弹塑性力学应力

合集下载

弹性与塑性力学基础 第1章 应力分析

弹性与塑性力学基础 第1章 应力分析


1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院

000弹塑性力学-应力理论

000弹塑性力学-应力理论
y 32
zl323
2 xyl31l32
2 yzl32l33
2 zxl33l31
(2-4)
x'y' xl11l21 yl12l22 zl13l23 xy (l11l22 l12l21) yz (l12l23 l13l22 ) zx (l13l21 l11l23 ) y'z' xl21l31 yl22l32 zl23l33 xy (l21l32 l22l31) yz (l22l33 l23l32 ) zx (l23l31 l21l33) z'x' xl31l11 yl32l12 zl33l13 xy (l31l12 l32l11) yz (l32l13 l33l12 ) zx (l33l11 l31l13 )
砂土 粘 ( 半 土 透 水 )
毛细张力力 总应力
中和应力 有效应力
px
τ xz
τ O yz τ zy
τ zx
σz
n x'
σx
py
A
x
z'
B
y
假定不计体力,且斜截面上的外法线n 的余弦分别为:
cos(n, x) l1
cos(n, y) l2
(a)
cos(n, z) l3
若令斜截面ABC的面积为1,则三角形 OBC、OAC、OAB的面积分别为:
第一章 概述
1. 弹塑性力学的任务 2. 基本假设 3. 发展概况 4. 主要内容 5. 主要参考文献
第二章 应力理论
§2-1 应力的概念
若一物体受到外力 P1、P2…….Pn 的作用,它必然产生变形,也即其形 状或尺寸会发生变化,同时物体内各 部分之间将产生相互平衡的内力(附 加内力)。现假想用一个平面K将物 体分成两部分,如图2-1所示。显然 这两部分将通过K截面有分布内力的 相互作用。

弹塑性力学 第3章弹性与塑性应力应变关系

弹塑性力学 第3章弹性与塑性应力应变关系

3-5 塑性应力应变关系
在塑性变形阶段,应力与应变关系是非线性的,应
变不仅和应力状态有关,而且还和变形历史有关。 如果不知道变形的历史,便不能只根据即时应力状 态唯一地确定塑性应变状态。而且如果只知道最终 的应变状态,也不能唯一地确定应力状态。
考虑应变历史,研究应力和应变增量之间的关系,
以这种关系为基础的理论称为增量理论。增量理论 是塑性力学中的基本理论。

A B
模型:
s
e E E s s e
O


线性强化弹
塑性模型:
A
B E1
s
E
O
s

e E E1 ( s ) s e

B
线性强化刚塑性
A
模型:
s
O

E s
或 其中
i s
i
3 2
0 3J 2
按照Mises条件
s
s
3
应力强度、等效应力
i
1 2
1 2 2 2 3 2 3 1 2
形变比能
1 1 2 2 2 3 2 3 1 2 Ws 12G
用主应力偏量与主应变偏量表示
e1 e2 e3 1 s1 s2 s3 2G
用主应力差与主应变差表示
1 2 2 3 3 1 1 1 2 2 3 3 1 2G
说明,在弹性阶段,应变莫尔圆与应力莫尔 圆成比例。 用3个主应力差与3个主应变差表示
屈服条件——屈服条件又称塑性条件,它
是判断材料处于弹性阶段还是处于塑性阶 段的准则。 在应力空间中,将从弹性阶段进入塑性阶 段的各个界限点(屈服应力点)连接起来 就形成一个区分弹性区和塑性区的分界面, 这个分界面即称为屈服面,而描述这个屈 服面的数学表达式称为屈服函数或称为屈 服条件。

