27.3垂径定理教案
沪教版(上海)数学九年级第二学期-27.3 (1) 垂径定理 教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯§27.3 (1)垂径定理教学目标:1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理;并能初步运用垂径定理解决有关的计算和证明问题;2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法;3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。
教学重点:掌握垂径定理,能应用垂径定理进行简单计算或证明。
教学难点:对垂径定理的探索和证明。
教学用具:圆规,三角尺,几何画板课件,圆形纸片教学过程:一、复习引入师:什么是轴对称图形?生:把一个图形沿着某一条直线翻折,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就是它的对称轴。
师:请你判断下列哪些图形是轴对称图形?师:圆是轴对称图形吗?让我们来共同研究一下。
老师拿出事先准备好的圆形纸片,把这个圆形纸片沿着任意一条直径对折,然后观察折叠后的两个半圆有何关系?最后得出什么结论。
生:圆是轴对称图形。
师:你知道它的对称轴是什么吗?生:经过圆心的直线(它的直径)师:哪位同学说的对呢?生:对称轴是直线,而直径是线段,所以我们应该说圆的对称轴是经过圆心的直线,或者是直径所在直线。
结论:圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。
观察并回答:操作:我们在圆形纸片上把刚才的折痕描绘出来,标记为CD。
在此纸片上再任意增加一条直径AB。
师:请问两条直径的位置关系是什么?生:两条直径始终是互相平分的。
师:把直径AB 向下平移,变成非直径的弦,直径CD 是否一定平分弦AB ? 生:不一定二、新课1、猜想:弦AB 在怎样情况下会被直径CD 平分?2、得出猜想:当CD ⊥AB 时,弦AB 会被直径CD 平分。
师:思考:CD 是以点O 为圆心的直径,过直径上任一点E 作弦AB ⊥CD,将圆O 沿CD 对折,比较图中的线段和弧,你能发现有哪些相等的量?(教师用电脑课件演示图中沿直径CD 对折,这条特殊直径两侧的图形能够完全重合。
《垂径定理》教学设计教案

《垂径定理》教学设计教案
课题:垂径定理
教学内容:垂径定理的概念、内容及应用
教学目标:
1.了解垂径定理的概念和内容。
2.掌握垂径定理的应用方法和技巧。
3.通过课堂练习和课后作业,提高学生的解题能力和思维能力。
教学重点和难点:
教学过程:
1.导入(5分钟)
教师首先介绍垂径定理的概念和基本应用,引出本节课的主题,并说明课程的目标和
教学重点及难点。
2.讲解(20分钟)
教师以图像和问题出发,引导学生理解垂径定理的概念和原理,然后逐步讲解垂径定
理的一般结论、特殊结论及不等式定理的推导过程和相关练习和问题。
教师带领学生完成一组课堂练习,然后让学生自己在课本和课堂练习中解决相关问题。
课堂练习中要带领学生培养解题的思路和解题的步骤,提高解题的能力和积极性。
教师邀请学生上台分享课上或课后做的垂径定理相关问题的解答和思路,并指导学生
如何巩固和加强相关知识和应用。
教师引导学生自主学习、思考和实践垂径定理相关问题,鼓励学生自主发现问题点,
深入思考问题的解决方案,并及时对学生的提问进行解答和指导。
教学方法:
1.课堂讲解
2.演示分析
3.课堂练习
4.展示分享
教学工具:
1.黑板
2.笔
3.投影仪
4.计算器
5.纸笔
教学评价:
2.课堂参与
4.家庭作业
5.期末考试
教学反思:
本节课通过注重理论知识的讲解,课程的练习和展示,进一步加深了学生对垂径定理的理解和应用能力。
但是还需要在今后的教学中加强对知识点的理解和掌握以及对学生思维能力的培养和提升。
《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。
1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。
1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。
第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。
2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。
第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。
3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。
3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。
3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。
第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。
4.2 教学媒体:几何画板、实物模型、PPT等。
第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。
5.2 评价方式:课堂问答、练习题、小组讨论等。
第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。
6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。
第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。
7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。
7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。
7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。
7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。
第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。
8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。
27.3 垂径定理(1)

理解并熟记垂径定理 的推论
= BD , AC = BC . ∴CD 过圆心, AD = BD . (2)∵CD⊥AB, AD
∴CD 过圆心,AE=BE..
