激光原理复习自整理详解

合集下载

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。

下面将详细介绍激光原理的相关知识点。

1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。

与常规的自然光不同,激光是一种具有相同频率和相位的光波。

2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。

3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。

-具有一个能够增加原子或分子跃迁概率的辐射源。

-有一种方法可以让过多的激发态原子或分子跃迁到基态。

4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。

-激活介质是产生激励能量的介质,如气体、液体或固体。

-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。

-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。

5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。

通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。

6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。

这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。

7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。

-激光二极管:使用半导体材料制成的二极管来产生激光。

-激光腔:使用自激振荡的原理来产生激光。

8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。

-激光打印:激光打印用于打印机和复印机等办公设备中。

激光原理复习自整理详解

激光原理复习自整理详解

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。

含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。

激光原理考点总结

激光原理考点总结

激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。

激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。

下面将从以下几个方面总结激光原理的考点。

1.电磁辐射:激光器利用电磁辐射的原理产生激光。

电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。

了解光波的特性和传播方式对理解激光原理很重要。

2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。

反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。

另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。

3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。

在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。

而跃迁是指电子从一个能级到另一个能级的过程。

了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。

4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。

这种不平衡的粒子数分布是产生和放大激光的关键。

通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。

5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。

波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。

激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。

这对于精密测量、光谱分析和通信应用非常重要。

6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。

激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。

不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。

综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。

激光原理背诵版(整理)

激光原理背诵版(整理)
31.损耗系数a:光通过单位长度介质后光强减少的百分数。形成激光的决定性条件:增益系数大于损耗系数G≥a,只有当G≥a(增益系数大于损耗系数),光在谐振腔内才能被放大
32.激光器三要素:工作物质、泵浦源、光学谐振腔
33.工作物质:提供受激辐射的能级结构
34.泵浦源:将低能级粒子抽运到高能级,实现粒子数反转
激光原理重点汇整
第1章 电磁场和物质的共振相互作用
1.电磁场和物质的共振相互作用:自发辐射、受激辐射、受激吸收。在热平衡条件下,自发辐射为主,使受激辐射占优的前提是实现粒子数的反转分布。
2.自发辐射和受激辐射的区别:自发辐射是随机的,各光子之间无关联性,受激辐射是相干光(频率、相位、波失、偏振均相同);自发辐射是非相干光,受激辐射是相干光;
30.共焦腔与稳定球面镜腔的等价性:任何一个共焦腔可以与无穷多个稳定球面腔等价,任何一个稳定球面镜腔只能有一个等价共焦腔。
31.已知球面镜腔的的R1、R2、L,求z1、z2、和f,z1=负的L(L-R2)除以[(L-R1)+(L-R2)],z1=L(L-R1)除以[(L-R1)+(L-R2)],f平方=负的L(L-R1)(L-R2)(L-R1-R2)除以[(L-R1)+(L-R2)]平方
11.气体激光物质:碰撞加宽+多普勒加宽,气压低时以多普勒加宽为主(非均匀加宽),气压高时以碰撞为主(均匀加宽)。
12.固体激光物质:晶格振动加宽+晶格陷阱加宽,参杂及缺陷少时以晶格振动加宽为主(均匀加宽),低温下为非均匀加宽。
13.液体激光物质:碰撞加宽
14.常见均匀加宽激光工作物质:红宝石、YAG、二氧化碳(>1330帕)、砷化镓
32.非稳腔:高功率即大能量输出的激光器常为非稳腔,非稳腔内存在一对共轭像点,从共轭像点发出的球面波是腔内的自再现模。

个人归纳大学激光原理复习要点

个人归纳大学激光原理复习要点

1. 通常三能级激光器的泵浦阈值比四能级激光器泵浦阈值高。

2. Nd:Y AG激光器可发射以下三条激光谱线1064 nm、1319 nm、946 nm。

其中哪两条谱线属于四能级结构1319 nm、1064 nm。

3. 红宝石激光器属于三能级激光器。

He-Ne激光器属于四能级激光器。

4. 激光具有四大特性,即高相干性、高单色性、高亮度和高的方向性5. 激光器的基本组成部分增益介质、泵浦原、谐振腔。

6. 激光器稳态运转时,腔内增益系数为阈值增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率相等.7. 调Q技术产生激光脉冲主要有调Q 、锁模两种方法。

6. 激光器稳态运转时,腔内增益系数为增益系数,此时腔内损耗激光光子的速率和生成激光的光子速率.7. 写出两种产生高峰值功率激光脉冲的方法、。

简答:三能级方程及图四能级方程及图增益饱和模式竞争空间烧孔效应自由光谱区1.光与物质存在那三种相互作用?激光放大主要利用其中那种相互作用?说明在激光产生过程中,最初的激光信号来源是什么?(10分)答:光与物质间相互作用为:自发辐射、受激发射和受激吸收。