弹塑性力学名词解释

弹塑性力学名词解释

弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。

2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。

一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。

3.体积力:作用在物体每一点的外力。

比如每一点都有的重力。

4.面力:作用在物体表面的外力。

比如水给大坝表面的压力。

5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。

物体表面的任一点的应力和该点的面力是相同的大小和方向。

6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。

直角坐标下的方程形式上简单,其它坐标的复杂些。

7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。

8.位移:分析一点:一点变形前后的位置差值。

变形体研究的位移是该点空间位置的连续函数。

9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。

直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。

10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。

直角坐标下的方程形式上简单,其它坐标的复杂些。

11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。

12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。

13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。

塑性力学-应力状态

塑性力学-应力状态
( x v )l xy m xz n 0 yx l ( y v )m yz n 0 zx l zy m ( z v )n 0
几何关系
l m n 1
2 2 2
l,m,n不能同时为零 ,因此前式为包括三个未知量
应力强度 或广义剪应力
i
3 2
0
1
1 2 2
( 1 2 )2 ( 2 3 )2 ( 3 1 )2 3J 2 ( x y )2 ( y z )2 ( z x ) 2 6( xy yz zx )
2 2 2
0 为平均应力或静
水压力,只引起物 体体积的变化,i 或0只引起物体形 状的变化, 与应 力状态有关。
应力偏量分量、主应力用应力强度、 平均应力与应力状态状态角表示
应力偏量 主应力
s1+s2+s3 = 0
1+2+3 = 30
应力星圆
应力星圆是以距原点O为0的一点为圆心,以
塑性力学
第1章 应力分析
1. 应力状态
2. 三维应力状态分析
3. 三维应力状态的主应力
4. 最大剪应力
5. 等倾面上的正应力和剪应力 6. 应力罗德参数与应力罗德角 7. 应力张量的分解 8. 平衡微分方程
1-1 应力状态
1. 外力
体力、面力
(1) 体力 —— 弹性体内单位体积上所受的外力
Q —— 体力分布集度 F lim (矢量) V 0 V F Xi Yj Zk
八面体上 的正应力 与剪应力
p 0 0
称为应力状态的特征角,cos 为应力形式指数 。

弹塑性力学 第02章应力状态理论

弹塑性力学    第02章应力状态理论
第二章
§2-1 §2-2 §2-3 §2-4 §2-5 §2-6 §2-7
应力状态理论
体力和面力 应力和一点的应力状态 与坐标轴倾斜的微分面上的应力 平衡微分方程·应力边界条件 主应力·应力张量不变量 最大切应力 偏应力张量及其不变量
§2-1 体力和面力
作用于物体上的外力分为两类 ①体力:指分布在物体内所有质点上的力,如重 力、惯性力和电磁力等;用 Fbx , Fby , Fbz 表示单位 体积的体力;其量纲为 MT −2 L−2 ;其单位为 N m 3。 ②面力:指作用在物体表面上的力,如风力、液 体压力等;用 f sx , f sy , f sz 表示单位面积的面力;其 量纲为 MT L ;其单位为 N m 。
⎧σ x = −γy ⎨ ⎩τ xy = 0
平面情况下面力边界 条件简化为
⎧ ⎪ f sx = σ x l + τ yx m ⎨ ⎪ ⎩ f sy = τ xy l + σ y m
AB边
l = 0, m = −1
f sx = 0, f sy = γh
⎧ ⎪σ y = −γh ⎨ = 0 τ ⎪ xy ⎩
⎧τ zy = τ yz ⎪ ⎨τ xz = τ zx ⎪τ = τ yx ⎩ xy
切应力互 等定理
σ ij = σ ji
在弹性体的表面,考虑任一微分四面体的平衡。 设物体单位面积上的面力为 f sx , f sy , f sz ,物体表面外 法线的方向余弦为l,m,n,则应用平衡关系,可得
⎧ f sx = σ x l + τ yx m + τ zx n ⎪ ⎪ ⎨ f sy = τ xy l + σ y m + τ zy n ⎪ ⎪ ⎩ f sz = τ xz l + τ yz m + σ z n

