弹塑性力学 第02章应力状态理论

合集下载

000弹塑性力学-应力理论

000弹塑性力学-应力理论
y 32
zl323
2 xyl31l32
2 yzl32l33
2 zxl33l31
(2-4)
x'y' xl11l21 yl12l22 zl13l23 xy (l11l22 l12l21) yz (l12l23 l13l22 ) zx (l13l21 l11l23 ) y'z' xl21l31 yl22l32 zl23l33 xy (l21l32 l22l31) yz (l22l33 l23l32 ) zx (l23l31 l21l33) z'x' xl31l11 yl32l12 zl33l13 xy (l31l12 l32l11) yz (l32l13 l33l12 ) zx (l33l11 l31l13 )
砂土 粘 ( 半 土 透 水 )
毛细张力力 总应力
中和应力 有效应力
px
τ xz
τ O yz τ zy
τ zx
σz
n x'
σx
py
A
x
z'
B
y
假定不计体力,且斜截面上的外法线n 的余弦分别为:
cos(n, x) l1
cos(n, y) l2
(a)
cos(n, z) l3
若令斜截面ABC的面积为1,则三角形 OBC、OAC、OAB的面积分别为:
第一章 概述
1. 弹塑性力学的任务 2. 基本假设 3. 发展概况 4. 主要内容 5. 主要参考文献
第二章 应力理论
§2-1 应力的概念
若一物体受到外力 P1、P2…….Pn 的作用,它必然产生变形,也即其形 状或尺寸会发生变化,同时物体内各 部分之间将产生相互平衡的内力(附 加内力)。现假想用一个平面K将物 体分成两部分,如图2-1所示。显然 这两部分将通过K截面有分布内力的 相互作用。

弹塑性力学第二章PPT课件

弹塑性力学第二章PPT课件

面力平均集度:
p S
[力][长度] -2
一点面力的集度:
p lim S 0 S
pS
Ps方向:与ΔP的极限方向相同。 Ps在坐标轴x, y, z方向的投影Px, Py, Pz称为P点面力的分量, 指向坐标轴正方向的分量为正,反之为负。
西南科技大学 力学教研室
力和应力的概念
2. 内力
物 体 在外力作用下
变形
(改变 了质点 间距)
在物体内形成
附加 的内 力场
当内力场足以和外 力平衡时,变形不 再继续
平衡
西南科技大学 力学教研室
二、应力的定义
应力:单位面积上的内力: lim p
S Sc 0
c
单位:帕(Pa)
反映了P点内力的强弱程
度,是度量内力分布强弱
程度的物理量。
应力二要素: 点的位置:不同点的应力不同 截面方位:同一点不同方位截面上的应力不同
yx
yz
力和应力的概念
一点的应力状态 :
x yx
xy y
xz 坐标变换 yz
x yx
xy y
xz yz
zx zy z
zx
zy
z
西南科技大学 力学教研室
应力张量:一点的应力状态是一个对称的二阶张量, 各应力分量即为应力张量的元素。
ij yxx
xy y
xz yz
平衡微 分方程
考虑物体内部任 意一个微分平行 六面体的平衡
静力边 界条件
考虑物体表面任 意一个微分四面 体的平衡
西南科技大学 力学教研室
边界条件
边界条件建立了边界上的物理量与内部物理 量间的关系,是力学计算模型建立的重要环节。
三种边界条件 (1)应力边界条件:在边界上给定内力。 (2)位移边界条件:在边界上给定位移。 (3)混合边界条件:在边界上部分给定面力,部分给定位移。

