙O 被分成的两部分各叫什么? ③在图 2(b)中,若将⊙O 沿直径 AB 对折,两部分是否重合? ୂ C
ୂ ୂ ୂ A ୂ B
C ୂ ୂ
A D

B A
O ୂ (b) (图 3)

E
D (c)
B
(a) (图 2) 2.实验验证:
(b)
(a)
让学生将准备好的一张圆形纸片沿任一直径对折,观察两部分是否重合;教师用 电脑演示重叠的过程。从而得到圆的一条基本性质—— 圆是轴对称图形,过圆心的任意一条直线(或直径所在的直线)都是它的对称轴。 3.运动变换: ①如图 3(a),AB、CD 是⊙O 的两条直径,图中有哪些相等的线段和相等的弧? ②如图 3(b),当 AB⊥CD 时,图中又有哪些相等的线段和相等的弧? ③如图 3(c),当 AB 向下平移,变成非直径的弦时,图中还有哪些相等的线段和相 等的弧?此外,还有其他的相等关系吗? 4.提出猜想:根据以上的研究和图 3(c),我们可以大胆提出这样的猜想——
AE BD ⌒ ⌒ (板书) AC BC CD弦AB, 垂足为E ⌒ ⌒ AD BD CD是圆O的直径
5.验证猜想:教师用电脑课件演示图 3(c)中沿直径 CD 对折,这条特殊直径两侧 的图形能够完全重合,并给这条特殊的直径命名为——垂直于弦的直径。 三、引导探究,证明定理 1.引导证明: 猜想是否正确,还有待于证明。引导学生从以下两方面寻找证明思路。 ①证明“AE=BE” ,可通过连结 OA、OB 来实现,利用等腰三角形性质证明。 ②证明“弧相等” ,就是要证明它们“能够完全重合” ,可利用圆的对称性证明。
垂径定理(第一课时)教学设计
【教学内容】§24.1.2 垂径定理(初三数学上册课本 P81~P83) 【教学目标】 1.知识目标:①通过观察实验,使学生理解圆的轴对称性; ②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题; ③掌握辅助线的作法——过圆心作一条与弦垂直的线段。 2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力; ②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。 3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透; ②激发学生探究、发现数学问题的兴趣和欲望。 【教学重点】垂径定理及其应用。 【教学难点】垂径定理的证明。 【教学方法】探究发现法。 【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。 【教学设计】 一、实例导入,激疑引趣 1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以 升) ,其中介绍了我国隋代工匠李春建造的赵州桥 (如图) 。因它位于现在的历史文化名城河北省赵 县(古称赵州)而得名,是世界上现存最早、保 存最好的巨大石拱桥,距今已有 1400 多年历史, 被誉为“华北四宝之一” ,它的结构是当时世界桥 梁界的首创,这充分显示了我国古代劳动人民的创造智慧。 2.导入:赵州桥的桥拱呈圆弧形的(如图 1) ,它的跨度(弧所对的弦长)为 37.4 ୂ 米,拱高(弧的中点到弦 AB 的距离, ୂ ୂ 也叫弓高)为 7.2 米。请问:桥拱的 A B D ⌒ 半径(即 AB 所在圆的半径)是多少? ‫ﮡ‬ ୂ ୂ ୂ †ୂ ƶ 通过本节课的学习,我们将能很容易解决这一问题。 (图 1)
相关文档
最新文档