简单应力状态下的弹塑性力学问题共66页文档

合集下载

(完整)弹塑性力学简答题

(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。

110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。

5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2

p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给

第五章弹塑性力学问题的提法优秀课件

第五章弹塑性力学问题的提法优秀课件
在一般情况下,屈服条件和所考虑的应力状态有关
f (ij) 0
屈服函数. 表示在一个六维应力空间内的 超曲面.
超曲面上的任一点(称为应力点)都表示一个屈服应力
状态. 所以又称 屈服面.
对于各向同性材料,坐标轴的转动不应当影响 材料的屈服,因而可以取三个应力主轴为坐标 轴.屈服函数改写为
f(1,2,3)0
第一类边值问题 在全部边界上给定体力和面力,求在平衡状态下的 应力场和位移场,称这类问题为应力边值问题。
边界称为自由边界,属应力边界的特殊情况。如果边界上有集中力, 应转换为作用在微小面积上的均布面力;集中力偶则应转换为作用 在微小面积上的非均布面力。
第二类边值问题 给定物体力和在物体表面各点的位移,求在平衡状 态下的应力场和位移场,称这类问题为位移边值问题。
当物体处于弹塑性状态时,同样有3个平衡方程,6个几何 方程以及6个本构方程。但在此情况下多引进了一个参数
d ,不过也增加了一个屈服条件 f (ij) 0
只有在应力满足屈服条件时,d 才不等于零。
在研究弹塑性小变形平衡问题范围内时,以上弹塑性力学问题 的解还必须满足的边界条件。边界条件一般可分为三类,即
球形应力状态只引起弹性体积变化,而不影响材料的屈服.
屈服函数只包含应力偏量,即
f (sij) 0
这样,屈服函数为应力偏量的函数,而且可以在 主应力1,2,3所构成的空间,即主应力空间 内来讨论.
4 德鲁克公设与伊留申公设
Drucker公设:
对于处于在某一状态下的材料质点(或试件),借助一个外部作用, 在其原有的应力状态之上,缓慢地施加并卸除一组附加应力,在这 附加应力的施加和卸除的循环内,外部作用所做的功是非负的。
由此可见,弹性力学的基本方程组一般地反映物体内部的应 力、应变和位移之间相互关系的普遍规律,而定解条件具体 给定了每一个边值问题的特定规律。因此,每一个具体问题 反映在各自的边界条件上。所以,弹性力学问题的基本方程 组和边界条件共同构成弹力学问题严格而完整的提法。

塑性力学第五章(2)-简单的弹塑性问题(二)

塑性力学第五章(2)-简单的弹塑性问题(二)

σs
E
不变, ,保持 ε s不变,再加扭矩至 γ s =
τs
G
γ 同时拉扭进入塑性状态, 不变, (3)同时拉扭进入塑性状态,保持 ε 不变,到
ε s ,γ s
求应力分量
σ ,τ = ?
τ σ
Mises条件: 条件: 条件
σ 2 + 3τ 2 = σ s2
τ
σ
3
s
B
C A
O
σ
σ
s
γ
ε = σs
E =
应变分量(体积不可压缩): 应变分量(体积不可压缩):
σ
1 de z = d ε , de r = deθ = − d ε 2
d γ zθ = d γ
γ θr = γ rz = 0
塑性功增量: 塑性功增量:
dW d = sij deij
= s z de z + s r de r + sθ deθ + τ θz d γ θz + τ θr d γ θr + τ rz d γ rz
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G

σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,




:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,

2)
沿 OB 线,

8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,

平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则


2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,

,联列可得 ,代入
(2)纯剪力状态,

解:(1)单向拉伸应力状态

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

弹塑性力学第五章 简单弹塑性力学问题1

弹塑性力学第五章 简单弹塑性力学问题1


利用 2 ij ij ,以上各式易改写为张量形式
ij ,kl kl ,ij ik , jl jl ,ik
这六个方程的几何意义是被分割后的微分单元体在受力 变形后能重新拼合成连续体,即不会出现“撕裂”或 “套叠”等现象。如图(这里略)
(5.17)
F cos 2 1 2 A (1 2cos3 ) F 1 3 A (1 2cos3 )
(5.18)
由式(5.18)可见 3 1 ,当F增加时,杆3将首先屈服。 显然,当 3 s 时,桁架开始初始屈服,由式(5.18)可 求得桁架初始屈服时对应的荷载值 Fe
3.本构方程 1)弹性阶段,即
f ( ij ) 0或f ( ij ) 0, df 0
本构方程可表示为两种可相互转换的形式:(1)应力表 示应变;(2)应变表示应力