(3分)激光放大主要利用其中的受激发射(3分)。

激光产生过程中,最初的激光信号是激光介质自发辐射所产生的荧光。

激光介质自发辐射所产生的沿轴向传播的荧光反复通过激光介质,当增益大于损耗时,这些荧光不断被放大,最后形成了激光发射。

(4分)2.说明均匀增宽和非均匀增宽的区别?说明为什么均匀增宽介质内存在模式竞争?(10分)答:均匀增宽介质内每一个原子对谱线内任一频率光波都有相同的贡献,所有原子对发射谱线上每一频率的光波都有相同贡献,所有原子的作用相同;非均匀增宽介质发射的不同的光谱频率对应于不同的原子,不同的原子对中谱线中的不同频率有贡献,不同原子的作用不同的(5分)。

均匀增宽激光介质发射谱线为洛仑兹线型,中心频率处谱线增益最大,该频率处附近纵模优先起振,由于均匀增宽介质内每一个原子对谱线内任一频率光波都有相同的贡献,中心频率处纵模振荡发射激光将引起激光上能级原子数下降,激光增益曲线形状不变,但整体下降,当中心频率处纵模增益降低为激光振荡阈值时,该处纵模稳定输出,其它频率的纵模增益都小于阈值,无法振荡。

激光原理复习知识点[整理]

激光原理复习知识点[整理]

一 名词解释1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。

α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。

2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。

按上式定义的v ∆称为谱线宽度。

3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。

4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。

5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。

定义p v P w Q ξπξ2==。

ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。

v 为腔内电磁场的振荡频率。

6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。

7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。

这种使激光器获得更窄得脉冲技术称为锁模。

8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。

9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。

(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。

1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。

其与常规光的最大区别在于具有相干性和能量集中性。

2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。

受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。

自发辐射是指原子或分子自发地从激发态返回基态所发射的光。

3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。

光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。

电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。

4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。

5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。

相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。

方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。

单色性是指激光具有非常狭窄的波长,具有很高的色纯度。

高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。

6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。

激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。

7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。

激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。

8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。

激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。

激光原理复习自整理详解

激光原理复习自整理详解

激光原理复习自整理详解激光(Laser)是指将电能、化学能、光能等不同形式的能量转化为相干单色光束的一种装置。

激光器可精密控制光的时间、空间强度分布,因此被广泛应用于科学研究、医疗、通信、制造等领域。

激光的产生是基于光放大原理和光产生原理。

光放大原理即光在经过光学放大介质时,通过受激辐射过程放大而得到激光。

光产生原理则是指在光学放大介质中,通过受激辐射过程得到的初级激光,再经过多次光放大过程最终得到激光。

下面就详细介绍激光的产生原理。

1.激光器的组成激光器主要由光学谐振腔、激光介质和泵浦源三部分组成。

-光学谐振腔:用于延长光在激光器中的传播距离,增强激光的反射和放大效应。

-激光介质:负责将入射光转化为激光的介质,常见的激光介质有气体、固体和液体等。

-泵浦源:为激光介质提供能量,使其处于各能级的适当分布。

2.可逆过程和受激辐射受激辐射是产生激光的基本原理之一、当激光介质从低能级跃迁到高能级时,如果有一束与该过程产生的光子完全匹配的入射光通过,该过程将被增强。

这是一种受激辐射过程,其与自发辐射(即自发跃迁)形成了对称关系。

3.反射和放大过程激光器中的光线会在光学谐振腔内被多次反射,导致光线的衰减和放大。

谐振腔中有两个镜子,其中一个镜子是半透明的,称为输出镜,另一个镜子是全反射的,称为输入镜。

-当光线经过输出镜时,一部分光经过透射,成为激光器的输出光。

经过透射的光具有激光的特性,即单色、相干和定向等。

-另一部分光线经过反射,回到激光介质中,形成了反射光。

反射光在激光介质中被吸收、放大,然后再次被反射。

这个过程中,入射光不断放大,最终形成激光。

激光产生的过程可以概括为:泵浦源提供能量给激光介质,使其处于激发态;谐振腔内的光经过多次的反射和放大,形成激光。

总之,激光产生的原理是基于光放大和受激辐射过程,通过泵浦源提供能量给激光介质,经过光学谐振腔的多次反射和放大,最终形成相干单色激光。

激光具有独特的光学特性,广泛应用于各个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。

含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。

谱线加宽:由于各种因素的影响,自发辐射并不是单色的,而是分布在中心频率附近一个很小的频率范围内。

线性函数:把归一化的自发辐射光功率,描述为单色辐射功率随频率变化的规律,定义为分布在某一频率附近单位频率间隔内的自发辐射功率与整个频率范围内的自发辐射总功率之比。

