弹塑性力学读书笔记
工程弹塑性力学引论读书札记

《工程弹塑性力学引论》读书札记目录一、内容概述 (2)1.1 书籍简介 (3)1.2 作者介绍 (4)1.3 研究背景与意义 (5)二、基本概念与理论 (5)2.1 弹性力学基本方程 (7)2.2 塑性力学基本原理 (8)2.3 弹塑性力学分析方法 (9)三、工程弹塑性力学应用 (11)3.1 结构分析 (13)3.1.1 建筑结构 (15)3.1.2 桥梁工程 (15)3.1.3 机械工程 (17)3.2 材料加工 (18)3.3 土木工程 (19)四、工程弹塑性力学发展历程 (20)4.1 国外发展概况 (22)4.2 国内发展概况 (24)4.3 研究趋势与挑战 (25)五、结论与展望 (26)5.1 主要成果总结 (27)5.2 存在问题与不足 (28)5.3 未来研究方向与应用前景 (29)一、内容概述本书共分为七章,主要围绕工程中广泛关注的弹塑性力学问题展开。
第一章为引论,简要介绍了弹塑性力学的产生背景、研究意义和基本概念,为后续章节的深入学习奠定了基础。
在第一章中,作者首先阐述了弹塑性力学的产生背景和研究意义。
弹塑性力学作为经典力学的一个重要分支,在工程领域具有广泛的应用,特别是在结构分析和设计中。
通过学习弹塑性力学,工程师可以更好地了解材料的非线性行为,从而优化结构设计,提高产品的性能和安全性。
作者介绍了弹塑性力学中的基本概念,包括应力、应变、塑性变形、弹性变形等。
这些概念是理解弹塑性力学的基础,对于后续的学习至关重要。
作者还通过实例和图表等形式,帮助读者更好地理解和掌握这些概念。
在第一章中,作者还介绍了弹塑性力学的研究方法和应用领域。
弹塑性力学的研究方法包括理论推导、数值模拟和实验验证等,这些方法在工程实践中具有重要的指导意义。
作者还通过案例分析等形式,展示了弹塑性力学在实际工程中的应用价值。
第一章为读者提供了弹塑性力学的整体框架和基础知识,有助于读者更好地理解和学习这门课程。
2013级--弹塑性力学总结

1.弹塑性力学问题的研究方法:弹塑性力学问题的研究方法可分为三种类型:(1)数学方法:就是用数学分析的工具对弹塑性力学边值问题进行求解,从而得出物体的应力场和位移场等。
在分析弹塑性力学时,对从物体中截取的单元体,从静力平衡、变形几何关系和应力应变物理关系三个方面来建立弹塑性力学的基本方程,由此建立的是偏微分方程,它适用于各种构件或结构的弹性体。
根据基本方程求解各类具体问题。
另一种数学方法是数值方法。
在数值方法中,常见的有差分法、有限元法及边界元法等。
尤其是塑性力学方程是非线性的,因而人们注重应用近似计算方法。
(2)实验方法:就是利用机电方法、光学方法、声学方法等来测定结构部件在外力作用下应力和应变的分布规律,如光弹性法、云纹法等。
(3)实验与数学相结合的方法:这种方法常用于形状非常复杂的弹塑性结构。
例如对结构的特殊部位的应力状态难以确定,可以用光弹性方法测定,作为已知量,置入数值计算中,特别是当边界条件难以确定时,则需两种方法结合起来,以求得可靠的解答。
2. 载荷分类:作用于物体的外力可以分为体积力和表面力,两者分别简称为体力和面力。
所谓体力是分布在物体体积内的力。
例如重力和惯性力,物体内各点所受的体力一般是不同的。
所谓面力是分布在物体表面上的力。
如风力、流体压力、两固体间的接触力等。
物体上各点所受的面力一般也是不同的。
3. ABAQUS ANSYS NASTRAN ADINA各有什么优缺点ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。
优点:1. 非线性结构方面的分析很强大。
它对于多载荷步的计算和规划,以及它的软件设计思想,非常严密而且直观。
可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。
ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。
2. 操作界面友好,不是其他CAE软件可以比拟的。
弹塑性力学总结