工程塑性力学(第二章)应变分析、应力分析和屈服条件

工程塑性力学(第二章)应变分析、应力分析和屈服条件


σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ 31 σ 32 σ 33
定义了一个量 Σ ,表征该点的应力状态,在坐标系 Oxyz 中。如果变换到另一个 坐标系 Ox ′y′z′
σ′ τ′ x xy τ ′ xz τ′ σ ′y τ ′yz yx τ′ τ′ σ′ zx zy z
仍然表征同一应力状态,仍为 Σ 。在数学上,在坐标变换时,服从一定坐标变换 式的 9 个数所定义的量叫做二阶张量。此二阶张量称为应力张量:
I1 = σ 1 + σ 2 + σ 3 I 2 = −(σ 1σ 2 + σ 2σ 3 + σ 3σ 1 ) I 3 = σ 1σ 2σ 3
(2-11)
应力偏量 S ij 也是一种应力状态,同样也有不变量。进行类似的推导(或将
I1、I 2、I 3 式中的 σ x 、 σ y 和 σ z 分别用 s x 、 s y 和 sz 代替)即得应力偏量的三个不
2 J2 。 3
(2)等效应 2 + (σ 2 − σ 3 ) 2 + (σ 3 − σ 1 ) 2 2 1 2 2 2 = (σ x − σ y ) 2 + (σ y − σ z ) 2 + (σ z − σ x ) 2 + 6(τ xy + τ yz + τ zx ) (2-17) 2 = 3J 2
s xy = τ xy , s yz = τ yz , s zx = τ zx ,……
(2-4)
则应力偏张量:
⎡σ x − σ m τ xy τ xz ⎤ ⎡ s x s xy s xz ⎤ ⎢ ⎥ ⎢ ⎥ σ y −σm τ yz ⎥ = ⎢ s yx s y s yz ⎥ = S ij = σ ij − σ mδ ij (2-5) ⎢ τ yx ⎢ τ zx ⎢ ⎥ τ zy σz −σm⎥ ⎣ ⎦ ⎣ s zx s zy s z ⎦ 应力球张量表示各向均值应力状态,即静水压力情况。由于静水压力不影响 屈服,所以塑性变形只与应力偏量有关,因此在塑性力学中应力偏量的研究很重 要。

弹塑性力学之应变状态理论

弹塑性力学之应变状态理论

x'
b
m m
b
a a
y'
2017/9/26
14
2.3 应变张量的性第质二章 应变状态理论
2 主应变与主应变方向
应变矩阵的特征问题 ij li li
应变张量的特征方程 3 I1 ' 2 I2 ' -I3 ' 0 l12 l22 l32 1
应变张量的不变量
2017/9/26
I1 ' x y ቤተ መጻሕፍቲ ባይዱz
弹塑性力学
第2章 应变状态理第论二章 应变状态理论
本章学习要点:
理解变形体内部任意一点处应变状态的基本概念 掌握计算物体内任一点、任意微分面上的主应变
及应变主方向的计算公式 理解Cauchy方程(几何方程)和Saint Venant方
程(变形协调方程)的物理意义,熟练掌握这两 个基本方程
2017/9/26
u
v
w
uC (u z dz, v z dz, w z dz)
2017/9/26
19
2.4 体积应变 第二章 应变状态理论
变形后
M、A 、B 、C各点的坐标
(x u, y v, z w)
(x dx u u dx, y v v dx, z w w dx)
x
x
x
(x u u dy, y dy v v dy, z w w dy)
ij eij mij eij
应变球张量:
m 0 0
0
m
0
0 0 m
m
1 3
(1
2
3 )
1 3
( x
y
z)
1 3
I1
'

工程弹塑性力学课件:第二章 应力分析(肖)

工程弹塑性力学课件:第二章 应力分析(肖)