用于表示谱线的形状多普勒效应:设一发光原子(光源)的中心频率为ν0,当原子相对于接收器以速度v z 运动时,接收器测得的光波频率变为(略); 多普勒加宽:由于作热运动的发光原子(分子)所发出的辐射的多普勒频移引起的加宽均匀加宽:引起加宽的物理因素对每个原子都是等同的,包括自然加宽v 、碰撞加宽c 及晶格振动加宽。

每个发光原子都以整个线型发射,不能把线型函数上的某一特定频率和某些特定原子联系起来,每一发光原子对光谱线内任一频率都有贡献。

洛伦兹形函数:220)2/()(2/)(f H H G v v v v v ∆+-∆=π 非均匀加宽:原子体系中每个原子只对谱线内与它的表现中心频率相应的部分有贡献,因而可以区分谱线上的某一频率范围是由哪一部分原子发射的,包括气体工作物质中的多普勒加宽和固体工作物质中的晶格缺陷加宽。

高斯函数:2020221D 2)()2()(f kTv v v mc e T k m v -=π 线宽:2120D 2ln 2k 2v v )(mcT =∆ 激光实现光放大条件: 1.激励能源,把介质中粒子不断由低能级抽运到高能级2.增益介质,外界激励下形成粒子数反转激光产生的三个条件: 1.增益介质2.粒子数反转,01212n >-g g n ; 3.提高简并度使受激发射光强超过自发发射,2121A f(v)>V B ρ激光器的结构:1.增益介质。

其激活粒子有适合于产生受激辐射的能级结构2.激励源。

能将下能级粒子抽运到上能级,使激光上下能级产生粒子数反转光学谐振腔。

增长激活介质长度,控制传播方向,选择被放大受激辐射光频率提高单色性 光学谐振腔作用1提供光学正反馈,使激活介质中产生的辐射能多次通过介质,当受激辐射所提供的增益超过损耗时,在腔内得到放大,建立并维持自激振荡。

2控制腔内振荡光束的特性,使腔内建立的振荡被限制在腔所决定的少数本征模式中,从而提高单个模式内的光子数量,获得单色性好,方向性好的强相干光。

光学谐振腔构成要素1激活介质:用于补偿腔内电磁场在振荡过程中的能量损耗,使之满足阈值条件2两个镀有高反射率膜的反射镜:使得激活介质中产生的辐射能多次通过介质获得增益同时控制光束的输出3腔长:影响谐振腔稳定性、损耗等第二章光腔按几何损耗分类:稳定腔,临界腔,非稳腔 定义:111g R L -=,212g R L -= 稳定腔:121g 0≤≤g非稳腔:121021g ≥≤g g g 或临界腔:121021g ==g g g 或共焦腔:02,01,21====g g L R R 即共心腔:L R R =+21光学谐振腔稳定条件:要求腔内傍轴光线不会因腔镜的反射偏折而逃出谐振腔,没有考虑光波的衍射逃逸损失,只考虑几何损失,属于对谐振腔稳定性的最低要求。

稳定谐振腔可能的腔镜组合形式有:双凹型,平凹型,凸凹型。

稳定图:粒子数反转:在外界激励下,物质处于非平衡状态,使得n2>n1实现粒子数反转手段:激励、泵浦、抽运建立多模激光器速率方程组需要做脱耦近似假设:忽略各模式频率和横向模场分布不同所带来的差异,采用如下近似假设1各模式腔损耗、光子寿命、近似相同2各模式光子所引起的受激跃迁速率近似相等速率方程;2212212211122d n w n A n W n W dtn ---=, 22)21(,,21212122112n w n A n n W dtdn W W W g g ---==== 稳态下:0d 2=dt n ,w A W W n ++=2112n ,则12n n <,结论,二能级不能实现粒子数反转 稳态反转粒子数密度分布:012d 0===dt dn dt n dt dn ,抽运=跃迁 小信号反转粒子数密度121220)(n ττR R R +-=∆小信号粒子数反转物理条件:1.激光上能级E2的寿命长,例子不能轻易非受激辐射离开2.激光下能级E1的寿命短,粒可很快衰减均匀增宽型介质:反转粒子数密度分布()()[]()()⎪⎪⎩⎪⎪⎨⎧=+∆=∆≠∆++-∆∆+-=+∆0220022000,2/)1(n 2/,100)()(1n V V V I I V V V V V V V I I n S S S v f v f I I n 粒子数反转分布饱和效应:介质已实现粒子数反转并达到阈值。