应用弹塑性力学读书报告姓名:学号:专业:结构工程指导老师:弹塑性力学读书报告弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。
研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。
它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
弹塑性力学也是连续介质力学的基础和一部分。
弹塑性力学包括:弹塑性静力学和弹塑性动力学。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
1 基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
1.1.2线弹性假定(弹性力学)假设物体是线弹性的。
《弹塑性力学》第十一章塑性力学基础

描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
弹塑性力学读书报告

弹塑性力学读书报告刘刚玉1020120036同济大学交通运输工程学院道路与铁道工程摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。
关键字:弹塑性力学本构关系1基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定整个物体的体积都被组成物体的介质充满,不留下任何空隙。
使得σ、ε、u 等量表示成坐标的连续函数。
1.1.2线弹性假定(弹性力学)假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。
1.1.3均匀性假定假定整个物体是由同一种材料组成的,各部分材料性质相同。
这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。
1.1.4各向同性假定(弹性力学)假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化; 1.1.5小变形假定假定位移和形变是微小的,即物体受力后物体内各点位移远远小物体的原来的尺寸。
可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量;。
1.2应力状态理论应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。
弹塑性力学总结(精华)

=====WORD 完整版----可编辑----专业资料分享=====----完整版学习资料分享---- (一) 弹塑性力学绪论:1、定义:是固体力学的一个重要分支学科,是研究可变形固体受到外荷载或温度变化等因素的影响而发生的应力、应变和位移及其分布规律的一门科学,是研究固体在受载过程中产生的弹性变形和塑性变形阶段这两个紧密相连的变形阶段力学响应的一门科学。
2、研究对象:也是固体,是不受几何尺寸与形态限制的能适应各种工程技术问题需求的物体。
3、分析问题的基本思路:受力分析及静力平衡条件 (力的分析);变形分析及几何相容条件 (几何分析);力与变形间的本构关系 (物理分析)。
4、研究问题的基本方法:以受力物体内某一点(单元体)为研究对象→单元体的受力—应力理论;单元体的变形——变形几何理论;单元体受力与变形间的关系——本构理论;(特点:1、涉及数学理论较复杂,并以其理论与解法的严密性和普遍适用性为特点;弹塑性力学的工程解答一般认为是精确的;可对初等力学理论解答的精确度和可靠进行度量。
)5、基本假设:物理假设: (连续性假设:假定物质充满了物体所占有的全部空间,不留下任何空隙;均匀性与各向同性的假设:假定物体内部各处,以及每一点处各个方向上的物理性质相同。
力学模型的简化假设:(A )完全弹性假设 ;(B )弹塑性假设)。
几何假设——小变形条件(假定物体在受力以后,体内的位移和变形是微小的,即体内各点位移都远远小于物体的原始尺寸,而且应变( 包括线应变与角应变 )均远远小于1。
在弹塑性体产生变形后建立平衡方程时,可以不考虑因变形而引起的力作用线方向的改变;在研究问题的过程中可以略去相关的二次及二次以上的高阶微量;从而使得平衡条件与几何变形条件线性化。
)6、解题方法(1)静力平衡条件分析;(2)几何变形协调条件分析;(3)物理条件分析。
从而获得三类基本方程,联立求解,再满足具体问题的边界条件,即可使静不定问题得到解决 7、应力的概念: 受力物体内某点某截面上内力的分布集度=lim n n n A O F dF A dA σσ∆→==∆=lim n n nt A O F dF A dAσσ∆→==∆。
弹塑性力学读书报告

