2003考研数三真题及解析.doc
2003年考研数学一试题及完全解析(Word版)

2003年全国硕士研究生入学统一考试数学(一)试卷答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x . 【评注】 本题属基本题型。
2003年考研数学三真题及答案

Yn =
1 n 1 1 n 2 依概率收敛于 X EX i2 = . ∑ ∑ i 2 n i =1 n i =1
二、
选择题
(1)【答案】D 【解】 显然 x=0 为 g(x)的间断点,且由 f(x)为不恒等于零的奇函数知,f(0)=0. 于是有
lim g ( x) = lim
x →0 x →0
f ( x) f ( x) − f (0) = lim = f ′(0) 存在,故 x=0 为可去间 x → 0 x x−0
2
设
f ( x) =
1 1 1 1 + − , x ∈ [ ,1). πx sin πx π (1 − x) 2
试补充定义 f(1)使得 f(x)在 [ ,1] 上连续.
1 2
四 、 (本题满分 8 分)
1 2 ∂2 f ∂2 f 2 设 f(u,v)具有二阶连续偏导数, 且满足 又 g ( x, y ) = f [ xy, ( x − y )] , + 2 = 1, 2 2 ∂u ∂v
断点. (2)【答案】A 【 解 】 可 微 函 数 f(x,y) 在 点 ( x0 , y 0 ) 取 得 极 小 值 , 根 据 取 极 值 的 必 要 条 件 知
f y′ ( x 0 , y 0 ) = 0 ,即 f ( x0 , y ) 在 y = y 0 处的导数等于零, 故应选 A.
(3) 【答案】B 【解】 若
1 n 2 ∑ X i 依概率收敛于 ___. n i =1
二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内) (1)设 f(x)为不恒等于零的奇函数,且 f ′(0) 存在,则函数 g ( x) = (A) 在 x=0 处左极限不存在. (C) 在 x=0 处右极限不存在.
考研数学三(微积分)历年真题试卷汇编22(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编22(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1990年)设函数f(x)=xtanxesinx,则f(x)是( )A.偶函数.B.无界函数.C.周期函数.D.单调函数.正确答案:B解析:由于则f(x)无界.2.(2011年)已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则( )A.k=1,c=4.B.k=1,c=一4.C.k=3,c=4.D.k=3,c=一4.正确答案:C解析:则k=3,c=43.(2000年)设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f’(a)=0B.f(a)=0且f’(a)≠0C.f(a)>0且f’(a)>0D.f(a)<0且f’(a)<0正确答案:B解析:排除法.A选项显然不正确,f(x)=(x一a)2就是一个反例.事实上C 和D也是不正确的.因为f(x)在a点可导,则f(x)在a点连续,若f(a)>0(或f(a)<0)则存在a点某邻域在此邻域内f(x)>0(或f(x)<0),因此在a点的此邻域内|f(x)|=f(x)(或|f(x)|=一f(x)).从而可知|f(x)|与f(x)在a点可导性相同,而f(x)在点可导,从而C和D都不正确,因此,应选B.4.(2007年)设某商品的需求函数为Q=160—2p,其中Q,p分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) A.10C.30.D.40.正确答案:D解析:由题设可知,该商品的需求弹性为由知p=40.故应选D.5.(1987年)下列广义积分收敛的是( )A.B.C.D.正确答案:C解析:由于收敛,所以.应选C.6.(2018年)设函数f(x)在[0,1]上二阶可导,且∫01 f(x)dx=0,则( ) A.B.C.D.正确答案:D解析:由泰勒公式得上式两端积分得7.(2006年)设f(x,y)与φ(x,y)均为可微函数,且φ’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ) A.若fx’(x0,y0)=0,则fy’(x0,y0)=0.B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0.C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0.D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有若fx’(x0,y0)≠0,由①式知λ≠0,由原题设知φy’ (x0,y0)≠0,由②式可知fy’ (x0,y0)≠0,故应选8.(2016年)级数(k为常数)( )A.绝对收敛.B.条件收敛.C.发散.D.收敛性与k有关.正确答案:A解析:由于收敛,则原级数绝对收敛.填空题9.(2007年) =______.正确答案:应填0.解析:由于sinx+cosx为有界变量,则10.(1990年)设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=______.正确答案:应填a+b.解析:由于F(x)在x=0连续,则11.(2003年)已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=______.正确答案:应填4a6.解析:设曲线y=x3一3a2x+b在x=x0处与x轴相切,则3x02—3a2=0 且x03—3a2x0+b=0即x02=a2 且x0(x02—3a2)=一b从而可得b2=4a612.(2018年)设函数f(x)满足f(x+△x)一f(x)=2xf(x)△x+o(△x)(△x→0),且f(0)=2,则f(1)=______.正确答案:应填2e.解析:由f(x+△x)一f(x)=2xf(x)△x+o(△x)(△x→0)知上式中令△x→0得f’(x)=2xf(x)解方程得f(x)=Cex2又f(0)=2,则C=2,f(x)=2ex2,f(1)=2e.13.(2010年)设可导函数y=y(x)由方程∫0x+ye-t2dt=∫0xxsint2dt确定,则=______.正确答案:应填一1.解析:由∫0x+ye-t2dt=x∫0xsintdt知,x=0时y=0,且e-(x+y)2(1+y’)=∫0xsintdt+xsinx将x=0和y=0代入上式得1+y’(0)=0y’(0)=-114.(2000年)设其中f,g均可微,则=______.正确答案:应填解析:15.(2014年)二次积分=______.正确答案:应填解析:积分中的第二项适合先对x后对y积分,但第一项适合先对y后对x 积分.解答题解答应写出文字说明、证明过程或演算步骤。
2003考研数三真题与解析

2003 年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上 .1 若x 0,(1) 设 f ( x)x cos ,其导函数在 x0 处连续,则.0, x若x 0,的取值范围是(2) 已知曲线 yx 3 3a 2 x b 与 x 轴相切,则 b 2 可以通过 a 表示为 b 2.(3) 设 a0 , f (x)g( x)a,若 0 x 1,0,其他, 而 D 表示全平面,则If ( x) g( y x)dxdy =.D(4) 设 n 维向量( a,0, ,0, a) T ,a0 ; E 为 n 阶单位矩阵,矩阵 AET ,B E1T,其中 A 的逆矩阵为 B ,则 a .a(5) 设随机变量 X 和 Y 的相关系数为 0.9, 若Z X0.4 ,则 Y 与 Z 的相关系数为.(6) 设总体 X 服从参数为2 的指数分布, X 1, X 2 , , X n 为来自总体 X 的简单随机样本,则当 n时, Y n1 n X i2 依概率收敛于 .n i 1二、选择题:本题共 6 小题,每小题 4 分,共 24 分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内 .(1) 设 f ( x) 为不恒等于零的奇函数,且f (0) 存在,则函数 g( x)f ( x) ()x(A) 在 x 0 处左极限不存在 . (B) 有跳跃间断点 x 0 .(C) 在 x 0 处右极限不存在 .(D) 有可去间断点 x0 .(2) 设可微函数 f ( x, y) 在点 (x 0 , y 0 ) 取得极小值,则下列结论正确的是( )(A) f (x 0 , y) 在 y y 0 处的导数等于零 . (B) f (x 0 , y) 在 y y 0 处的导数大于零 .(C)f ( x 0 , y) 在 y y 0 处的导数小于零 .(D)f (x 0 , y) 在 yy 0 处的导数不存在 .(3) 设 p na na n , q na na n, n 1,2,,则下列命题正确的是()(A) 若a n 条件收敛,则p n 与q n 都收敛 .n 1n 1n 1(B) 若a n 绝对收敛,则p n 与q n 都收敛 .n 1n 1n 1a b (C) 若a n 条件收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1(D) 若a n 绝对收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1a b b(4) 设三阶矩阵 Ab ab ,若 A 的伴随矩阵的秩为1,则必有 ()b b a(A)a b 或 a 2b0 . (B) a b 或 a 2b 0 . (C) a b 且 a 2b0 .(D)a b 且 a 2b 0 .(5) 设1 ,2 , , s 均为 n 维向量,下列结论不正确的是( )(A) 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k2 2k s s 0 ,则1 ,2 , , s 线性无关 .(B) 若1, 2,,s 线性相关,则对于任意一组不全为零的数k 1 , k 2 , , k s ,都有k1 1k2 2k s s 0.(C) 1 ,2 ,,s 线性无关的充分必要条件是此向量组的秩为s.(D)1 ,2 ,, s 线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件: A 1 ={ 掷第一次出现正面} , A 2 ={ 掷第二次出现正面 } , A 3 ={ 正、反面各出现一次 } , A 4 ={ 正面出现两次 } ,则事件 ( )(A)A 1, A 2 , A 3 相互独立 . (B) A 2 , A 3 , A 4 相互独立 .(C)A 1 , A 2 , A 3 两两独立 .(D) A 2 , A 3 , A 4 两两独立 .三 、(本题满分 8 分)设 f ( x)1 1 1 , x [ 1 ,1) ,试补充定义 f (1)使得 f ( x) 在 [ 1,1] 上连xsin x(1 x) 22 续.四 、 (本题满分 8 分 )设 f (u, v) 具有二阶连续偏导数, 且满足2 f2 f1,又g( x, y) f [ xy,1(x 2 y 2 )] ,u 2v 222g2g求x 2y 2 .五 、 (本题满分 8 分 )计算二重积分Ie ( x 2 y 2 ) sin( x 2y 2 )dxdy.D其中积分区域 D{( x, y) x 2y 2}.六、 (本题满分 9 分 )求幂级数 1( 1) n x 2n ( x 1) 的和函数 f (x) 及其极值 .n 12n七、 (本题满分 9 分 )设 F ( x) f (x) g( x) , 其中函数 f (x), g (x) 在 ( ,) 内满足以下条件:f ( x) g( x) ,g ( x) f ( x) ,且 f (0)0 , f ( x)g (x)2e x .(1) 求 F ( x) 所满足的一阶微分方程;(2) 求出 F ( x) 的表达式 . 八、 (本题满分 8 分 )设函数f ( x) 在 [0, 3]上连续,在 (0, 3)内可导,且 f (0) f (1) f (2) 3, f (3)1 .试证:必存在(0,3) ,使 f ( ) 0.