(Sx Sn )l1'
S
l'
yx 1
(S
y
S
l'
xy 2
Sn )l2'
S
l'
xz 3
S
l'
yz 3
0 0
(b)
S
l'
zx 1
S
l'
zy 2
(Sz
Sn )l3'
0
显然,方向余弦
l1’,l2’,l3’将由式(b) 中的任意两式和
l1’2+l2’2+l3’ 2=1所 确定。
Sx Sn ( x m ) ( n m ) x n
212l1l2
2 23l2l3
2 31l3l1
斜截面OABC上的剪应力:
N
SN2 1
SN2 2
SN2 3
2 N
2.2 主应力、应力状态不变量
主平面:剪应力等于零的截面
主应力-- N :主平面上的正应力
SN1 SN 2
N l1 N l2
SN 3 N l3
SSNN21
11l1 21l1
3
33
3
3
3
其中R 2 3
I12
3I2
5.54, cos
2I13
9I1I2
27I3
3
0.4946
119.64
2(I12 3I2 )2
=5.25, = 4.20, =1.95
主应力1=5.25, 2 =1.95,3 =-4.20
max
1
3
2
=4.725
2.3 八面体和八面体应力 八面体(每个坐标象限1个面) 3

塑性力学 第二章 应力状态与应变状态

塑性力学 第二章 应力状态与应变状态
1 2 3 c
c 平均应力为 m 3 因此,在与 平面平行的平面上的各点 表示了这样一些点的应力状态,即它们具有 相同的弹性体积变形。
26
§2-6 应变张量及其分解 一、应变与位移的关系 1 1、小变形情况 ij ui , j u j ,i 2 2、大变形(有限变形)情况 设变形前的初始时刻t=0,物体内A点的坐 标为ai a1 , a2 , a3 ,经过变形后,在t时刻它移 到 A 。相对于同一坐标系的坐标为 xi x1, x2 , x3 变形前后的位置一一对应,可由 xi 的单值连续 函数表示 xi xi a j , t 。同样也可以表示为 a i 的 单值连续函数 ai ai x j , t 。
1 MP1 max ( 1 3 ) 2 MP2 MP 1P 2P 1
1 1 ( 1 3 ) 1 2 2 2 1 3 2 2
1925年Lode提出参数
20
MP2 2 2 1 3 2s2 s1 s3 MP 1 3 s1 s3 1
22
(1)应力空间中过原点并与坐标轴成等角的 直线L L直线的方程为 1 2 3 。该直线上 的点代表物体上承受静水应力的点。L直线上 的点所对应的应力状态将不产生塑性变形。 (2)应力空间中过原点而与L直线垂直的平 面—— 平面 平面的方程为 1 2 3 0 。该平面 上的所有点平均应力为零,只有应力偏张量, 因此这个平面也叫偏量平面。位于该平面上 的点对应于不引起体积变形的应力状态。
17
§2-5 三向应力圆 Lode应力参数 Haigh-Westergaard应力空间
一、三向应力圆

弹塑性力学-02详解

弹塑性力学-02详解
九个量
这9个量描绘同一点P的同一物理现象,所以它们的定义仍为∑。
数学上,在坐标变换时,服从一定的坐标变换式的九个数所定
义的量叫做二阶张量。根据这一定义,∑是一个二阶张量,并
称为应力张量。以后将证明,应力张量为一对称的二阶张量。
各应力分量即为应力张量的元素。
12
应力张量通常表示为
其中i,j=x,y,z,当 i,j任取x,y,z时,

x xy xz yz y yz zx zy z
i, j
11
x xy xz yz y yz zx zy z
x' y'z' z'x'
x'y' y' z'y'
x'z' y'z' z'
9个应力分量定义一个新的量∑,它描绘了一种物理现象, 即P点处的应力状态。∑是对坐标系Oxyz而言的,当坐标系 变换时,它们按一定的变换式变换成另一坐标系Ox'y'z'中的
应力及其分量 的量纲为 [力][长度]-2
单位为帕(Pa) =N/m2
9
在以上的讨论中,过P点的C平面是任选的。显然,过P点可 以做无穷多个这样的平面C。或者说,过P点有无穷多个连续 变化的n方向。不同面上的应力是不同的。这样,就产生了 一个到底如何描绘一点处应力状态的问题。
为了研究P点处的应力状态,我们在P点处沿坐标方向取一个微 小的平行六面体,其六个面的外法线方向分别与三个坐标轴的 正、负方向重合,各边长分别为△x,△y,△z.。假定应力在 各个面上均匀分布,于是各面上的应力矢量便可用作用在各面 中心点的一个应力矢量来表示。每个面上的应力又可以分解为 一个正应力和两个剪应力分量。按前面约定的表示法,图中给 出的各应力分量均为正方向。