弹塑性力学读书报告绪言“光阴似箭,日月如梭”。
弹指一挥间,弹塑性力学的课程已经结束了,而我来到北京工业大学也已经有三个月了。
回顾过去,感觉时间过的很快,但回想老师第一次上课时的情景却历历在目,仿佛就在昨天。
虽然未曾与范老师见过面,但老师那雄性又带有喜感的声音让我倍感亲切,这也是我能够坚持听完网课的重要因素之一。
对于弹塑性力学,虽说大学时学过弹性力学,但却学的很浅,而且早就忘了大部分的内容,所以在研一学习是十分有必要的,而且恰到好处。
感谢范老师的精彩授课,使得我对弹塑性力学的内容有了更深刻的了解与认识。
当然我也知道,对于一个以后与力学打交道的人来说,我所学到的、掌握的弹塑性力学知识还完全不够,在今后的学习工作中仍需不断学习。
而本篇弹塑性力学读书报告我主要从对弹塑性力学部分章节的学后感,对弹塑性教学的建议以及弹塑性力学与自己所从事研究结合的展望等方面谈谈自己的理解与感悟。
一、弹塑性力学部分章节读后感学习任何一门课程都要从它最基本的定义入手,弹塑性力学是固体力学的一个分支学科,它研究可变性固体受到外荷载、温度变化及边界约束变动等作用时,弹塑性变形和应力状态的科学。
它的研究对象包括实体结构、板壳结构以及杆件。
弹塑性力学研究问题的基本方法是在受力物体内任取一点(单元体)为研究对象,通过分析单元体的受力建立应力理论、分析单元体的变形建立变形几何理论、分析单元体受力与变形间的关系建立本构理论,即通过相应的分析建立起普遍适用的理论与解法。
它的基本任务包括以下几点:(1)建立求解固体的应力、应变和位移分布规律的基本方程和理论;(2)给出初等理论无法求解的问题的理论和方法以及对初等理论可靠性与精确度的度量;(3)确定和充分发挥一般工程结构物的承载能力,提高经济效益;(4)进一步研究工程结构物的强度、刚度、振动、稳定性、断裂、疲劳和流变等力学问题,奠定必要的理论基础。
当然,为了使弹塑性力学问题得以简化,我们一般做如下基本假设:连续性假设,均匀性假设,各项同性假设,力学模型简化假设以及小变形假设。
弹塑性力学总结读书报告