九、 (本题满分 13 分 )已知齐次线性方程组(a1 a1 x1 a1 x1a1 x1b)x1( a2a2 x2a2 x2a2 x2a3 x3a n x n0,b) x2a3 x3a n x n0,(a3b) x3a n x n0,a3 x3(a n b) x n0,n其中a i 0. 试讨论a1, a2,,a n和b满足何种关系时,i 1(1)方程组仅有零解;(2)方程组有非零解 . 在有非零解时,求此方程组的一个基础解系.十、 (本题满分13 分 )设二次型f (x1,x2,x3)XT222222(b0) ,AX ax1x2x3bx1x3中二次型的矩阵 A 的特征值之和为1,特征值之积为 -12.(1)求 a, b 的值;(2) 利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、 (本题满分13分)设随机变量 X 的概率密度为1, 若x [1,8],f ( x)3x23其他 ;0,F(X ) 是 X 的分布函数.求随机变量 Y F (X ) 的分布函数.十二、 (本题满分13 分 )设随机变量X 与 Y 独立,其中X 的概率分布为X ~120.3,0.7而 Y 的概率密度为 f ( y) ,求随机变量 U X Y 的概率密度 g(u) .2003 年全国硕士研究生入学统一考试数学三试题解析一、填空题(1) 【答案】2【分析】无穷小量乘以有界函数的极限仍是无穷小量.【详解】是参变量, x 是函数f(x) 的自变量f ( x) f (0)x cos1lim x 1 cos1f(0)lim lim x0 ,x 0x0x0x x 0x要使该式成立,必须lim x10 ,即 1 .x 0当 x(,0)(0,) 时,f( x)x1 cos1x 2 sin1x x要使 f ( x)0 在x0 处连续,由函数连续的定义应有lim f( x)lim x1 cos 1x 2 sin1f (x) 0x0x 0x x由该式得出 2 .所以f( x) 在x0处右连续的充要条件是 2 .(2)【答案】 4a 6【详解】设曲线与x 轴相切的切点为( x0,0) ,则yx x00 .而 y 3x23a 2,有 3x023a2又在此点 y 坐标为0(切点在x轴上),于是有x033a2 x0 b 0,故b x033a2 x0x0 ( x023a2 ) ,所以22(322)224446.b x0x0aa a a(3)【答案】 a2【详解】本题积分区域为全平面,但只有当0 x 1,0 y x 1 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.If ( x) g( y=2dxdy= a21x 1212 dx dy a[( x 1) x]dx ax)dxdy a0x0 D0x 10y x 1(4) 【答案】 -1【详解】这里T为 n 阶矩阵,而T2a 2 为数,直接通过 AB E 进行计算并注意利用乘法的结合律即可.由题设,有AB (ET)(E 1T)=ET1 T1 TTaaaET1 T1 (T )T =ET1 T2aTaaaE( 1 2a 1 )TE ,1a1, a于是有1 2a0 ,即 2a 2a 1 0 ,解得 a1. 已知 a0 ,故 a1 .a2(5) 【答案】 0.9.【详解】利用方差和相关系数的性质D ( X a) DX , Cov( X ,Ya) Cov( X ,Y ) ,又因为 Z 仅是 X 减去一个常数,故方差不会变, Z 与 Y 的协方差也不会变,因此相关系数也不会变.Cov(Y, Z ) Cov (Y, X 0.4)E[(Y (X 0.4)] E(Y ) E( X0.4)E(XY) 0.4E(Y) E(Y) E( X )0.4E(Y)E(XY)E(Y )E( X ) Cov ( X ,Y ) ,且 D ZD X . 又 Cov (Y, Z ) Cov ( X , Y) ,所以Cov(Y, Z )Cov(X ,Y) XY0.9.D YD ZD XD Y(6) 【答案】1.2【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X 1 , X 2 , , X n ,当方差一致有界时, 其算术平均值依概率收敛于其数学期望的算术平均值:1np1n).X iEX i (nn i 1n i 1【详解】本题中X 12, X 22 , , X n 2 满足大数定律的条件,且EX i 2 DX i(EX i ) 2 = 1(1)21 ,422因此根据大数定律有1 n 2依概率收敛于1 n2 1Y nX i EX i.n i 1n i 12二、选择题(1) 【答案】 (D)【详解】 方法 1:直接法:由f (x) 为奇函数知, f (0) 0 ;又由 g( x)f ( x) ,知g (x) 在xx 0 处没定义,显然 x 0 为 g( x) 的间断点,为了讨论函数g( x) 的连续性,求函数g(x) 在 x0 的极限.lim g ( x) lim f ( x) lim f (x) f (0) 导数的定义f (0)存在,x 0 x 0x x 0x故 x 0 为可去间断点.方法 2:间接法:取f ( x)x ,此时 g( x) =x1, x 0,可排除 (A) (B) (C)三项.x 0, x0,(2) 【答案】 ( A)【详解】 由函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微, 知函数 f ( x, y) 在点 ( x 0 , y 0 ) 处的两个偏导数都存在,又由二元函数极值的必要条件即得 f (x, y) 在点 (x 0 , y 0 ) 处的两个偏导数都等于零. 从而有df ( x 0 , y) fdyy y 0y( x, y ) ( x 0 , y 0 )选项 ( A) 正确.(3) 【答案】 ( B)【详解】由 p na n an, qna n an,知 0 pa , 0q a n2nnn2若a n 绝对收敛,则 a n 收敛 . 再由比较判别法,p n 与q n 都收敛,后者n 1n 1n 1n 1与 q n 仅差一个系数,故q n 也收敛,选 (B) .n 1n 1(4) 【答案】 (C)【分析】A 的伴随矩阵的秩为 1, 说明 A 的秩为 2,由此可确定a, b 应满足的条件.【详解】 方法 1:根据 A 与其伴随矩阵A 秩之间的关系n r Anr A *1 r A n 1 0 r An 1知秩 ( A )=2,它的秩小于它的列数或者行数,故有a b b 1 b b1 b b A b a b(a 2b) 1 a b(a 2b) 0 a b0 b b a1 b aa b( a 2b)( a b)2 0有 a 2b0 或 a b .当 a b 时,b b bAb b b b b b2 1 1 b b b3 1 10 0 00 0 0显然秩 A1 2 , 故必有 a b 且 a 2b0 . 应选 (C).n r An 方法 2:根据 A 与其伴随矩阵A 秩之间的关系, rA *1 r A n 1 ,0 r An 1知 r A *1 , r A2 . 对 A 作初等行变换a b b 2 1 13 1 1Ab a bb b aa b b b a a b 0 b aa b当 a b 时,从矩阵中可以看到A 的秩为 1,与秩 A2 ,不合题意 (排除 (A) 、 (B))故 ab ,这时ab bAb a a b 02 b a 3b aa bba 2b bb11 01b a0a b12 00110113故 a 2b0 ,且 ab 时,秩 ( A )=2 ,故应选.(5) 【答案】 (B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】 (A): 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有 k 11k 22k s s 0 ,则1 ,2 ,,s 必线性无关 .因 为 若1, 2,, s 线 性 相 关 , 则 存 在 一 组 不 全 为 零 的 数 k 1, k 2 , , k s , 使 得k 11k 22ks s0 ,矛盾. 可见 (A) 成立.(B):若 1, 2, , s 线 性 相 关 , 则 存 在 一 组 ( 而 不 是 对 任 意 一 组 不 全 为 零 的 ) 数k 1 , k 2 , ,k s ,都有 k 11k2 2k ss0. (B) 不成立.(C)1 ,2 ,, s 线性无关,则此向量组的秩为s ;反过来,若向量组1 ,2 ,, s 的秩为 s ,则1 ,2 ,, s 线性无关,因此 (C)成立.(D)1 ,2 ,, s 线性无关,则其任一部分组线性无关, 则其中任意两个向量线性无关,可见 (D) 也成立.综上所述,应选 (B).【评注】 原命题与其逆否命题是等价的 . 例如,原命题:若存在一组不全为零的数k 1 , k 2 , , k s ,使得 k 1 1k2 2k ss0成立,则 1,2 ,, s 线性相关.其逆否命题为:若对于任意一组不全为零的数k 1 , k 2 , , k s ,都有 k 11k 22ks s0 ,则 1 , 2 , , s 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6) 【答案】 C【分析】 (1) A, B 两事件相互独立的充要条件:P AB P A P B(2) A, B,C 三事件相互独立的充要条件:(i) A, B, C 两两相互独立;(ii) P ABCP AP BP C【详解】 方法 1:因为1 ,P A 21 A 31 1 P A 1, P ,P A 4,且2224P A 1A 21 ,P A 1 A 31 11 ,P A 1 A2 A 30 ,4,P A 2 A 3,P A 2 A 4444可见有P A 1A 2 P A 1 P A 2 ,P A 1A 3 P A 1 P A 3 ,P A 2A 3PA 2PA 3,PA1A2A3PA1PA2PA3,PA2A4PA2PA4.故 A1 , A2 , A3两两独立但不相互独立; A2 , A3 , A4不两两独立更不相互独立,应选(C) .方法 2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见 (A) 不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确 . 因此只要检查 (C) 和 (D)P A2 A3A4P0 PA2P A3111 P A4442故(D) 错,应选 (C).三【详解】为使函数 f ( x) 在1,1]上连续,只需求出函数 f (x) 在 x1的左极限 lim f( ) ,[x1x2然后定义 f (1) 为此极限值即可.lim f ( x)lim[11x 1]x 1x1x sin(1x)1lim[11]1lim(1 x) sin xsin x(1(1x)sin xx1x)x 1令 u 1 x ,则当 x 1 时, u0,所以lim f ( x)1lim u sin(1u)u sin(1u)x 1u01lim u sin(1u)1lim u sin(1u)u (sin cos u cos sin u)u sin u u 0u01lim u sin(1u)1limcos(1u)等2u2洛22u u0u01lim 2 sin(1u)10=1洛22=u0定义 f (1)1,从而有 lim f ( x)1f (1), f(x) 在 x1处连续.又 f ( x) 在[1,1) x12上连续,所以 f ( x) 在 [ 1,1] 上连续.2四【详解】由复合函数z f [( x, y), ( x, y)] 的求导法则,得g f( xy)f 1( x2y2 )f f 2y xx u x v x u vg f( xy)f 1 ( x2y2 )f f 2xy u y v x u y .v从而2 g y 2 f y 2 f x f x 2 f y 2 f xx2u2u v v u v v2y2 2 f2xy 2 f x2 2 f fu2u v v2v2 g x 2 f x 2 f y f y 2 f x 2 f yy2u2u v v u v v2x2 2 f2xy 2 f y2 2 f fu2u v v2v2 g 2 g2y22f( x2y2)2 f( x2y2)(2 f 2 f)=x2y2.