弹塑性力学总复习

弹塑性力学总复习

弹塑性⼒学总复习《弹塑性⼒学》课程第⼀篇基础理论部分第⼀章应⼒状态理论1.1 基本概念1.应⼒的概念应⼒:微分⾯上内⼒的分布集度。

从数学上看,应⼒sPF s ??=→?0lim ν由于微分⾯上的应⼒是⼀个⽮量,因此,它可以分解成微分⾯法线⽅向的正应⼒νσ和微分⾯上的剪应⼒ντ。

注意弹塑性⼒学中正应⼒和剪应⼒的正负号规定。

2.⼀点的应⼒状态(1)⼀点的应⼒状态概念凡提到应⼒,必须同时指明它是对物体内哪⼀点并过该点的哪⼀个微分⾯。

物体内同⼀点各微分⾯上的应⼒情况,称为该点的应⼒状态。

(2)应⼒张量物体内任⼀点不同微分⾯上的应⼒情况⼀般是不同的,这就产⽣了⼀个如何描绘⼀点的应⼒状态的问题。

应⼒张量概念的提出,就是为了解决这个问题。

在直⾓坐标系⾥,⼀点的应⼒张量可表⽰为=z zy zx yz yyx xz xy x ij στττστττσσ若已知⼀点的应⼒张量,则过该点任意微分⾯ν上的应⼒⽮量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进⼀步求出该微分⾯上的总应⼒p 、正应⼒νσ和剪应⼒v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=22ννστ-=p(1-2c )(3)主平⾯、主⽅向与主应⼒由⼀点的应⼒状态概念可知,通过物体内任⼀点都可能存在这样的微分⾯:在该微分⾯上,只有正应⼒,⽽剪应⼒为零。

这样的微分⾯即称为主平⾯,该⾯的法线⽅向即称为主⽅向,相应的正应⼒称为主应⼒。

主应⼒、主⽅向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应⼒张量分量构成的矩阵,n σ为主应⼒,}{i n 为主⽅向⽮量。

弹塑性力学应力应变关系

弹塑性力学应力应变关系

我所认识的应力和应变关系在这之前我认识了应力和应变的概念、性质以及从静力学和几何学的角度出发所得到的平衡方程和几何方程。

但是平衡方程仅反映了应力分量和外力分量的关系;几何方程仅建立了位移分量和应变分量的关系。

而谈到应力与应变的关系,对于可变形固体,在弹塑性力学中,在外力的作用下,其将发生变形。

变形分为两个阶段,弹性阶段和塑性阶段。

在弹性阶段,发生的弹性变形可以完全恢复,它是一个可逆过程。

此时,应力与应变的关系是一一对应的,是单值函数关系。

而在塑性阶段,所发生的塑性变形是不可以恢复的,是不可逆过程。

相对应的,塑性阶段的应力应变的关系是非线性关系,不存在一一对应的关系。

我所认识的应力和应变的关系就是本构关系。

本构关系也称为物理关系,它反应的是可变形材料的固有属性,实质上是一组联系力学参数和运动参数的方程式,也就是我们所说的本构方程。

在说应力与应变的关系之前,先说一下本构关系的相关影响因素,包括材料、环境、加载类型、以及加载速度。

即,),,(T t f εσ=。

另外,有各种各样的本构系,比如:弹性本构关系、塑性本构关系、粘弹性本构关系、粘塑性本构关系、各向同性本构关系、各向同性本构关系等等。

简单情况的本构关系:应力和应变的关系包括弹性和塑性的应力应变关系。

我们所说的是线性弹性体的应力应变关系,又分为简单应力状态和复杂应力状态。

在简单拉伸情况下,理想弹性材料的应力和应变的关系很简单,就是材料力学中的胡克定律: 。

而在塑性阶段,应力应变之间不再是简单的胡克定律,而是 。

另外,简单拉伸情况下的卸载定律是 。

在后继弹性阶段,也就是卸载后重新加载的材料会继续发生新的塑性变形,在此时的屈服称为后继屈服,相应的屈服点称为后继屈服点。

初始屈服和后继屈服的不同是:第一,应力的数值不一样,后继屈服的应力值更大;第二,屈服点的个数不一样。

初始屈服点只有一个,而后继屈服点会有好多个,则其对应的应力值也会有很多个。

最后,在卸载全部载荷后进行反向加载比如说把拉伸改成压缩,此时会产生Bauschinger 效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档