弹塑性力学第二章

弹塑性力学第二章

n 定理: r过P点以 单位外法线截面上的应
力矢量
t ( n )
是作用在通过P点坐标平面的应力矢
量t(1) t(x)、t(2) t(y) 、t(3) t(z)
x3
f
的线性函数、其系 数是 n的方向余弦,
C
-t(2)
-t(1) n
t(n)
n1 nx l n2 ny m
P
x2
B
n3 nz n
A
-t(3)
沿三个坐标面的应力矢量由九个 元素(分量)表示,
这九个分量组成一个二阶张量:
11 12 1 3 xx xy x z x xy x z 21 22 23 yx yy y zyx y y z
31 32 33 zx zy zz zx zy z
rr r t(x)lt(y)m t(z)n
2020/3/31
12
x3
§2-2 应力矢量和应力张量 C
证:
-t(2)
设 ABCS,
P
则 PBCn1S,
A x1
PACn2S, PABn3S,
f -t(1)
n
t(n)
x2 B
-t(3)
可得
Si niS
2020/3/31
13
§2-2 应力矢量和应力张量 x3
其中 Fx , Fy , Fz为沿三个坐标轴分量。
2020/3/31
5
§1-1 内力和外力
1.2 内力: 物体内部抵抗外力而产生相互作用的力。
在材力和结力中以N、M、Q形式出现,
但在弹力中常以应力来描述。
2020/3/31
6
§2-2 应力和应力张量
2.1 应力矢量 当变形体受外力作用时,要发生变形,同时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
§2-1 §2-2 §2-3 §2-4 §2-5 §2-6 §2-7
应力状态理论
体力和面力 应力和一点的应力状态 与坐标轴倾斜的微分面上的应力 平衡微分方程·应力边界条件 主应力·应力张量不变量 最大切应力 偏应力张量及其不变量
§2-1 体力和面力
作用于物体上的外力分为两类 ①体力:指分布在物体内所有质点上的力,如重 力、惯性力和电磁力等;用 Fbx , Fby , Fbz 表示单位 体积的体力;其量纲为 MT −2 L−2 ;其单位为 N m 3。 ②面力:指作用在物体表面上的力,如风力、液 体压力等;用 f sx , f sy , f sz 表示单位面积的面力;其 量纲为 MT L ;其单位为 N m 。
⎧σ x = −γy ⎨ ⎩τ xy = 0
平面情况下面力边界 条件简化为
⎧ ⎪ f sx = σ x l + τ yx m ⎨ ⎪ ⎩ f sy = τ xy l + σ y m
AB边
l = 0, m = −1
f sx = 0, f sy = γh
⎧ ⎪σ y = −γh ⎨ = 0 τ ⎪ xy ⎩
⎧τ zy = τ yz ⎪ ⎨τ xz = τ zx ⎪τ = τ yx ⎩ xy
切应力互 等定理
σ ij = σ ji
在弹性体的表面,考虑任一微分四面体的平衡。 设物体单位面积上的面力为 f sx , f sy , f sz ,物体表面外 法线的方向余弦为l,m,n,则应用平衡关系,可得
⎧ f sx = σ x l + τ yx m + τ zx n ⎪ ⎪ ⎨ f sy = τ xy l + σ y m + τ zy n ⎪ ⎪ ⎩ f sz = τ xz l + τ yz m + σ z n
例题3:单位厚度的楔形体,材料比重为 γ ,楔形 楔形体的边界条件。
体左侧作用比重为 γ 1 的液体,如图所示。试写出
平面情况下面力边界条件为
⎧ ⎪ f sx = σ x l + τ yx m ⎨ ⎪ ⎩ f sy = τ xy l + σ y m
p x , p y , pz
则有:
v v v v p = p x e1 + p y e2 + pz e3