所以x 2y2( x)2v2u2v2u五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设x r cos, y r sin,有I e ( x2y2) sin( x2y2 )dxdy e e ( x2 y2 ) sin( x2y2 ) dxdyD De2e r 2sin r2rdr e2e r2d2d sin0000记 A e t sin tdt ,则A e t sin tdt e t d cost e t cost000e1 e t d sin te1 e t sin t00因此A 1(1 e) , I e(1 e )2(1 e ).22t r 2r 2 dr 2 e e t sin tdt.e t costdte t sin tdt = e 1 A.六【分析】 (1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2)等比级数求和公式x n 1 x x2x n1( 1 x 1)n 01x【详解】先对和函数 f (x)1( 1)n x2n求导n 12nf ( x)( 1)n x2 n 1x( 1)n x2 n 2x( 1)n x2nn 1n 1n0x( x2 ) n x1xn 01x2 1 x2对上式两边从0 到x积分x(t )dt x t dt f ( x) f (0)1ln(1 x2 )f0 1t 202由 f (0) 1,得f ( x) 11ln(1 x2 )( x 1).2为了求极值,对 f ( x) 求一阶导数,12x xf ( x)1 x2 1 x22令 f (x)0 ,求得唯一驻点 x0.由于1x2,f(0)10f ( x)x2 )(12由极值的第二充分条件,得 f ( x) 在 x0 处取得极大值,且极大值为 f (0) 1.七【分析】题目要求 F ( x) 所满足的微分方程,而微分方程中含有其导函数,自然想到对 F ( x)求导,并将其余部分转化为用 F ( x) 表示,导出相应的微分方程,然后再求解相应的微分方程即可.【详解】 (1) 方法1:由F ( x) f (x)g (x) ,有F (x) f (x) g( x) f ( x) g (x) =g2( x) f 2 ( x)[ f ( x) g(x)]2 2 f ( x) g( x) = (2e x) 22F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0) 0 .方法 2:由F (x) f ( x) g (x),有F ( x) f ( x)g( x) f (x)g ( x) =[ f ( x)]2[g ( x)] 2[ f ( x)g ( x)] 2 2 f ( x)g ( x)又由f ()() 2x. 有f ( x)xf (x)g( x)g (x) f (x)g ( x)2e ,,,于是x g x eF ( x)4e2 x 2 f (x) g( x)4e2 x2F ( x)可见 F ( x) 所满足的一阶微分方程为F (x)2F ( x)4e2x .相应的初始条件为 F (0) f (0) g(0)0(2)题 (1) 得到F ( x)所满足的一阶微分方程,求 F (x) 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程dyP( x) y Q( x) 的通解为dxy e P ( x ) dxQ( x)eP ( x) dxCdx2dx2x2dx 2 x4 x 2 x 2 x所以()e [ 4e dx C]= e [ 4e dx C ]=e Ce .F x e将 F(0)0 代入上式,得 01C, C 1 .所以 F ( x)e2 x e 2 x.八【分析】题目要证存在(0,3) ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知 f (3) 1 ,只需要再证明存在一点 c[0,3) ,使得 f (c) 1 f (3) ,然后在 [ c,3] 上应用罗尔定理即可.条件 f (0) f (1) f (2) 3 等价于f (0)f (1) f ( 2)1.问题转化为1介于 f (x) 的最3值之间,最终用介值定理可以达到目的.【详解】方法 1:因为f ( x)在[0,3]上连续,所以 f ( x) 在[0,2]上连续,则在[0,2]上必有最大值 M 和最小值m(连续函数的最大值最小值定理),于是m f (0)M , m f (1)M , m f (2) M .三式相加3m f (0) f (1) f (2) 3M .从而f ( 0 ) f( 1 )f( 2 )m31 M .由介值定理知,至少存在一点c[0,2] ,使f (c)f (0) f (1) f (2)1.3因为 f ( c) f (3) 1 ,且f (x)在[c,3]上连续,在(c,3)内可导,由罗尔定理知,必存在(c,3) (0,3) ,使 f ( )0.方法2:由于f (0) f (1) f (2) 3,如果 f (0), f (1), f (2) 中至少有一个等于1,例如f (2) 1 ,则在区间[ 2, 3]上对 f ( x) 使用罗尔定理知,存在(0, 2)(0, 3)使f ( ) 0. 如果 f (0), f (1), f (2) 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间 (0, 2) 内至少存在一点使f () 1.在区间 [ ,3] 对 f ( x) 用罗尔定理知,存在( ,3) (0,3) ,使 f ( )0. 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的 (-1) 倍加到其余各行,即可计算出行列式的值.【详解】方程组的系数行列式a1 b a2a3a na1a2 b a3a nA a1a2a3 b a na1a2a3a n bnb a i a2a3a ni 1nb a i a2b a3a ni 1nb a i a2a3b a ni1nb a i a2a3a n bi11a2a3a n1a2b a3a nn(b a i ) 1a2a3 b a ni11a2a3a n b1a2a3a nn 0b00n0 = b n 1 (b(b a i ) 0 0b a i ).i1i1000bn(1)当 A0 ,即b0且 b a i0 时,秩A n ,方程组仅有零解.i1(2)当 b0时,A0,原方程组的同解方程组为a1 x1a2 x2a n x n0.n0 可知,a i(i由a i1,2,, n) 不全为零.不妨设 a10 ,得原方程组的一个基础解系i1a2,1,0,,0)T,(a3,0,1,,0)T,, na n,0,0,,1)T.1(2a1(a1a1n时, A0.这时 b0 ,原方程组的系数矩阵可化为(3)当 b a ii 1na1a i a2a3a ni1na1a2a i a3a ni1A na1a2a3a i a ni 1na1a2a3a n a ii 1a1na i a2a3a ni 1n na i a i00将第 1行的(1)倍i1i 1n n加到其余各行a i0a i0i1i 1n na i00a ii1i1n从第 2行到第 n行a1i 1a i a2a3a n同乘以1倍1100n1010a ii110010000将第 i行的 ( a )倍1100i加到第 1行,.i 2,3,, n10001001由此得原方程组的同解方程组为x2x1, x3x1,, x n x1.原方程组的一个基础解系为(1,1, ,1)T .十【分析】特征值之和等于 A 的主对角线上元素之和,特征值之积等于 A 的行列式,由此可求出 a, b 的值;进一步求出 A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要 ),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.a0b【详解】 (1)二次型f的矩阵为A020. 设 A 的特征值为i (i 1,2,3) ,由题设得b02123a11a22a33 a 2 ( 2) 1,a0b123| A |0204a 2b212.b02解得 a 1,b2.(2)求矩阵 A 的特征值,令102E A020(2)2(3) 0,202得矩阵 A 的特征值122, 3 3.对于基础解系10 2 122, 解齐次线性方程组 (2EA) x 0 ,系数矩阵为 00 ,得 2 041 (2,0,1)T ,2(0,1,0)T .4 02对于 33 ,解齐次线性方程组 ( 3E A)x 0 ,系数矩阵为 0 5 0 ,得2 01基础解系3(1,0, 2)T .由于 1,2 ,3 已是正交向量组,为了得到规范正交向量组,只需将1, 2, 3 单位化,由此得1( 2 ,0, 1 )T , 2 (0,1,0)T , 3 ( 1 ,0,2 )T .5 55 5令矩阵2155Q1230 1 0 ,1 0255则 Q 为正交矩阵.在正交变换 XQY 下,有2 0 0 Q T AQ0 2 0 ,0 03且二次型的标准形为f2 y 12 2 y 223y 32 .【评注】本题求 a, b 也可先计算特征多项式,再利用根与系数的关系确定:二次型 f 的矩阵 A 对应特征多项式为abE A0 2 0(2)[ 2(a 2) (2ab 2 )].b2设 A 的特征值为1 , 2,3,则12,2 31232 (a 2) 1, 1 2 3a 2,2 3(2a b 2 ). 由题设得 2(2a b 2 )12.解得 a 1,b2 .第一步求参数见 《数学复习指南》 P361 重要公式与结论 4,完全类似例题见 《文登数学全真模拟试卷》数学三 P47 第九题.十一【分析】先求出分布函数 F ( x) 的具体形式,从而可确定 YF(X) ,然后按定义求 Y的分布函数即可.注意应先确定 Y F (x) 的值域范围 (0F(X)1) ,再对 y 分段讨论.【详解】易见,当 x1时, F (x) 0; 当 x 8时, F ( x) 1.对于 x [1,8] ,有x1 3 x 1.F ( x)dt133 t 2设 G ( y) 是随机变量 YF (x) 的分布函数. 显然,当 y0 时, G ( y) =0;当 y 1时,G ( y) =1 . 对于 y [ 0,1) ,有G ( y) P{ Yy} P{F(X) y}P{3 X 1y}P{ X ( y 1)3} F [( y 1)3 ] y.于是, YF ( x) 的分布函数为0,若 y 0,G ( y)y, 若 0y1,1,若 y 1.十二 【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布, 一般用分布函数法转化为求相应的概率. 注意 X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度 g(u) ,一般应先求分布函数G (u) P{ U u}P{ X Y u} ,在计算概率的时候,应充分利用X 只有可能取值 X 1和 X2.全概率公式:如果事件A 1, , A n 构成一个完备事件组,即它们是两两互不相容,其和为(总体的样本空间 ) ;并且0,1,2, , .则对任一事件B 有nP B P( A i )P(B | A i ).i 1【详解】设 F ( y) 是 Y 的分布函数,由全概率公式,得U X Y 的分布函数G (u) P{ X Y u}P{X 1}P{X Y 0.3P{ X Y u X 0.3P{Y u 1 X u X 1}P{ X2}P{ X Y u X 2} 1}0.7P{X Y u X2}1}0.7P{Y u 2 X2} .由于 X 和 Y 相互独立,所以P{Y u 1} P{ Y u1X 1}, P{Y u 2}P{ Y u 2 X2}所以G (u)0.3P{ Y u1}0.7 P{ Y u 2}0.3F (u1)0.7 F (u2).由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度g (u)G (u)0.3F(u1) 0.7F (u2) 0.3 f (u 1)0.7 f (u2).。
2003考研数三真题及解析

