数理统计I期考试卷A卷(答案)
《 数理统计 》考试试卷( A 卷)

,,X为来自总体10,b=进行假设检验,可能犯的两类错误是为取自总体,X1. 设n X X X Λ,,21是来自总体)1,0(N 的简单随机样本,则∑=-ni iX X12)(服从分布为( )。
A .)(2n x B. )1(2-n x C. ),0(2n N D. )1,0(nN2. 设X 1,X 2,…,X 15是来自总体N(20,2)的一个样本,则Y=1021152112ii i i XX ==∑∑的分布是( ).(A ) (1,1)F (B)(14)t (C)2(15)χ (D)(10,5)F3. 设随机变量X 服从标准正态分布,对给定的(0,1)α∈,定义数(),u P X u ααα>=满足则1. 64 为( )(A )0.05u(B )0.10u(C )0.95u(D )0.90u4.. 设总体),(~2σμN X ,2σ已知,若样本容量n 和置信度均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度( c )(A )变长 (B)变短 (C)不变 (D)不能确定5.设X ~N (μ,2σ),则随着σ的减小,P (|X -μ|<σ)( )。
(A )单调增大 (B)单调减少 (C)保持不变 (D)增减不定6. 在假设检验中,一般情况下( ).A. 只犯第一类错误B. 只犯第二类错误C. 两类错误都可能发生D. 不会犯错误7.设2*,i iX S表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本修正方差)2,1(=i ,且两总体相互独立,则( ).A. )1,1(~2121212122--n n F S Sσσ B.)2(~)()(212221212121-++---n n t n n X X σσμμC.)(~/11111n t n S X μ- D.222222~(1)n S n χσ-8.设总体),(~2σμN X ,2σ已知,X 1,X 2,……,X n 是来自总体X 的样本值,现在在显著水平α=0.05下接受了0H :μ=0μ。
《数理统计》考试题及参考答案

《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y的样本,则U =服从的分布是_______ .解:(9)t .2,设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-''X Y β=()X X . 二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)n X X X n ≥为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nXN ; (B )22()nS n χ;(C )(1)()n Xt n S-; (D )2122(1)(1,1)nii n X F n X=--∑.2,若总体2(,)XN μσ,其中2σ已知,当置信度1α-保持不变时,如果样本容量n 增大,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ .(A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-;(C )/(1)(1,)/()A e S r F r n r S n r ----; (D )A S 与e S 相互独立.5,在一元回归分析中,判定系数定义为2TS R S =回,则___B____ . (A )2R 接近0时回归效果显著; (B )2R 接近1时回归效果显著; (C )2R 接近∞时回归效果显著; (D )前述都不对. 三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12)(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)已知总体X 的概率密度函数为1,0(),0, xe xf x θθ-⎧>⎪=⎨⎪⎩其它其中未知参数0θ>,12(,,,)n X X X 为取自总体的一个样本,求θ的矩估计量,并证明该估计量是无偏估计量.解:(1)()101()xv E X xf x dx xe dx θθθ-∞∞-∞====⎰⎰,用111ni i v X X n ===∑代替,所以∑===ni iX Xn11ˆθ.(2)11ˆ()()()()ni i E E X E X E X n θθ=====∑,所以该估计量是无偏估计.五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x θθθ=+<<,其中未知参数1θ>-,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计.解:1 (1)() , 01() 0 , nn i i i x x L θθθ=⎧+∏<<⎪=⎨⎪⎩其它当01i x <<时,1ln ()ln(1)ln ni i L n x θθθ==++∑,令1ln ()ln 01ni i d L nx d θθθ==+=+∑,得 1ˆ1ln nii nxθ==--∑.