v p 沿微元的法线
v v v p = σn + ττ
和切线分解,可得
σ τ
正应力 切应力
两者与结 构的强度 关系密切
必须指出,凡提到应力,应同时指明它是对物体 内哪一点并过该点的哪一个微分面来说的。因为通 物体内同一点可以作无数个方位不同的微分面。显 然,各微分面上的应力一般说是不同的。把物体内 一点各微分面上的应力情况,称为一点的应力状 应力状态分析:讨论一点截面方位改变引起的应 力变化趋势。对于结构强度是十分重要的。
平面情况下面力边界 条件简化为
⎧ ⎪ f sx = σ x l + τ yx m ⎨ ⎪ ⎩ f sy = τ xy l + σ y m
BB’边
l = sinα,m = − cosα
f sx = − γ y sin α , f sy = γ y cos α
⎧ ⎪σx sin α − τ xy cos α = −γy sin α ⎨ ⎪ ⎩τ xy sin α − σ y cos α = γy cos α
v v σ = p⋅n
⎛1 2 ⎞ ⎟ ⎜ = 50+ 40 2 25− 37.5 2 2.5 −15 2 ⎜1 2 ⎟ ⎟ ⎜ 2 2⎠ ⎝ = 26.05MPa
(
)
τ=
v2 2 p − σ = 108.7 MPa
§2-4 平衡微分方程·应力边界条件
若物体在外力(包括体力和面力)作用下处于平 衡状态,则将其分割成若干个任意形状的单元体 后,每一个单元体仍然是平衡的;反之,分割后每 一个单元的平衡,也保证了整个物体的平衡。因 此,假想穿过物体作三组分别与3个坐标平面平行的 截面,在物体内部,它们把物体分割成无数个微分 平行六面体;在靠近物体的表面处,只要这三组平 面取得足够密,则不失一般性地被切割微分四面 体。如果分别考虑物体内部微分平行六面体和表面 处任意一个微分四面体的平衡,将导出平衡微分方 程和应力边界条件。
平 衡 微 分 方 程
平衡微分方程,又称纳维方程
⎛ ∂σ x ∂τ yx ∂τ zx ∂ 2u ⎞ + + + Fbx = 0⎜ =ρ 2 ⎟ ⎜ ⎟ ∂x ∂y ∂z ∂ t ⎝ ⎠ ∂τ xy ∂σ y ∂τ zy ⎛ ∂ 2v ⎞ + + + Fby = 0⎜ =ρ 2⎟ ⎜ ⎟ ∂x ∂y ∂z ∂ t ⎝ ⎠ ⎛ ∂τ xz ∂τ yz ∂σ z ∂2w ⎞ + + + Fbz = 0⎜ =ρ 2 ⎟ ⎜ ⎟ ∂x ∂y ∂z ∂ t ⎝ ⎠
b
z
b
z
σy
a
τ yz τ zy
τ yx τ xy σ x τ xz
o
pz
c
τ zx
y
a
o
px
py
c
y
x
σz
x
于是可得 同理可得
p x = σ x l + τ xy m + τ xz n
p y = τ yx l + σ y m + τ yz n pz = τ zx l + τ zy m + σ z n
⎟ σ 23 ⎟ ⎟ σ 33 ⎠
σ 13 ⎞
§2-3 与坐标轴倾斜的斜截面上的应力
如何根据 9 个应力分量求任意斜截面上的应力?
σz
τ zx τ xz
τ xy τ yx τ zy
z
τ yz
σy
px
pz
py
y
σx
x
σz τ zx τ xz
τ xy τ yx τ zy
z
τ yz σy σy τ yx τ xy σ x τ xz τ zx σz