2003年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 设10,cos ,()0,0,x x f x xx λ⎧≠⎪=⎨=⎪⎩若若 其导函数在0x =处连续,则λ的取值范围是.(2) 已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b .(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(5) 设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为.(6) 设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设()f x 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) (A) 在0x =处左极限不存在. (B) 有跳跃间断点0x =. (C) 在0x =处右极限不存在. (D) 有可去间断点0x =.(2) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(3) 设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是 ( )(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.a b =(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(4) 设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 ( )(A) a b =或20a b +=. (B) a b =或20a b +≠.(C) a b ≠且20a b +=. (D) a b ≠且20a b +≠.(5) 设s ααα,,,21Λ均为n 维向量,下列结论不正确的是 ( )(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则sααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件( ) (A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立. (C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立.三 、(本题满分8分)设1111(),[,1)sin (1)2f x x x x x πππ=+-∈-,试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=, 求.2222y gx g ∂∂+∂∂五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()f x 及其极值.七、(本题满分9分)设()()()F x f x g x =, 其中函数(),()f x g x 在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且(0)0f =, .2)()(x e x g x f =+(1) 求()F x 所满足的一阶微分方程; (2) 求出()F x 的表达式.八、(本题满分8分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3,(3)1f f f f ++==. 试证:必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分)已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni i a 试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T , 中二次型的矩阵A 的特征值之和为1,特征值之积为-12.(1) 求,a b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .2003年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】2>λ【分析】无穷小量乘以有界函数的极限仍是无穷小量. 【详解】λ是参变量,x 是函数()f x 的自变量10001cos()(0)1(0)limlim lim cos 00x x x x f x f x f x x x xλλ-→→→-'====-,要使该式成立,必须10lim 0x x λ-→=,即1λ>.当(,0)(0,)x ∈-∞+∞U 时,1211()cos sin f x x x x xλλλ--'=+要使()0f x '=在0x =处连续,由函数连续的定义应有120011lim ()lim cos sin ()0x x f x x x f x x x λλλ--→→⎛⎫''=+== ⎪⎝⎭ 由该式得出2λ>. 所以()f x '在0x =处右连续的充要条件是2>λ.(2)【答案】64a【详解】设曲线与x 轴相切的切点为0(,0)x ,则00x x y ='=. 而2233y x a '=-,有22033x a =又在此点y 坐标为0(切点在x 轴上),于是有320030x a x b -+=,故 322200003(3)b x a x x x a =-=-,所以 .44)3(6422202202a a a x a x b =⋅=-=(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(5)【答案】0.9.【详解】利用方差和相关系数的性质DX a X D =+)(,(,)(,)Cov X Y a Cov X Y +=,又因为Z 仅是X 减去一个常数,故方差不会变,Z 与Y 的协方差也不会变,因此相关系数也不会变.(,)(,0.4)[((0.4)]()(0.4)Cov Y Z Cov Y X E Y X E Y E X =-=---()0.4()()()0.4()E XY E Y E Y E X E Y =--+ ()()()(,)E XY E Y E X Cov X Y =-=,且()().D Z D X = 又(,)Cov Y Z (,)Cov X Y =,所以0.9.XY ρ===(6)【答案】12. 【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21Λ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i 【详解】本题中22221,,,n X X X Λ满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+, 因此根据大数定律有∑==n i i n X n Y 121依概率收敛于()2111.2n i i E X n ==∑二、选择题(1)【答案】()D【详解】方法1:直接法:由()f x 为奇函数知,(0)0f =;又由xx f x g )()(=,知()g x 在0x =处没定义,显然0x =为()g x 的间断点,为了讨论函数()g x 的连续性,求函数()g x 在0x →的极限.000()()(0)lim ()lim lim (0)0x x x f x f x f g x f x x →→→-'===-导数的定义存在, 故0x =为可去间断点.方法2:间接法:取()f x x =,此时()g x =,0,0,0,1=≠⎩⎨⎧=x x x x 可排除()A ()B ()C 三项.(2)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(3)【答案】()B 【详解】由2nn n a a p +=,2nn n a a q -=,知0n n p a ≤≤,0n n q a ≤-≤若∑∞=1n n a 绝对收敛,则∑∞=1n n a 收敛. 再由比较判别法,∑∞=1n n p 与()1n n q ∞=-∑都收敛,后者与1n n q ∞=∑仅差一个系数,故1n n q ∞=∑也收敛,选(B).(4)【答案】(C)【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定,a b 应满足的条件. 【详解】方法1:根据A 与其伴随矩阵A *秩之间的关系()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩知秩(A )=2,它的秩小于它的列数或者行数,故有11(2)1(2)0010a b b b b b b A b a b a b a b a b a bb b ab aa b==+=+--2(2)()0a b a b =+-=有02=+b a 或a b =.当a b =时,[][]()[][]()211311000000b b b b b b A b b b b b b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦显然秩()12A =≠, 故必有 a b ≠且02=+b a . 应选(C).方法2:根据A 与其伴随矩阵A *秩之间的关系,()()()()1101*n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩,知()1*r A =,()2r A =. 对A 作初等行变换[][]()[][]()21131100a b b a b b A b a b b a a b b b a b a a b +⨯-+⨯-⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当a b =时,从矩阵中可以看到A 的秩为1,与秩()2A =,不合题意(排除(A)、(B)) 故a b ≠,这时[]()[]()[][][][]231213201100100101001b a b a a b b a b b a b b b A b a a b b a a b ÷-÷-+++⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦故02=+b a ,且a b ≠时,秩(A )=2,故应选.(5)【答案】(B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21Λ,都有 02211≠+++s s k k k αααΛ, 则s ααα,,,21Λ必线性无关.因为若s ααα,,,21Λ线性相关,则存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ,矛盾. 可见(A)成立.(B): 若s ααα,,,21Λ线性相关,则存在一组(而不是对任意一组不全为零的)数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ (B)不成立.(C) s ααα,,,21Λ线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21Λ的秩为s ,则s ααα,,,21Λ线性无关,因此(C)成立.(D) s ααα,,,21Λ线性无关,则其任一部分组线性无关,则其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21Λ,使得02211=+++s s k k k αααΛ成立,则s ααα,,,21Λ线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)【答案】C【分析】(1) ,A B 两事件相互独立的充要条件:{}{}{}P AB P A P B =(2) ,,A B C 三事件相互独立的充要条件:(i),,A B C 两两相互独立; (ii){}{}{}{}P ABC P A P B P C =⋅⋅【详解】方法1:因为{}112P A =,{}212P A =,{}312P A =,{}414P A =,且 {}1214P A A =,{}1314P A A =,{}2314P A A =,{}2414P A A =,{}1230P A A A =,可见有{}{}{}1212P A A P A P A =,{}{}{}1313P A A P A P A =,{}{}{}2323P A A P A P A =, {}{}{}{}123123P A A A P A P A P A ≠,{}{}{}2424P A A P A P A ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).方法2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见(A)不正确,因为如果正确,则(C)也正确,但正确答案不能有两个;同理,(B)也不正确. 