口述符号语言
总结上面的讨论,可以概括为: 在圆中,对于某一条直线①“经过圆心”②“垂直于弦”③“平 理解并熟记结论 分弦”④“平分弦所对的弧”这四组关系,如果有两组关系成立, 那么其余两组关系也成立. 三、例题讲解
学
过
程 学生活动
一、复习引入 展示赵州石拱桥的图片:一千三百多年前,我国隋代建造的赵 州石拱桥的桥拱是圆弧形,已知桥拱的跨度(弧所对的弦长)为 完成填空 37.4 米,拱高(弧的中点到弦的距离)为 7.2 米.你会求桥拱所在圆 的半径长吗?带着这个问题我们进入今天的新课学习。 复习垂径定理的内容 二、定理探究 问题 1 如图 1,CD 是⊙O 的直径,AB 是弦(不是直径) ,CD 与 AB 交于点 E. (1)如果 AE=BE,那么 CD 与 AB 垂直吗? (2)如果弧 AD=弧 BD,那么 CD 与 AB 垂直吗? 归纳得出结论: (1)如果圆的直径平分弦(这条弦不是直径) ,那么这条直径垂直 于这条弦,并且平分这条弦所对的弧. (2)如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对 的弦. 符号语言: (1)∵CD 是⊙O 的直径 , AE=BE. 思考问题,猜想结论并 口述证明过程
月_ 课 教 目 重 难 题 学 标 点 点
27.3(1) 垂径定理
_日 星期_ 新授
_ 第 教 时
周 1
课 型
1.经历垂径定理推论的探究过程,体会分类讨论数学思想; 2.能初步运用垂径定理及其推论解决有关数学问题. 垂径定理及其推论的初步运用. 垂径定理推论的探究. 多媒体课件
《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。
培养学生运用几何知识解决实际问题的能力。
1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。
运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。
1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。
培养学生合作交流的能力,提高学生的团队协作能力。
第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。
理解垂径定理在圆的性质和几何图形中的应用。
2.2 学情分析:了解学生对圆的基本知识和垂线的概念。
了解学生对几何证明的掌握程度,为学生提供必要的支持。
第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。
能够运用垂径定理解决相关的几何问题。
3.2 教学难点:理解并证明垂径定理。
灵活运用垂径定理解决实际问题。
第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。
运用小组合作学习,鼓励学生互相交流、讨论。
4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。
提供相关的练习题和案例,供学生实践和应用垂径定理。
第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。
引导学生观察和猜想垂径定理的内容。
5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。
引导学生运用几何知识和证明方法,进行逻辑推理和证明。
5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。
引导学生进行自主学习和合作交流,解答练习题和案例。
鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。
1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。
提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。
第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。
垂径定理公开课教案

垂径定理公开课优秀教案一、教学目标1. 知识与技能:(1)让学生掌握垂径定理的内容及应用;(2)培养学生运用几何知识解决实际问题的能力。
2. 过程与方法:(1)通过观察、实验、证明等环节,引导学生发现并证明垂径定理;(2)运用垂径定理解决一些相关的几何问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)垂径定理的内容及其应用;(2)运用垂径定理解决一些相关的几何问题。
2. 教学难点:(1)垂径定理的证明;(2)在实际问题中灵活运用垂径定理。
三、教学方法1. 采用问题驱动法,引导学生发现并证明垂径定理;2. 运用几何画板软件,直观展示垂径定理的应用;3. 设计具有梯度的练习题,巩固学生对垂径定理的理解。