六、(本题10分)设总体X 的密度函数为e ,>0;(;)0,0,x x f x x λλλ-⎧=⎨≤⎩ 未知参数0λ>,12(,,)n X X X 为总体的一个样本,证明X 是1λ的一个UMVUE . 证明:由指数分布的总体满足正则条件可得222211()ln (;)I E f x E λλλλλ⎡⎤∂-⎛⎫=-=-= ⎪⎢⎥∂⎝⎭⎣⎦,1λ的的无偏估计方差的C-R 下界为2221221[()]11()nI n n λλλλλ-⎡⎤⎢⎥'⎣⎦==. 另一方面()1E X λ=, 21V a r ()X n λ=,即X 得方差达到C-R 下界,故X 是1λ的UMVUE .七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=α下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样?参考数据: 023.19)9(2025.0=χ, 919.16)9(205.0=χ, 535.17)8(2025.0=χ, 507.15)8(205.0=χ.解:(1)()()2222021:0.005,~8n S H σχχσ-≤=,则应有:()()2220.050.0580.005,(8)15.507P χχχ>=⇒=,具体计算得:22280.00715.6815.507,0.005χ⨯==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.(2)新设 20:0.005,H σ≤ 由2220.025280.00717.535,15.6817.535,0.005χχ⨯=⇒==< 则接受假设,即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设22, X Y S S 分别表示总体X Y ,的样本方差,由抽样分布定理可知221121(1)(1)Xn S n χσ--,222222(1)(1)Yn S n χσ--,由F 分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX YY n S n S F F n n n SS n σσσσ--==----.对于置信度1α-,查F 分布表找/212(1,1)F n n α--和1/212(1,1)F n n α---使得 []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭,所求2221σσ的置信度为α-1的置信区间为 22221/212/212//, (1,1)(1,1)X Y X Y S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
概率论与数理统计期终考试试卷及参考答案

上海应用技术学院2009—2010学年第二学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073/B2220071 学分: 3 考试时间: 100 分钟课程序号: 1441、1447、1451、1455、1456、1457、1458、1459、1460、1461、1976 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共5页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、设A 、B 、C 为三事件,则事件“A 、B 、C 不都发生”可表示为_______________。
2、设()4.0=A P ,()7.0=+B A P ,若B A ,相互独立,则()=B P ___________。
3、100件产品中有5件次品,任取10件,恰有2件为次品的概率为______________。
4、设随机变量X 的概率密度为()⎩⎨⎧≤≤=其他,0,10,32x x x f ,则()=X E __________。
5、设由总体~(,)X F x θ(θ未知)的样本观察值求得9.0}5.455.35{=<<θP ,则称区间[35.5,45.5]为θ的一个置信度为________的置信区间。
6、设Z Y X ,,相互独立,X 在]6,0[上服从均匀分布,)4,1(~N Y ,Z 服从参数2=λ 的泊松分布,32+--=Z Y X W ,()D W = 。
二、选择题(每题3分,共12分)1、对于任意两个随机变量X 和Y ,若)()()(Y E X E XY E =,则( )。
(A ))()()(Y D X D XY D = (B ))()()(Y D X D Y X D +=+ (C )X 和Y 相互独立(D )X 和Y 不独立2、设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量1123131ˆ5102X X X μ=++,2123115ˆ3412X X X μ=++,3123111ˆ362X X X μ=++其中方差最小的估计量是( )。
数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
(完整版)数理统计考试题及答案