因此只要检查(C)和(D){}{}{}{}{}2342341110244P A A A P P A P A P A =∅=≠⋅⋅=⨯⨯故(D)错,应选(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r rr t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则0000sin cos cos cos t t t t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【分析】(1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2) 等比级数求和公式2011(11)1n n n x x x x x x∞==+++++=-<<-∑L L【详解】先对和函数21()1(1)2nnn x f x n ∞==+-∑求导211()(1)nn n f x x∞-='=-∑2221(1)(1)nn n n n n x xx x ∞∞-===-=--∑∑2221()11n n x x x x x x ∞=-=--=-⋅=++∑ 对上式两边从0到x 积分200()1xxt f t dt dt t '=-+⎰⎰21()(0)ln(1)2f x f x ⇒-=-+ 由(0)1f =, 得21()1ln(1)(1).2f x x x =-+<为了求极值,对()f x 求一阶导数,2212()211x xf x x x-'=-⋅=++ 令0)(='x f ,求得唯一驻点0x =. 由于2221()(1)x f x x -''=-+, 01)0(<-=''f 由极值的第二充分条件,得()f x 在0x =处取得极大值,且极大值为(0)1f =.七【分析】题目要求()F x 所满足的微分方程,而微分方程中含有其导函数,自然想到对()F x 求导,并将其余部分转化为用()F x 表示,导出相应的微分方程,然后再求解相应的微分方程即可. 【详解】(1) 方法1:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +2[()()]2()()f x g x f x g x =+-=2(2)2()x e F x -可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==. 方法2:由()()()F x f x g x =,有)()()()()(x g x f x g x f x F '+'='=22[()][()]f x g x ''+2[()()]2()()f x g x f x g x ''''=+-又由.2)()(x e x g x f =+ 有()()2x f x g x e ''+=,)()(x g x f =',)()(x f x g =',于是22()42()()42()x x F x e f x g x e F x '=-=-可见()F x 所满足的一阶微分方程为.4)(2)(2x e x F x F =+'相应的初始条件为(0)(0)(0)0F f g ==(2) 题(1)得到()F x 所满足的一阶微分方程,求()F x 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解为 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以 ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰- =.22x x Ce e -+将(0)0F =代入上式,得01,1C C =+=-. 所以 .)(22x x e e x F --=八【分析】题目要证存在)3,0(∈ξ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知(3)1f =,只需要再证明存在一点[0,3)c ∈,使得)3(1)(f c f ==,然后在[,3]c 上应用罗尔定理即可. 条件(0)(1)(2)3f f f ++=等价于13)2()1()0(=++f f f .问题转化为1介于()f x 的最值之间,最终用介值定理可以达到目的.【详解】方法1:因为()f x 在[0,3]上连续,所以()f x 在[0,2]上连续,则在[0,2]上必有最大值M 和最小值m (连续函数的最大值最小值定理),于是M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(.三式相加 3(0)(1)(2)3.m f f f M ≤++≤ 从而 (0)(1)(2)1.3f f f m M ++≤=≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(3)1f c f ==, 且()f x 在[,3]c 上连续,在(,3)c 内可导,由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf方法2:由于(0)(1)(2)3f f f ++=,如果(0),(1),(2)f f f 中至少有一个等于1,例如(2)1f =,则在区间[2,3]上对()f x 使用罗尔定理知,存在(0,2)(0,3)ξ∈⊂使.0)(='ξf 如果(0),(1),(2)f f f 中没有一个等于1,那么它们不可能全大于1,也不可能全小于1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间(0,2)内至少存在一点η使()1f η=.在区间[,3]η对()f x 用罗尔定理知,存在(,3)(0,3)ξη∈⊂,使.0)(='ξf 证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值. 【详解】方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++=ΛM M M M M ΛΛΛ321321321321 231231231231nin i n in i nin i nin i b a a a a b a a b a a b a a a b a b a a a a b====+++=++++∑∑∑∑L LL M M M M M L23232312311()11nn ni n i n a a a a b a a b a a a ba a a a b=+=+++∑L L L M M M M M L 2311000()000000n ni i a a a b b a b b==+∑L L L M M M M M L =).(11∑=-+ni i n a b b(1) 当0A ≠,即0≠b 且01≠+∑=ni i a b 时,秩()A n =,方程组仅有零解.(2) 当0b =时,0A =,原方程组的同解方程组为.02211=+++n n x a x a x a Λ由01≠∑=ni i a 可知,),,2,1(n i a i Λ=不全为零.不妨设01≠a ,得原方程组的一个基础解系T a a )0,,0,1,(121Λ-=α,Ta a )0,,1,0,(132Λ-=α,.)1,,0,0,(,1T n na a ΛΛ-=α (3) 当∑=-=ni i a b 1时,0A =. 这时0≠b ,原方程组的系数矩阵可化为1231123112311231nin i nini ni n i nn i i a a a a a a a a a a A a a a a a aa a a a ====⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑L LLM M M M L1231111111001(1)000nin i nniii i nni i i i n ni i i i a a a a a a a a a a a =======⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦∑∑∑∑∑∑∑L LLu u u u u u u u u u u u u u u u u u r M M M M L将第行的倍加到其余各行12311211001101011nin i n ii a a a a a n a ==⎡⎤-⎢⎥⎢⎥-⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦∑∑L L L M M MM u u u u u u u u u u u u u u u u u u r L从第行到第行同乘以倍 0000()11001.2,3,,10001001i i a i n ⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥-⎣⎦LL M M M M L L u u u u u u u u u u u u u u u u u u u r L将第行的倍加到第行,由此得原方程组的同解方程组为12x x =,13x x =,1,x x n =Λ .原方程组的一个基础解系为.)1,,1,1(T Λ=α十【分析】 特征值之和等于A 的主对角线上元素之和,特征值之积等于A 的行列式,由此可求出,a b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为(1,2,3)i i λ=,由题设得1231122332(2)1a a a a λλλ++=++=++-=,21230||0204212.02a bA a b b λλλ===--=--解得1,2a b ==-.(2) 求矩阵A 的特征值,令210202(2)(3)022E A λλλλλλ---=-=-+=-+,得矩阵A 的特征值.3,2321-===λλλ对于,221==λλ 解齐次线性方程组0)2(=-x A E ,系数矩阵为102000204-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,得基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,系数矩阵为402050201--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]12300100Q ηηη⎤⎥⎥==⎢⎥⎢⎥,则Q 为正交矩阵. 在正交变换X QY =下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】本题求,a b 也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ 由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得1,2a b ==-.第一步求参数见《数学复习指南》P361重要公式与结论4,完全类似例题见《文登数学全真模拟试卷》数学三P47第九题.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论. 【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度()g u ,一般应先求分布函数(){}{}G u P U u P X Y u =≤=+≤,在计算概率的时候,应充分利用X 只有可能取值1X =和2X =.全概率公式:如果事件1,,n A A L 构成一个完备事件组,即它们是两两互不相容,其和为Ω(总体的样本空间);并且()0,1,2,,.i P A i n >=L 则对任一事件B 有()1()(|)ni i i P B P A P B A ==∑.【详解】设()F y 是Y 的分布函数,由全概率公式,得U X Y =+的分布函数}{)(u Y X P u G ≤+={1}{1}{2}{2}P X P X Y u X P X P X Y u X ==+≤=+=+≤= 0.3{1}0.7{2}P X Y u X P X Y u X =+≤=++≤= 0.3{11}0.7{22}P Y u X P Y u X =≤-=+≤-=.由于X 和Y 相互独立,所以 {1}{11}P Y u P Y u X ≤-=≤-=,{2}{22}P Y u P Y u X ≤-=≤-= 所以 ()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g 0.3(1)0.7(2).f u f u =-+-。
2003考研数学真题+答案

1 x 与 x 轴及直线 x e 所围成的三角形绕直线 x e 旋转所得的圆锥体积 e
1 e 2 ;曲线 y ln x 与 x 轴及直线 x e 所围成的图形绕直线 x e 旋转所得的旋 3
2003 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
即汽锤击打 3 次后,可将桩打进地下
1 r r 2 a
n 1
m.