四、教学准备1. 教师准备:垂径定理的相关知识、课件、练习题;2. 学生准备:笔记本、几何画板软件。
五、教学过程1. 导入新课(1)复习相关知识:圆的基本概念、圆的性质;(2)提问:如何判断一条直线是否垂直于一条弦?2. 探究与发现(1)学生分组讨论,尝试发现垂径定理;(2)各组汇报讨论成果,师生共同总结垂径定理;(3)教师利用几何画板软件,演示垂径定理的应用。
3. 证明垂径定理(1)学生根据已知的圆的性质,尝试证明垂径定理;(2)教师引导学生归纳总结,给出垂径定理的证明过程。
4. 应用垂径定理(1)设计一组练习题,让学生运用垂径定理解决问题;(2)学生独立解答,教师点评并指导。
5. 课堂小结(1)学生总结本节课所学内容;(2)教师补充,强调垂径定理在几何中的应用。
6. 作业布置(1)请学生运用垂径定理解决一些实际问题;(2)复习本节课所学知识,为下一节课做准备。
六、教学拓展1. 引导学生思考:垂径定理在实际生活中的应用有哪些?2. 举例说明:如在建筑设计中,如何利用垂径定理确定圆形的建筑物的垂直结构。
七、课堂互动1. 学生之间互相提问关于垂径定理的问题,加深对知识的理解;2. 教师参与互动,解答学生提出的问题,及时纠正学生的错误。
(完整版)27.3(3)垂径定理

人的大脑和肢体一样,多用则灵,不用则废。
BABA BACAP27.3 垂径定理(3)[学习目标]1、能运用垂径定理及推论解决有关数学问题;2、掌握运用垂径定理及其推论时辅助线的常用添法. [学习重难点]会运用垂径定理及推论解决有关问题.一、课前预习1、已知»AB ,用直尺和圆规平分这条弧.2、已知:如图,线段AB 、交O e 于C 、D 两点,且OA=OB , 求证:AC=BD.3、如图,有一圆弧形门拱的拱高CD 为1米,跨度AB 为4米,求这个门拱的半径.二、课堂学习例题1 如图,已知O e 的半径长为25,弦AB 长为48,C 是»AB 的中点. 求AC 的长. (提示:把AC 放到直角三角形中去求,这里可以联结 、 )(问题:添辅助线时这里可以写“作OC AB ⊥”吗?)例题2 如图,已知AB 、CD 是O e 的弦,且AB=CD ,,OM AB ON CD ⊥⊥ ,垂足分别是点M 、N ,BA 、DC 的延长线交于点P. 求证:PA=PC. (提示:先证明AM=CN 和PM=PN )例题3 如图,已知O e 的半径长R 为5,弦AB 与弦CD 平行,它们之间的距离为7,AB 长6,求弦CD 的长.(问题:过点O 作,OE AB OF CD ⊥⊥ ,垂足分别为E 、F ,可否马上得到EF=7?)人的大脑和肢体一样,多用则灵,不用则废。
POBACDFOE B A C D P ONMB AC DO B CBCE DOA课堂小结四、课堂练习1、已知:如图,PB 、 PD 与O e 分别交于点A 、B 和点C 、D ,且PO 平分BPD ∠.求证:¼¼.ABD CDB =2、如图,已知AB 是O e 的直径,弦CD 交AB 于点E ,45CEA ∠=o,OF CD ⊥,垂足为点F ,DE=7,EO=2. 求CD 的长.3、已知O e 的半径长为5,弦AB 与弦CD 平行,AB=6,CD=8. 求AB 与CD 之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.3(1) 垂径定理
崇明县三乐学校秦健
一、教学内容分析
学情分析:学生已经知道,在同圆或等圆中,圆心角、圆心角所对的弧和弦及其弦心距这四组量之间有密切的联系。
(即“四等定理”)本节利用圆的轴对称性,进一步得到圆的直径与弦及弦所对的弧之间也存在着密切的关联.因为圆是轴对称图形,且任意一条直径所在直线都是它的对称轴,所以课本对于这些量之间关系的讨论,从垂直于弦的直径的性质开始展开,并加以推理证明;
教材分析:垂径定理及其推论揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;在垂径定理得出的过程中,体验了从感性到理性、从具体到抽象思维过程,有助于培养思维的严谨性.
二、教学目标
1、经历垂径定理的探索和证明过程,掌握垂径定理;
2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法;
3、能初步运用垂径定理及推论解决有关数学问题.
三、教学重点及难点
重点:掌握垂径定理的内容并初步学会运用.
难点:垂径定理的探索和证明.
四、教学过程
(一)情景引入
1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)说明:通过实际问题引入新课激发学生学习兴趣
52D B
A O 1、观察与思考:
圆是怎样的对称图形?对称轴与对称中心分别是什么?
(二)学习新课
1、思考
如图,CD 是⊙O 的直径,AB 是⊙O 的弦,且AB ⊥CD ,垂足为
M ,则图中有哪些相等的线段和弧?(半圆除外)为什么?