(完整版)数理统计考试题及答案1、离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y 相互独⽴的条件是)()(),(y F x F y x F Y X ?=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +++=ξ~)10(2χ,查表得025.0ξ=20.54、设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=ni iXY 122)(1µσ,则EY=n解:∑=-=ni iXY 122)(1µσ~)(2n χ,E 2χ=n ,D 2χ=2n⼆、设设X 1,X 2,….X n 是总体),(~2σµN X 的样本,∑=-=612)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σµN X ,所以有)5(~)(126122χσ∑=-i i X X ,则≤-= ≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01) 0a x x α?+<,其他,其中α>0,求参数α的矩估计和极⼤似然估计量。
概率论与数理统计试卷(A)

贵州大学2010-2011学年第二学期考试试卷(A)概率论与数理统计注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间为120分钟。
一、选择题(10个小题,每小题2分,共20分)1.已知(5,4)XN ,其均值与标准差分别为( ).①5,2 ②4,5 ③5,4④2,5 2.若假设检验为0H ,则下列说法正确的是( ).①0H 为真时拒绝0H 是犯第二类错误 ②0H 为假时接受0H 是犯第一类错误 ③0H 为真时拒绝0H 是犯第一类错误 ④以上说法都不对3.设随机变量X 与Y 独立且()(0),()4E X a a E XY =≠=,则()E Y =( ). ①4a ②4a③4a ④4a - 4.设两个相互独立随机变量ξ和η的方差分别为4和2,则32ξη-的方差为( ). ① 8 ② 16 ③ 28 ④ 44 5.已知1,2,,n X X X 是来自正态总体2(,)N μσ的样本,其中μ已知,0σ>未知,则下列关于1,2,,n X X X 的函数中,( )不能作为统计量.①211n i i X n =∑②12max{,,}n X X X ③2211ni i X σ=∑④12min{,,}n X X X6.“事件发生的频率趋于事件发生的概率”的是( ).① 切比雪夫不等式②贝努利大数定律③中心极限定理④贝叶斯公式7.设总体X 服从正态分布2(,)N μσ,123,,X X X 为取自X 的容量为3的样本,则μ的三个估计量1123111333X X X μ=++, 2123255X X μ=+, 3123111236X X X μ=++ ①三个都不是μ的无偏估计②三个都是μ的无偏估计,1μ最有效③三个都是μ的无偏估计,2μ最有效④三个都是μ的无偏估计,3μ最有效 8.若A 与自身独立,则( ).①()0P A =②()1P A =③0()1P A <<④()0()1P A P A ==或 9.已知X 服从泊松分布,则()D X 与()E X 的关系为( ). ①()()D X E X >②()()D X E X <③()()D X E X =④以上都不是 10.下列说法错误的是 ( ).①,X Y 相互独立, 则,X Y 一定不相关 ②,X Y 不相关,则,X Y 不一定相互独立 ③对正态分布而言, 不相关和独立性是一致的 ④,X Y 不相关,则,X Y 一定相互独立二、填空题(10小题,每小题2分,共20分)1. 假设检验可分为两类,它们是( )和().2. 若检验的观察值落入拒绝域内,则应().3.出勤率和缺勤率之和等于(). 4.随机变量主要分为()和().5. 设随机变量ξ服从泊松分布,且(1)(2)P P ξξ===,则 (6)()P ξ==.6.某车床一天生产的零件中所含次品数ξ的概率分布如下表所示,则平均每天生产的次品数为().(题6表格)7.设ξ服从0-1分布,且(1)P ξ=是(0)P ξ=的三分之一,则(1)P ξ==(). 8. 已知()0.3P A =,()0.5P B =,则当A 与B 互不相容时,则()P A B ⋃=().9.已知()0.4P A =,()0.6P B A =,则()P AB =(). 10.设随机事件A 、B 满足关系B A ⊂,则()P A B ⋃=( ).三、简答题(5个小题,每小题4分,共20分)1.请写出贝努利大数定律的意义.2. 计算连续型随机变量的数学期望,它的密度函数为 (请写出详细过程),1,10()1,010x x f x x x +-≤≤⎧⎪=-<<⎨⎪⎩其它3.已知2,01()0.y y Yf y <<⎧=⎨⎩其它 ,求().F y4.随机事件的定义域与值域分别是什么?5.设总体X 的概率分布为X 1 2 3k P 2θ2(1)θθ-2(1)θ-其中θ为未知参数.现抽得一个样本1231,2,1X X X ===,求θ的极大似然估计量.四、计算题(3个小题,每小题10分,共30分)1.设随机变量X 满足22[(1)]10,[(2)]6E X E X -=-=。
《数理统计》考试题及参考答案