1 ij ij kk ij E E
(5.4)
ij kk ij 2G ij

1

因此,有变形协调关系
1 2 3 cos
2
(5.16)
1、弹性阶段——弹性解和弹性极限荷载
当荷载F足够小时,各杆应力都小于屈服应力,整个桁架 处于弹性阶段。由2 3 E 3
联立式(5.14)、(5.15)和(5.17)并求解,得
5.5 叠加原理(线弹性体)
考虑同一边界条件下作用在同一固体上的两组荷载情况:第 ' ' 一组体力 X i 和面力 X i' ,第二组为体力 X i''和面力 .设它 X i' ' ' 们引起的应力场、应变场和位移场分别为 ij、ij、ui , '' '' '' 和 ij、ij、ui ,则在线弹性和小变形情况下两组荷载共同 作用时产生的应力场、应变场和位移场,等于各自单独作用 时引起的相应场之和,即

弹塑性力学 应力函数求解

弹塑性力学 应力函数求解
例题1如图所示的简支梁只承受自重的作用,设材料的密度 为 ,给出 ( x, y) 函数可以作为应力函数的条件,并求 出 ( x, y) 表达式和应力分量,其中, ( x, y) 的形式为:
( x, y) Ax 2 y 3 By 5 Cy 3 Dx 2 y
解: 将应力函数代入相容方程, 2 2 0 得到
在上边界上 f (s) 0, f (s) 12ax f x (s) 0, f y (s) y 12ax2 在下边界上 f x (s) x 12ay2 , f y (s) 0 在左边界上 在右边界上 f x (s) x 12ay2 , f y (s) 0
y h 2 h 2
0 5 Bh 2 4 D 2 0 0 15Bh 2 4 D 0 x ydy 0 5 Bl 2 2 Bh 2 4C 0
2
h 2 h 2
y
x
l 2
B 2 5h l2 C 2 4h 10 D 3 4
Ax 3 Bx 2 y Cxy2 Dy3
4 0
12
Ax 3 Bx 2 y Cxy2 Dy3
2 x 2 f x x 2Cx 6 Dy y 2 f y y 6 Ax 2 By gy y 2 x 2 (2 Bx 2Cy ) xy xy 0 x 1 xy f x 0 y 0 6 Ax 0 A 0 直边界上 0 xy 1 y f y 0 xy 0 2 Bx 0 B 0
2
axy bxy
3
7
axy3 bxy

工程塑性力学(第一章)

工程塑性力学(第一章)
σ σ
σ′
σ′
σs
σs
O
εp ε
εe
ε
O
εp ε
εe
ε
图 1-2
卸载和再加载
σ ′′
图 1-3 卸载后反向加载到屈服
1.2.2 没有明显屈服阶段的拉伸曲线(铝合金类)
屈服极限(应力)规定:0.2%塑性应变对应的应力, σ 0.2
σ σb σ0.2
σ′
O
0.2%
ε
σ ′′
图 1-4 没有明显屈服平台的应力应变曲线
1.5.2 卸载
从介于 Ps 和 Pe 之间的某一值 P * 卸载 ΔP ,服从弹性规律。应力应变的改变 量为
Δσ 1 = Δσ 3 =
Δε 1 = Δε 3 =
σ s ⎛ ΔP ⎞
⎛ ΔP ⎞ ⎜ ⎟ , Δσ 2 = σ s ⎜ ⎜ ⎟ ⎜ P ⎟ ⎟ 2 ⎝ Pe ⎠ ⎝ e ⎠
(1-20) (1-21)
σ
σs
E’
E
εs
图 1-7
ε
幂强化模型
σ = Aε n , 0 ≤ n ≤ 1
(1-3)
σ
n =1
A
n = 1/ 2 n = 1/ 3 n=0
1
ε
图 1-8
Ramberg-Osgood 模型
σ /σ0
ε / ε 0 = σ / σ 0 + (σ / σ 0 ) n
3 7
(1-4)
1
n = 0 n =1 n=2 n=5 n=∞
位移:
(1-18)
δ y = ε 2 ⋅ l = 2ε1l =

2σ 1 l E
δy P = (1 + 2 ) − 2 δe Pe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档