(学生观察,猜想,并得出以下结论)
①CO=DO (同圆的半径相等)
②AM=BM,弧AD=弧BD ,弧AC=弧BC (如何证明?)
(学生讨论,并得出推导过程,教师板书)
联结OA 、OB ,则OA=OB.
∵ AB ⊥CD,
∴ AM=BM (等腰三角形三线合一),
∠AOD=∠BOD,
∴ 弧AD=弧BD (同圆中,相等的圆心角所对的弧相等).
∵ ∠AOC=∠BOC,
∴ 弧AC=弧BC.
2、定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧.
结合图形写成符号语言:
∵直径CD ⊥弦AB ,垂足为M
∴ AM=BM
∴ 弧AD=弧BD (同圆中,相等的
圆心角所对的弧相等).
弧AC=弧BC.
3、抢答题:如图:已知⊙O 的半径OC 垂直于弦AB,垂足为点D ,
AD 长2厘米,弧AB 长5厘米,则AB= 弧
AC= .
4、例题分析
例1、 已知:如图,以点O 为圆心的两个圆中,
大圆的弦AB 交小圆于点C 、D 两点,
求证:AC=DB
分析:分析学生可能的方法,比较方法的最优性。
作OH ⊥AB ,垂足为H
证明略
例2(赵州桥桥拱问题)1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)
分析:首先将实际问题转化为数学图形。
如图,假设弧AB 表示赵州桥的桥拱,桥拱的跨度为37.4米,拱高为7.2米,求桥拱所在圆的半径.(精确到0.1米)
1、结合图形解释桥拱的跨度、拱高及弓形的含义.
2、图中哪些表示圆O 的半径?
3、如何建立等量关系?
解:设圆O 的半径为R ,则OA=OB=OC=R
根据题意,AB=37.4,CD=7.2,则OD=2.7-R
∵ 半径OC ⊥AB ,垂足为D
∴ AD=21AB=18.7 在Rt △AOD 中,∠ADO=90°
∵ AD 2+OD 2=OA 2
∴ 18.72+2)2.7(-R =2R
9.27≈R
答:桥拱所在圆的半径约为27.9米.
(三)巩固练习
1、已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长.
2、已知⊙O的半径长为50cm,弦AB长50cm,
求:(1)点O到AB的距离;(2)∠AOB的大小.
3、如图,已知P是⊙O内一点,画一条弦AB,使AB 经过经过点P,并且AP=PB.
(四)课堂小结
知识:(1)圆的轴对称性;(2)垂径定理及应用.
方法:(1)垂径定理和勾股定理有机结合可以计算弦长、半径、弦心距等问题,关键是构造由半径、半弦、弦心距的直角三角形——作弦心距;(2)为了更好理解垂径定理,一条直线只要满足①过圆心;②垂直于弦;则可得③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.
五、作业布置
,习题27.3(1)
练习册:P
5
六、教学说明及反思
(1) 本节一开始说明了圆是轴对称图形,然后在“思考”中提出问题,引导学生直观感知垂径定理的真实性,再用推理的方法加以证明.教学中,要注意展现垂径定理的导出和证明过程,让学生获得“实验—归纳—猜测—论证”的过程经历.
(2) 对于垂径定理文字描述的理解,在“边款”中特别指出,垂径定理条件中的“弦”可以是直径,结论中“平分弦所对的弧”包括弦所对的劣弧和优弧;垂径定理中的条件“圆的直径垂直于弦”,也可表述为“圆的半径垂直于弦”,或者“圆心到弦的垂线段”.这样,学生在实际问题背景下,可灵活运用垂径定理来解决数学问题.
(3) 例题1是垂径定理的初步运用.学生有可能还是习惯用等腰三角形“三线合一”来证明,要引导学生对不同的证明方法进行比较,帮助学生理解新的定理在几何证明中所起的作用,看到不同证明方法之间的联系和课本中证明过程的简约.
(4) 例题2 是运用垂径定理解决简单的实际数学问题.本题的背景赵州石拱桥,
教学时要指导学生如何将现实生活中的数学问题抽象为数学模型,要关注这个转化的过程,渗透数学建模思想.同时,可结合本例渗透“两纲”教育,激发学生的爱国热情.例题中有拱高,后面又提出了弓形的概念,教学时要向学生解说,并注意“边款”中对“弓形”与“拱形”两个概念的区别的说明.。