1 《数理统计》考试题及参考答案一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X 和129(,,)Y Y Y 是分别来自X 和Y 的样本,则192219X X U Y Y++=++ 服从的分布是服从的分布是_______ ._______ .解:(9)t .2,设1ˆq 与2ˆq 都是总体未知参数q 的估计,且1ˆq 比2ˆq 有效,则1ˆq 与2ˆq 的期望与方差满足的期望与方差满足_______ . _______ .解:1212ˆˆˆˆ()(), ()()E E D D q q q q =<.3,“两个总体相等性检验”的方法有“两个总体相等性检验”的方法有_______ _______ _______ 与与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ .解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX e 中,β的最小二乘估计是ˆβ=_______ .解:1ˆ-¢¢X Y β=()X X .二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)nX X X n ³ 为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nX N ;(B )22()nS n c;(C )(1)()n X t n S- ;(D )2122(1)(1,1)ni i n X F n X =--å .2,若总体2(,)X N m s ,其中2s 已知,当置信度1a -保持不变时,如果样本容量n 增大,则m 的置信区间信区间____B___ . ____B___ .(A )长度变大;(B )长度变小;(C )长度不变;(D )前述都有可能)前述都有可能. .3,在假设检验中,分别用a ,b 表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是下列说法中正确的是____C___ . ____C___ .(A )a 减小时b 也减小;(B )a 增大时b 也增大;(C ),a b 其中一个减小,另一个会增大;(D )(A )和()和(B B )同时成立)同时成立. .4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有和,则总有___A___ . ___A___ .(A )T e A S S S =+;(B )22(1)A S r c s- ;(C )/(1)(1,)/()AeS r F r n r S n r ---- ; ((D )A S 与e S 相互独立相互独立. . 5,在一元回归分析中,判定系数定义为2T S R S=回,则,则___B____ . ___B____ . (A )2R 接近0时回归效果显著;时回归效果显著; ((B )2R 接近1时回归效果显著;时回归效果显著; (C )2R 接近¥时回归效果显著;时回归效果显著; ((D )前述都不对)前述都不对. .三、(本题10分)设总体21(,)X N m s 、22(,)Y N m s ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22XYS S 、分别是它们的样本均值和样本方差,分别是它们的样本均值和样本方差,证明证明证明12121211()()(2)n n X Y t n n S w m m ---+-+ ,其中2221212(1)(1)2X Y n S n S S n n w -+-=+-. 证明:易知易知221212(,)X Y N n n s s m m --+ , 1212()()(0,1)11X Y U N n nm m s ---=+ .由定理可知由定理可知22112(1)(1)Xn S n c s-- ,22222(1)(1)Yn S n c s-- .由独立性和2c 分布的可加性可得分布的可加性可得222121222(1)(1)(2)XYn Sn SV n n c ss--=++- .由U 与V 得独立性和t 分布的定义可得分布的定义可得1212121112()()(2)/(2)n n X Y Ut n n V n n Swm m ---=+-+-+.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x qq -ì>ï=íïî其它其中未知参数0q >, 12(,,,)n X X X 为取自总体的一个样本,求q 的矩估计量,并证明该估计量是无偏估计量.的矩估计量,并证明该估计量是无偏估计量.解:(1)()11()xv E Xxf x dxxe dx q q q-¥¥-¥-¥====òò,用111ni i vX X n ===å 代替,所以代替,所以å===ni i X X n11ˆq .(2)11ˆ()()()()ni i E E X E X E X n q q =====å,所以该估计量是无偏估计.,所以该估计量是无偏估计. 五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x q q q =+<<,其中未知参数1q >-,12(,,)n X X X 是来自总体X 的一个样本,试求参数q 的极大似然估计.的极大似然估计.