„„ 6 分
(2) 用归纳法:设 xn 1 r ... r
a ,则
2003 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
k k „„ 8 分 kxdx ( x2n1 x 2n ) [ x2n1 (1 r r n1 )a 2 ] xn 2 2 2 n1 由于 Wn1 rWn r 2Wn1 r nW ,故得 xn )a2 r n a2 , 1 (1 r r Wn1
sin x
dx
„„ 6 分 „„ 8 分
(2) 由于 esin x e sin x 2,
2003 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
故由(1)得 xe
L
sin y
dy ye sin x dx (e sin x e sin x )dx 2 2
0
„„ 10 分
证法 2
(1) 根据格林公式, 得 xe
L
sin x
sin y
dy ye sin x dx (e sin y e sin x )d „„ 2 分
2003年考研数学真题与答案

⎜⎜⎝⎛
1 0
⎟⎟⎠⎞,
β
2
=
⎜⎜⎝⎛
0 1
⎟⎟⎠⎞
,
α
1
可由
β1
,
β
2
线性表示,但
α1
线性无
关,排除(C). 故正确选项为(D).
3. 设有齐次线性方程组 Ax=0 和 Bx=0, 其中 A,B 均为 m × n 矩阵,现有 4 个命题:
① 若 Ax=0 的解均是 Bx=0 的解,则秩(A) ≥ 秩(B);
5. 已知平面上三条不同直线的方程分别为
l1 : ax + 2by + 3c = 0 ,
l2 : bx + 2cy + 3a = 0 ,
l3 : cx + 2ay + 3b = 0 .
试证这三条直线交于一点的充分必要条件为 a + b + c = 0.
【详解】 :必要性
设三条直线 l1, l2 , l3 交于一点,则线性方程组
可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出
Ax=0
与
Bx=0
同解,如
A
=
⎡1 ⎢⎣0
0⎤ 0⎥⎦
,
B
=
⎡0 ⎢⎣0
0⎤ 1⎥⎦
,则秩(A)=秩(B)=1,但
Ax=0
与
Bx=0
不同解,可见命题④不成立,排除(D),
故正确选项为(B).
⎡3 2 2⎤
⎡0 1 0⎤
4. 设矩阵 A = ⎢⎢2 3 2⎥⎥ , P = ⎢⎢1 0 1⎥⎥ , B = P −1 A*P ,求 B+2E 的特征值与特征向
(A) 当 r < s 时,向量组 II 必线性相关. (B) 当 r > s 时,向量组 II 必线性相关. (C) 当 r < s 时,向量组 I 必线性相关. (D) 当 r > s 时,向量组 I 必线性相关.
数学分析-2003年西安电子科技大学考研真题——陌凡vov

西安电子科技大学2003
一、(60分)填空题。
1.数列的上确界,下确界。
2.曲线与曲线在原点相切,则。
3.设有一个原函数,则。
4.级数的收敛区间为。
5.设,其中,具有二阶连续导数,则。
6.曲线与直线之间的最短距离为。
7.用关于的二次多项式在原点附近逼近函数,其差为的高阶无限小,则,,。
8.,其中。
9.在处得阶导数,其中。
10.设为椭圆,其周长记为,则。
二、(10分)设,,判断的奇偶性、单调性、凹凸性,求曲线的拐点
和水平渐近线,并画出图像。
三、(10分)计算曲面积分,其中为有向曲面,其法向量与轴正向的
夹角为锐角。
四、(10分)设在区间上可导且导函数有界,试讨论在区间上的有界
性和一致连续性。
五、(10分)设为正值递减数列,发散,求。
六、(10分)设在上二阶连续可导,证明存在使得。
七、(10分)设在上连续,在上可导,,,证明,并说明在什么情况
下等号成立。
八、(10分)给定函数序列,,问当在什么范围时,在上一致收敛。
九、(10分)设在点处存在,在点处连续,证明在点处可微。
十、(10分)设,求证:
(1)对任意自然数,方程在内有且仅有一根。
(2)设是的根,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 0 3年全国硕士研究生入学统一考试数学三试题一、填空题:本题共 6 小题,每小题 4 分,共24 分,请将答案写在答题纸指定位置上.(1)x cos1, 若x 0,0 处连续,则. 设 f ( x) x 其导函数在 x 的取值范围是0, 若x 0,(2) 已知曲线 y x3 3a 2 x b 与 x 轴相切,则 b 2 可以通过 a 表示为 b2 .(3) 设 a 0 , f ( x) g( x)a,若0 x 1,D 表示全平面,则而0, 其他,I f ( x) g( y x)dxdy =.D(4) 设n维向量(a,0, ,0, a)T , a 0 ;E为 n 阶单位矩阵,矩阵A EB E 1T ,其中A的逆矩阵为B,则a.aT,(5) 设随机变量 X 和 Y 的相关系数为0.9, 若Z X 0.4 ,则 Y 与 Z 的相关系数为.(6) 设总体 X 服从参数为 2 的指数分布,X1, X2, , X n为来自总体X 的简单随机样本,则当n 时, Y n 1 n X i2依概率收敛于.n i 1二、选择题:本题共 6 小题,每小题 4 分,共24 分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设 f ( x) 为不恒等于零的奇函数,且 f (0) 存在,则函数g ( x) f ( x)() x(A) 在x 0 处左极限不存在 . (B) 有跳跃间断点(C) 在x 0 处右极限不存在 . (D) 有可去间断点x0 . x0 .(2) 设可微函数 f (x, y) 在点 ( x0 , y0 ) 取得极小值,则下列结论正确的是( )(A) f ( x0 , y) 在 y y0处的导数等于零. (B) f (x0, y)在y y0处的导数大于零.(C) f ( x0 , y) 在 y y0处的导数小于零. (D) f (x0 , y) 在 y y0处的导数不存在.(3) 设 p n a n a n a n a n1,2, ,则下列命题正确的是( ) , q n , n2 2(A)若a n条件收敛,则p n与q n都收敛.n 1n 1n 1(B) 若a n 绝对收敛,则p n 与q n 都收敛 .n 1n 1n 1a b (C) 若 a n 条件收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1(D) 若a n 绝对收敛,则p n 与q n 敛散性都不定 .n 1n 1n 1a b b(4) 设三阶矩阵A b a b ,若 A 的伴随矩阵的秩为 1,则必有 ( )b b a(A) a b 或 a 2b 0 . (B) a b 或 a 2b 0 .(C)a b 且 a 2b 0 .(D)a b 且 a 2b 0 .(5) 设1 , 2,, s 均为 n 维向量,下列结论不正确的是()(A) 若对于任意一组不全为零的数k 1 , k 2 , ,k s ,都有 k 1 1k2 2k s s 0 ,则1,2, ,s 线性无关 .(B) 若1, 2,, s线 性 相 关 , 则 对 于 任 意 一 组 不 全 为 零 的 数 k 1 , k 2 , , k s , 都 有k 11k2 2k ss0.(C) 1, 2, , s 线性无关的充分必要条件是此向量组的秩为s.(D)1,2, ,s 线性无关的必要条件是其中任意两个向量线性无关.(6) 将一枚硬币独立地掷两次,引进事件:A 1 ={ 掷第一次出现正面 } , A 2 ={ 掷第二次出现正面 } , A 3 ={ 正、反面各出现一次 } , A 4 ={ 正面出现两次 } ,则事件 ()(A)A 1 , A 2 , A 3 相互独立 . (B)A 2 , A 3 , A 4 相互独立 .(C) A 1 , A 2 , A 3 两两独立 .(D)A 2 , A 3 , A 4 两两独立 .三 、 (本题满分 8 分 )设 f (x)11 1 , x [ 1 ,1) ,试补充定义 f (1)使得 f (x) 在 [ 1,1] 上连x sin x(1 x) 2 2续 .四 、 (本题满分 8 分 )设 f (u,v) 具有二阶连续偏导数,且满足 2 f 2 f 1 ,又g(x, y) f [xy,1(x2 y2 )] ,u 2 v2 22 g 2 g求x2 y 2 .五、 (本题满分 8 分 )计算二重积分其中积分区域 D {( x, y) x2 y2 }.六、 (本题满分9 分 )求幂级数1 ( 1) n x2 n ( x 1) 的和函数f (x) 及其极值.n 1 2n七、 (本题满分9 分 )设 F (x) f ( x)g ( x) , 其中函数 f ( x), g( x) 在 ( , ) 内满足以下条件:f (x)g (x) ,g (x) f (x) ,且 f (0) 0 , f (x) g( x) 2e x .(1)求 F (x) 所满足的一阶微分方程;(2)求出 F (x) 的表达式.八、 (本题满分8 分 )设函数 f (x) 在[0,3]上连续,在(0 , 3)内可导,且 f (0) f (1) f (2) 3, f (3) 1 .试证:必存在( 0,3) ,使 f ( ) 0.九、 (本题满分13 分 )已知齐次线性方程组n 0.试讨论 a1 ,a2 ,其中a i , a n和b满足何种关系时,i 1(1)方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.