p x = σ x l + τ xy m + τ xz n
p y = τ yx l + σ y m + τ yz n pz = τ zx l + τ zy m + σ z n
p j = σ ij ni
ni = (l , m, n )
求斜截面上的正应力σ 与切应力τ
v v σ = p ⋅ n = σ ij ni n j
∂τ yx ⎞ ⎛ ∂σ x ⎞ ⎛ dx ⎟dydz − σ x dydz + ⎜ dy ⎟ dxdz − τ yx dxdz + τ yx + ⎜σ x + ⎜ ⎟ ∂x ∂y ⎝ ⎠ ⎝ ⎠ ∂τ zx ⎞ ⎛ dz ⎟dxdy − τ zx dxdy + Fbx dxdydz = 0 ⎜τ zx + ∂z ⎝ ⎠
⎧∑ Fx = 0 ⎧∑ M x = 0 ⎪ ⎪ ⎪ ⎪ ⎨∑ Fy = 0 ⎨∑ M y = 0 ⎪ ⎪ ⎪ ⎩∑ Fz = 0 ⎪ ⎩∑ M z = 0
考虑投影方程
∑F
x
=0
∂τ yx ⎞ ⎛ ∂σ x ⎞ ⎛ τ yx + dx ⎟dydz − σ x dydz + ⎜ dy ⎟ dxdz − τ yx dxdz + ⎜σ x + ⎟ ⎜ ∂x ∂y ⎝ ⎠ ⎠ ⎝ ∂τ zx ⎞ ⎛ dz ⎟dxdy − τ zx dxdy + Fbx dxdydz = 0 ⎜τ zx + ∂z ⎝ ⎠
τ yx τ xy σ x τ xz
o
pz px py
c
c
τ zx
y
a
o
y
p x ⋅ SΔabc − σ x ⋅ SΔboc − τ yx ⋅ SΔaob − τ zx ⋅ SΔaoc = 0
设倾斜面abc的外法线的3个方向余弦为l,m,n,则有
x
σz
x
SΔboc = SΔabcl , SΔaob = SΔabc m, SΔaoc = SΔabc n
例题2:梯形横截面墙体完全置于水中,如图所示。 已知水的比重为
γ ,试写出墙体横截面边界AA',
AB,BB’ 的面力边界条件。
平面情况下面力边界 条件简化为
⎧ ⎪ f sx = σ x l + τ yx m ⎨ ⎪ ⎩ f sy = τ xy l + σ y m
解:AA'边
l = −1 ,m = 0 f sx = ρgy = γy, f sy = 0
整理可得
同理可得
⎛ ∂σ x ∂τ yx ∂τ zx ∂ 2u ⎞ + + + Fbx = 0⎜ =ρ 2 ⎟ ⎜ ⎟ t ∂ ∂x ∂y ∂z ⎝ ⎠ ∂τ xy ∂σ y ∂τ zy ⎛ ∂ 2v ⎞ + + + Fby = 0⎜ =ρ 2⎟ ⎜ ⎟ ∂x ∂y ∂z ∂ t ⎝ ⎠
⎛ ∂τ xz ∂τ yz ∂σ z ∂2w ⎞ + + + Fbz = 0⎜ =ρ 2 ⎟ ⎜ ⎟ ∂x ∂y ∂z ∂ t ⎝ ⎠
为了表示一点的应力状态将 应力分量 p x , p y , p z沿坐标 轴分解,可得9个应力分量
σ x, σ y, σ z τ xy, τ xz, τ yx, τ yz, τ zx, τ zy
应力下标的含义:对于正应力,下标表示作用面的 方位;对于切应力,第一个下标表示作用面的方 位,第二个下标表示应力方向。
80 ⎞ ⎟ − 75 ⎟ MPa − 30 ⎟ ⎠
⎛1 1 1 ⎞ 试求通过该点,法线方向为⎜ , , ⎟ 2⎠ ⎝2 2
相关文档
最新文档