入射光频率含h12v E E -=时,强烈的受激发射使激光上能级E2粒子数n2迅速减少,出现n ∆随入射光强I 增大反而下降的现象。

粒子数反转分布饱和原因:入射光引起强烈的受激发射使激光上能级E2粒子数n2迅速减少 均匀增益系数:hv v f c nB v G )()(21μ∆=增益系数饱和:随着I 增大,G 不增反降增益系数饱和原因:入射光引起强烈的受激发射使激光上能级E2粒子数n2迅速减少 I 很小时,0n ∆,0G 均为常数I~Is 时,n ∆和G 均随I 增大而减小均匀增宽介质饱和:在抽运速率一定时,当入射光很弱时,增益系数是一个常数,当入射光强增强到一定程度后,增益系数随光强的增大而减小。

激光器中不是总存在增益饱和只有当激光振荡模式增益超过损耗,介质中振荡光束才会获得增益,随振荡光束增强才产生增益饱和。

在脉冲激光器中由于光增益时间很短,小于激励时间,所以有可能在工作中不出现增益饱和现象。

或在非均匀加宽中,当与入射光频率相应的增益曲线上频率处的增益系数恰好等于损耗时,不存在增益饱和。

二氧化碳激光器:饱和Is 很大,即使腔内光强I 很大时,I/Is 仍远小于1,介质对光波增益仍然很大。

氦氖激光器:饱和Is 很小,即使腔内光强I 不是很大时,I/Is 已接近于1,增益饱和 激光损耗:内部损耗,镜面损耗内部损耗:增益介质内部由于成分不均匀,粒子数密度不均匀,或有缺陷而使光产生折射,散射等使部分光波偏离传播方向,造成能量损失:z G I I in )(ex p 0α-=,in α内部损耗系数 镜面损耗:当光强为I 的光波射到镜面上,其中I 1r 反射回腔内继续放大,其他的部分均为损耗,包括I 1t ,镜面反射,吸收以及由于光衍射使光束扩散到反射镜范围以外造成的损耗。

几何损耗主要存在于非稳腔和临界腔。

损耗系数:光通过单位距离后光强衰减的百分数激光器振荡阈值:工作物质自发辐射在光腔内因不断获得受激放大形成振荡所需要的门限条件,可用反转粒子数密度,阈值增益系数,阈值泵浦功率来表示。

阈值条件1.增益系数阈值:满足双程放大系数:12)ex p(r r 21≥-=L G K in α,total 21in )(ln 21-αα=≥r r LG ,则total α≥G 2.增益系数下限:均匀:total S M D I I G G α=+=/10th 非均匀total S M D I I G G α=+=210th )/1( 3.粒子数反转分布阈值:)(8n 222v f c hv total th ταμπ=∆,th n ∆≥∆n 才能产生激光 第三章惠更斯-菲涅尔提出子波及子波干涉概念:1.波传到的任意波点都是子波波源2.各子波在空间某点相干叠加:薄面上各点均是相干子波源,惠-非原理提供用干涉解释衍射的基础,菲涅尔发展了惠更斯原理,深入了解衍射现象。

3.衍射基础,开腔模式基础惠更斯-菲涅尔原理:设波面上一点'p 光场复振幅()p''u ,任意一点P 光场复振幅()()()'cos 1''4ik p u ds e p u ik θρπρ+=⎰⎰∑-光波模:能够存在于腔内,以某一波矢k为标志的驻波称为‘’。

一种模式是电磁波运动的 一种类型,不同的模式以不同的k区分。

同一k对应两个具有不同偏振方向的模。

腔的模:将光学谐振腔内肯能存在的电磁场的本征态称为模。

模特征:电磁场理论(横模),简谐频率(纵模),往返一次损耗功率,发散角自再现模:把开腔镜面上经一次往返能再现的稳态场分布称为自再现模或横模。

往返损耗:自再现模往返一次的损耗。

往返位移:自再现模往返一次的相位变化,等于π2整数倍 横模:腔内垂直于光轴的横截面内的场分布称为横模纵模:在腔的横截面内场分布是均匀的,而沿腔的轴线方向即纵向形成驻波,驻波的波节数由q 决定将这种由整数q 所表征的腔内纵向场分布称为纵模。

q 纵模系数,一个q 一个驻波 谐振条件:光波在腔内往返一周总相移等于π2整数倍。

相关文档
最新文档