十、 (本题满分13 分 )设二次型 f (x1 , x2 , x3 ) X T AX ax12 2x22 2x32 2bx1 x3 (b 0) ,中二次型的矩阵 A 的特征值之和为1,特征值之积为 -12.(1)求 a, b 的值;(2)利用正交变换将二次型 f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、 (本题满分13 分 )设随机变量X 的概率密度为F ( X ) 是X的分布函数.求随机变量 Y F ( X ) 的分布函数.十二、 (本题满分13 分 )设随机变量X 与 Y 独立,其中X 的概率分布为1 2X ~ ,0.3 0.7而 Y 的概率密度为 f ( y),求随机变量 U X Y 的概率密度g(u).2003 年全国硕士研究生入学统一考试数学三试题解析一、填空题(1) 【答案】 2【分析】无穷小量乘以有界函数的极限仍是无穷小量.【详解】是参变量,x 是函数 f (x) 的自变量f ( x) f (0) x cos11f (0) lim x lim x 1 cos ,lim 0x 0 x 0 x 0 x x 0 x要使该式成立,必须lim x 1 0 ,即 1 .x 0当 x ( ,0) (0, ) 时,要使 f ( x) 0 在x 0 处连续,由函数连续的定义应有由该式得出 2 . 所以 f ( x) 在x 0 处右连续的充要条件是 2 .(2)【答案】 4a 6【详解】设曲线与 x 轴相切的切点为( x0,0),则y x x 0 .而 y 3x2 3a2,有 3x0 2 3a2又在此点 y 坐标为0(切点在x轴上),于是有x03 3a2 x0 b 0 ,故b x03 3a2 x0 x0 ( x02 3a2 ) ,所以b2 x02 (3a 2 x02 )2 a 2 4a 4 4a6 .(3) 【答案】a2【详解】本题积分区域为全平面,但只有当0 x 1,0 y x 1 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.I f (x)g( y x)dxdy= a2 dxdy =a2 1 x 1 a2 1 2dx dy [( x 1) x]dx aD 0 x 10 x 00 y x 1(4) 【答案】 -1【详解】这里T为 n 阶矩阵,而T2a 2为数,直接通过AB E 进行计算并注意利用乘法的结合律即可.由题设,有AB (E T )( E 1 T ) = E T1T1 a1aE T ( T ) T= Ea aTT1a1aT TT 2a TE ( 1 2a 1 ) T E ,1 a 1, a于是有 1 2a 0 ,即2a2 a 1 0 ,解得a 1. 已知 a 0 ,故a 2a 1 .(5) 【答案】0.9.【详解】利用方差和相关系数的性质 D ( X a) DX , Cov( X ,Y a)Cov ( X , Y) ,又因为 Z 仅是 X 减去一个常数,故方差不会变,Z 与 Y 的协方差也不会变,因此相关系数也不会变.E( XY ) E(Y ) E( X )Cov ( X ,Y) ,且 D Z D X . 又Cov (Y, Z)Cov (X , Y) ,所以(6) 【答案】1.2【分析】本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量X1 , X 2 ,, X n,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:【详解】本题中 X12 , X 22 , , X n2 满足大数定律的条件,且EX i2 DX i (EX i ) 2=1( 1 )2 1 ,4 2 2因此根据大数定律有Y n 1 n X i2依概率收敛于1 n E X i2 1 .n i 1 n i 1 2二、选择题(1) 【答案】( D )【详解】方法 1:直接法:由 f (x) 为奇函数知, f (0) 0 ;又由g (x) f (x),知 g(x) 在xx 0 处没定义,显然x 0 为g(x)的间断点,为了讨论函数g( x) 的连续性,求函数g( x) 在x 0 的极限.lim g( x)f ( x) f ( x) f (0) 导数的定义lim x lim x 0 f (0) 存在,x 0 x 0 x 0故 x 0 为可去间断点.方法 2:间接法:取 f ( x) x ,此时 g( x) =x1, x0,可排除 ( A) ( B) (C)三项.x 0, x 0,(2) 【答案】( A)【详解】由函数 f ( x, y) 在点 ( x0 , y0 ) 处可微,知函数 f ( x, y) 在点 (x0 , y0 ) 处的两个偏导数都存在,又由二元函数极值的必要条件即得 f ( x, y) 在点 (x0 , y0 ) 处的两个偏导数都等于零.从而有选项 ( A) 正确.(3) 【答案】( B)p n a n a n, q na n a np n a n,0 q n a n【详解】由 2 2 ,知 0若a n绝对收敛,则a n收敛. 再由比较判别法,p n与q n 都收敛,后者与n 1 n 1 n 1 n 1q n仅差一个系数,故q n 也收敛,选 (B) .n 1 n 1(4)【答案】 (C)【分析】 A 的伴随矩阵的秩为1,说明A的秩为2,由此可确定a, b 应满足的条件.【详解】方法 1:根据A与其伴随矩阵A 秩之间的关系知秩 ( A )=2 ,它的秩小于它的列数或者行数,故有有 a 2b 0 或 a b .当a b 时,显然秩 A 1 2 ,故必有 a b 且 a 2b 0 .应选(C).n r A n方法 2:根据A与其伴随矩阵 A 秩之间的关系,r A* 1 r A n 1 ,0 r A n 1知 r A* 1 , r A 2 .对 A 作初等行变换当 a b 时,从矩阵中可以看到 A 的秩为 1,与秩A 2 ,不合题意(排除(A)、(B))故 a b ,这时故 a2b 0 ,且 a b 时,秩 ( A )=2 ,故应选.(5) 【答案】 (B)【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】 (A): 若对于任意一组不全为零的数k 1, k 2 , , k s ,都有k1 1k 22k s s 0,则1 , 2,, s 必线性无关 .因 为 若1 , 2, , s 线 性 相 关 , 则 存 在 一 组 不 全 为 零 的 数 k 1 ,k 2 , , k s , 使 得k 11k2 2ks s0 ,矛盾. 可见 (A) 成立.(B): 若1, 2,, s 线 性 相 关 , 则 存 在 一 组 ( 而 不 是 对 任 意 一 组 不 全 为 零 的 ) 数k 1, k 2 , ,k s ,都有 k 11k2 2k s s 0. (B) 不成立.(C)1, 2,, s 线性无关,则此向量组的秩为 s ;反过来,若向量组1, 2,, s 的秩为 s ,则1,2,, s 线性无关,因此 (C) 成立.(D) 1 , 2,, s 线性无关,则其任一部分组线性无关,则其中任意两个向量线性无关,可见 (D) 也成立.综上所述,应选 (B) .【评 注 】 原 命 题 与 其 逆否 命 题 是 等 价的 . 例如,原命 题: 若 存 在 一组 不全为 零的数k 1 , k 2 , ,k s ,使得 k 1 1k2 2k ss0 成立,则1, 2,,s 线性相关.其逆否命题为:若对于任意一组不全为零的数k 1 , k 2 , , k s ,都有 k 11k 22ks s0 ,则1, 2,, s 线性无关.在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6) 【答案】 C【分析】 (1)A, B 两事件相互独立的充要条件: P AB P A P B(2)A, B,C 三事件相互独立的充要条件:(i) A, B, C 两两相互独立; (ii)P ABCP A P B P C【详解】 方法 1:因为 P A 11 A 211 1, P , P A 3 , P A 4,且2224P A 1 A 21 P A 1 A 31 P A2 A 31P A 2 A 41, ,,,4444P A 1 A 2 A 30 ,可见有P A 1A 2P A 1 P A 2,P A 1 A 3P A 1P A 3,P A 2 A 3P A 2P A 3,P A 1 A 2 A 3P A 1P A 2P A 3, P A 2 A 4P A 2P A 4.故 A 1 , A 2 , A 3 两两独立但不相互独立;A 2 , A 3 , A 4 不两两独立更不相互独立,应选(C) .方法 2:由三事件相互独立的定义可知:相互独立必两两独立;反之,两两独立不一定相互独立.可见 (A) 不正确,因为如果正确,则 (C) 也正确,但正确答案不能有两个;同理, (B) 也不正确 .因此只要检查 (C) 和 (D) 故 (D) 错,应选 (C) .三【详解】为使函数f ( x) 在 [ 1,1] 上连续,只需求出函数 f ( x) 在 x 1 的左极限 lim f ( x) ,2x 1然后定义f (1)为此极限值即可.令 u1 x ,则当 x1 时, u0 ,所以定义 f (1)1,从而有 lim f ( x)1 f (1), f ( x) 在 x 1 处连续. 