弹塑性力学总结读书报告-CAL-FENGHAI.-(YICAI)-Company One1弹塑性力学读书报告弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。
研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。
它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
弹塑性力学也是连续介质力学的基础和一部分。
弹塑性力学包括:弹塑性静力学和弹塑性动力学。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
1基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
1.1.2线弹性假定(弹性力学)假设物体是线弹性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学在岩体变形加固中的应用
姓名:
xx 学号:导师:
xx
弹塑性力学这门课程是《弹性力学》的延伸,经典弹塑性力学的基本要求是应力只能在屈服面以内或屈服面之上,材料在屈服面以外的力学行为是没有定义的,这意味着经典弹塑性理论只能处理稳定结构。
结构需要加固力维持稳定,说明结构部分区域应力已超出屈服面。
一般说来对于给定的外荷载,结构的工作区域可能是弹性区、稳定弹塑性区和非稳定弹塑性区。
弹性区和稳定弹塑性区可由经典弹塑性力学处理,变形加固理论处理的是非稳定弹塑性区。
本文首次提出变形加固理论的基础是非平衡态弹塑性力学,它是经典弹塑性力学的增量延拓,其理论核心是最小塑性余能密度原理,在结构上反映为最小塑性余能原理。
1 变形加固理论的提出
工程结构弹塑性有限元计算表现为一系列逼近真解的迭代过程。
考察某一
典型的迭代步,设某一高斯点在该迭代步的初始应力为c
0 且有f( c
0) <,当前应力为c
1。
应力场c
0,c
1 都应满足平衡条件,即该应力场在结构内处处满足平衡微分方程,在边界上满足力的边界条件,在有限元分析中表示为
2/ BT c
0dV= 2/ BT c
1dV=F
式中:
F为外荷载向量,e表示对结构所有单元求和。
经典弹塑性理论要求结构各点应力必须在屈服面之上或以内,即各点都要满足屈服条件,这意味着结构在外荷载作用下是稳定的。
而本文讨论加固问题首先意味着结构在外荷载作用下是不稳定的,需要引入加固力以维持稳定。
所以有必要对经典弹塑性理论进行延拓以容纳加固特点。
受弹塑性迭代总是使范数不断减少的启发,本文提出一个最小塑性余能原理:
对于给定的外荷载,在所有和其平衡的应力场中,结构真实应力场的塑性
余能范数最小。
以此而论,弹塑性有限元计算的迭代过程就是△E的一个最小化过程。
3经典弹塑性本构关系
本文讨论关联的理想弹塑性材料,且不考虑弹塑性耦合。
经典弹塑性力学的本构关系为率形式。
4非平衡态弹塑性本构关系
非平衡态弹塑性力学处理应力状态处于屈服面以外的材料行为,其本构关系基本上就是上述经典弹塑性本构关系的增量化。
只有增量化才能出现应力位于屈服面以外的情形,这和弹塑性数值方法的处理方法是一致的。
不过弹塑性数值方法是作为弹塑性理论的近似方法,而在本文,这些增量关系作为非平衡态弹塑性力学的本构关系,是作为事先给定的基本定义和出发点。
第一和第二最小塑性余能密度原理可统称为最小塑性余能密度原理,如上所述,其实质为增量型正交流动法则。
增量型正交流动法则为正交流动法则的一阶近似。
正是在这个意义上,非平衡态弹塑性力学可以看作是经典弹塑性力学在非稳定弹塑性区的一阶近似。
最小塑性余能密度原理式可以认为是极值问题式的增量对
偶。
如上所述,该原理是所有重要关系的出发点,是非平衡态弹塑性力学最根本的理论基石。
5最小塑性余能原理的证明和讨论
如前所述,非平衡态弹塑性力学可以看作是经典弹塑性力学在非稳定弹塑性区的一阶近似。
故在此意义上最小塑性原理亦为一阶近似理论。
但非平衡态弹塑性本构关系和最小塑性余能原理是完全一致的。
最小塑性余能原理适用于由关联的理想弹塑性材料组成的结构。
岩土材料一般为非关联流动材料,由Rade nkovic第一定理可知,在相同屈服条件下,考虑非关联效应使结构极限承载力降低,换句话说,考虑非关联效应将使加固力提高。
对于一超过极限承载力的外荷载 F 来说,可以构造无数多和其平衡的应力
场,显然所有应力场都无法全面满足屈服条件,故每个应力场都是〜种破坏模式,其塑性区构成了可行的破坏结构,并且需要加固力才能维持稳定。
对于每个和外荷载平衡的应力场,加固力方案都不是唯一的,此处假设加固力方案都是相对该应力场的最优方案。
根据最小塑性余能原理,在各种破坏机构中,真实的破坏机构加固力最小。
注意加固力就是破坏或失稳滑动的抵抗力,所以可以说,真实的破坏机构抵抗力最小。
显然当外荷载 F 趋近极限承载力时,上述提法就退化为潘家铮最小原理。
6 总结
对于给定的外荷载,结构的工作区域包括弹性区、稳定弹塑性区和非稳定弹塑性区,结构在非稳定弹塑性区需要加固力维持稳定。
经典弹塑性理论只适用于弹性区和稳定弹塑性区。
变形加固理论的理论基础为非平衡态弹塑性力学,它是经典弹塑性理论的增量延拓,适用于非稳定弹塑性区。
非平衡态弹塑性力学的理论核心为最小塑性余能密度原理,其理论基础为增量正交流动法则。
结构在非稳定弹塑性区服从最小塑性余能原理,该原理要求在给定外荷载的情况下,结构自承力最大而加固力最小,该理论为新奥法施工技术提供了严格的理论依据。
通过《弹塑性力学》的学习,我加深了对固体力学的理解,认识到弹塑性力学用于指导实际工程有很大的发挥空间,对今后的进一步学习奠定了基础,从理论上
得到进一步的加强。