又 f (x) 在 [ 1,1)x 12上连续,所以f (x) 在 [ 1,1] 上连续.2四【详解】由复合函数 z f [ ( x, y), ( x, y)] 的求导法则,得从而所以2g2g222f222f222f2f 22x 2y2( xy )u2( x y )v2( x y ) (u2= )y .v 2x五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设x r cos , y r sin,有记 Ae t sin tdt ,则e1e t d sin t e1 e t sin te t sintdt = e1 A.因此A1(1 e ) , Ie (1 e )(1 e ).222六【分析】 (1) 和函数一般经过适当的变换后,考虑对其逐项求积分后求和,再求导即可得和函数;或者先通过逐项求导后求和,再积分即可得和函数.本题可直接采用后者.(2) 等比级数求和公式【详解】先对和函数f ( x) 1(nx 2n1)求导n 12n对上式两边从 0 到 x 积分由 f (0)1, 得为了求极值,对f ( x) 求一阶导数, f ( x)1 2xx2 1 x 21x 2令 f ( x) 0 ,求得唯一驻点 x 0 . 由于f( x)1 x2 ,f (0)1(1 x 2 )2由极值的第二充分条件,得f (x) 在 x 0 处取得极大值,且极大值为f (0) 1 .七【分析】题目要求 F ( x) 所满足的微分方程,而微分方程中含有其导函数,自然想到对F (x) 求导,并将其余部分转化为用 F (x) 表示,导出相应的微分方程,然后再求解相应的微分方程即可.【详解】 (1) 方法 1:由 F ( x) f ( x) g (x) ,有F ( x)f ( x)g ( x) f ( x)g (x) = g 2 ( x) f 2 ( x)[ f (x) g( x)]22 f ( x)g( x) = (2 e x )22F (x)可见 F (x) 所满足的一阶微分方程为相应的初始条件为F (0) f (0) g(0)0 .方法 2:由 F ( x) f ( x) g( x) ,有F (x)f ( x) g( x) f ( x)g ( x) = [ f ( x)] 2 [ g ( x)]2又由 f (x)g( x) 2e x . 有 f (x)g ( x) 2e x , f ( x)g( x) , g ( x) f ( x) ,于是可见 F (x) 所满足的一阶微分方程为相应的初始条件为F (0) f (0) g (0) 0(2) 题 (1) 得到 F ( x) 所满足的一阶微分方程,求 F ( x) 的表达式只需解一阶微分方程.又一阶线性非齐次微分方程dyP(x) y Q( x) 的通解为dx所以F (x ) e2 dx[ 4e 2 x e 2 dx dx C ] = e 2 x [ 4e 4 x dx C] = e 2 x Ce 2 x .将 F (0) 0 代入上式,得0 1 C , C 1 .所以 F (x)e2x e 2 x .八【分析】题目要证存在(0,3) ,使得其一阶导数为零,自然想到用罗尔定理. 而罗尔定理要求函数在某闭区间连续,且端点处函数值相等.题目中已知 f (3) 1 ,只需要再证明存在一点 c [0,3) ,使得 f ( c) 1 f (3) ,然后在 [ c,3] 上应用罗尔定理即可.条件 f (0) f (1) f (2) 3 等价于 f (0) f (1) f (2) 1 .问题转化为 1 介于f (x)的最值3之间,最终用介值定理可以达到目的.【详解】方法1:因为f ( x)在[0,3]上连续,所以 f ( x) 在[0,2]上连续,则在[0,2]上必有最大值 M 和最小值m(连续函数的最大值最小值定理),于是m f (0) M , m f (1) M , m f ( 2) M .三式相加3m f ( 0 ) f ( 1 ) f ( 2 ) M 3从而m f ( 0 ) f ( 1 )f ( 2 )M .31由介值定理知,至少存在一点 c [0,2] ,使因为 f (c) f (3) 1 ,且f ( x) 在 [ c,3] 上连续,在(c,3) 内可导,由罗尔定理知,必存在(c,3) (0,3) ,使f ( ) 0.方法 2 :由于f (0) f (1) f (2) 3 f (0), f (1),f (2)1,例如,如果中至少有一个等于f (2) ,则在区间[2,3]上对f ( x)使用罗尔定理知,存在(0,2) (0,3)使1f ( ) 0. 如果 f (0), f (1), f (2) 中没有一个等于1,那么它们不可能全大于1,也不可能全小于 1.即至少有一个大于1,至少有一个小于1,由连续函数的介值定理知,在区间(0, 2) 内至少存在一点使 f ( ) 1 .在区间 [ , 3] 对 f ( x) 用罗尔定理知,存在( ,3) (0,3) ,使 f ( ) 0.证毕.九【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有行对应元素相加后相等.可先将所有行对应元素相加,然后提出公因式,再将第一行的(-1) 倍加到其余各行,即可计算出行列式的值.【详解】方程组的系数行列式1 a2 a3 a n0 b 0 0nn= b n 1(b(b a i ) 0 0 b 0 a i ).i 1 i 10 0 0 bn(1) 当A 0 ,即 b 0 且 b a i 0时,秩 A n ,方程组仅有零解.i 1(2)当 b 0 时, A 0 ,原方程组的同解方程组为n由a i 0 可知,a i (i 1,2, , n) 不全为零.不妨设a1 0 ,得原方程组的一个基础解系i 11 ( a2 ,1,0, ,0)T, 2 ( a3 ,0,1, ,0)T,,n (an ,0,0, ,1)T .a1 a1 a1n(3) 当b a i时,A 0 . 这时b 0 ,原方程组的系数矩阵可化为i 1由此得原方程组的同解方程组为x2 x1, x3 x1, , x n x1.原方程组的一个基础解系为十【分析】特征值之和等于 A 的主对角线上元素之和,特征值之积等于 A 的行列式,由此可求出 a, b 的值;进一步求出 A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要) ,然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.a 0 b【详解】 (1) 二次型f 的矩阵为 A 0 2 0 . 设A的特征值为i (i 1,2,3) ,由题设得b 0 21 2 3 a11a22a33 a 2 ( 2) 1,解得 a 1,b 2 .(2)求矩阵 A 的特征值,令1 0 2E A 0 2 0( 2) 2 (3) 0 ,2 0 2得矩阵 A 的特征值 1 2 2, 3 3.1 0 2对于 1 2 2, 解齐次线性方程组(2E A) x 0 ,系数矩阵为0 0 0 ,得基2 0 4础解系1(2,0,1) T, 2 (0,1,0) T .4 0 2对于 3 3 ,解齐次线性方程组( 3E A) x 0 ,系数矩阵为0 5 0 ,得基2 0 1础解系由于 1 , 2 , 3 已是正交向量组,为了得到规范正交向量组,只需将 1 , 2 , 3 单位化,由此得1 (2 ,0, 1) T,2(0,1,0) T, 3 (1,0, 2 )T.5 5 5 5 令矩阵20 15 5Q 1 2 3 0 1 0 ,10 25 5则 Q 为正交矩阵.在正交变换X QY 下,有2 0 0Q T AQ 0 2 0 ,0 0 3且二次型的标准形为【评注】本题求a,b 也可先计算特征多项式,再利用根与系数的关系确定:二次型 f 的矩阵 A 对应特征多项式为设 A 的特征值为 1 , 2 , 3,则1 2, 2312 3 2 ( a 2) 1, 1 2 3a 2,23( 2ab 2 ). 由题设得2(2a b2 )12.解得 a 1,b 2 .第一步求参数见《数学复习指南》 P361 重要公式与结论 4,完全类似例题见《文登数学全真模拟试卷》数学三 P47 第九题.十一 【分析】先求出分布函数F ( x) 的具体形式,从而可确定 Y F ( X ) ,然后按定义求 Y 的 分布函数即可.注意应先确定YF (x) 的值域范围 (0 F ( X )1) ,再对 y 分段讨论.【详解】易见,当x 1时, F ( x) 0 ; 当 x 8 时, F ( x) 1.对于 x [1,8] ,有设 G ( y) 是随机变量 Y F ( x) 的分布函数. 显然,当 y 0 时, G ( y) =0;当 y 1时,G ( y) =1. 对于 y [0,1) ,有于是, YF ( x) 的分布函数为十二【分析】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率.注意 X 只有两个可能的取值,求概率时可用全概率公式进行计算.求概率密度 g (u) ,一般应先求分布函数 G (u) P{U u}P{ XY u} ,在计算概率的时候,应充分利用X只有可能取值 X 1X 2.和全概率公式:如果事件A 1, , A n 构成一个完备事件组,即它们是两两互不相容,其和为(总体的样本空间 );并且 PA i0,i 1,2, , n. 则对任一事件 B 有nP BP( A i )P(B | A i ).i 1【详解】设 F ( y) 是 Y 的分布函数,由全概率公式,得 U X Y 的分布函数0.3P{ Y u 1 X 1} 0.7P{ Y u 2 X2} .由于 X 和 Y 相互独立,所以 P{ Yu 1}P{ Y u 1 X 1}P{Yu 2} P{Y u2 X 2},所以G( u)0. 3P Y{ u 1} 0.P7 Y{ u 0.3Fu( 1) 0F. 7u ( 2由此,因为连续型随机变量密度函数是分布函数在对应区间上的微分得到,得U 的概率密度。