解:1 (1)() , 01() 0 , nniii x x L qq q =ì+P <<ï=íïî其它 当01i x <<时,1ln ()ln(1)ln n i i L n x q q q ==++å,令1ln ()ln 01ni i d L n x d q q q ==+=+å,得,得 1ˆ1ln nii n x q==--å.六、(本题10分)设总体X 的密度函数为e,>0;(;)0,0,xx f x x l l l -ì=í£î未知参数0l >,12(,,)n X X X 为总体的一个样本,证明X 是1l的一个UMVUE UMVUE..证明:由指数分布的总体满足正则条件可得由指数分布的总体满足正则条件可得222211()ln (;)I E f x E l l l l l éù¶-æö=-=-=ç÷êú¶èøëû, 1l的的无偏估计方差的C-R 下界为下界为2221221[()]11()nI n n l l l l l-éùêú¢ëû==.另一方面另一方面()1E X l =, 21V a r ()X n l=,即X 得方差达到C-R 下界,故X 是1l的UMVUE UMVUE..七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=a 下, 可否认为该批苹果重量标准差达到要求 (2)如果调整显著性水平0.025a =,结果会怎样?,结果会怎样?参考数据参考数据: : 02319)9(2025.0=c , 91916)9(205.0=c, 53517)8(2025.0=c, 50715)8(205.0=c .解:(1)()()2222021:0.005,~8n SH s c c s-£=,则应有:,则应有:()()2220.050.0580.005,(8)15.507P c cc >=Þ=,具体计算得:22280.00715.6815.507,0.005c ´==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.求.(2)新设)新设 20:0.005,H s £ 由2220.025280.00717.535,15.6817.535,0.005cc ´=Þ==< 则接受假设,即可以认为苹果重量标准差指标达到要求.即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X m s ,222~(,)Y m s ,221212, , , m m s s未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122s s的置信度为1a -的置信区间的置信区间.. 解:设22, XY S S分别表示总体X Y ,的样本方差,由抽样分布定理可知的样本方差,由抽样分布定理可知221121(1)(1)Xn S n c s -- , 222222(1)(1)Yn S n c s-- , 由F 分布的定义可得分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX Y Yn Sn S F F nn n SS n ss s s--==---- . 对于置信度1a -,查F 分布表找/212(1,1)F n n a --和1/212(1,1)F n n a ---使得使得[]/2121/212(1,1)(1,1)1P F n n F Fn n a a a---<<--=-,即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n a a s a s-æö<<=-ç÷----èø, 所求2221s s 的置信度为a -1的置信区间为的置信区间为 22221/212/212//, (1,1)(1,1)X Y XY S S S S F n n F n n a a -æöç÷----èø.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
10-11Ⅰ概率论与数理统计试卷(A)参考答案

10-11Ⅰ概率论与数理统计试卷(A)参考答案| | | | | | | |装|| | | |订|| | | | |线| | | | | | | | |防灾科技学院2010~2011学年第⼀学期期末考试概率论与数理统计试卷(A )使⽤班级本科各班适⽤答题时间120分钟⼀、填空题(每题3分,共21分)1、设A 、B 、C 是三个事件,4/1)(=A P ,3/1)(=A B P ,2/1)(=B A P ,则=)(B A P1/3 ;2、已知10件产品中有2件次品,在其中任取2次,每次任取⼀件,作不放回抽样,则其中⼀件是正品,⼀件是次品的概率为16/45 ;3、随机变量X 的分布函数是??≥<≤<=.1,110,,0,0)(2x x x x x F ,=)}({2X E X P e21;5、从1,2,3中任取⼀个数,记为X ,再从X ,,1 任取⼀个数,记为Y ,则==}2{Y P 5/18 ;6、设随机变量X 和Y 相互独⽴,且均服从区间[]1,0的均匀分布,则3/4 ;7、设样本4321,,,X X X X 为来⾃总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从⾃由度为2的2χ分布,则=C 1/3 。
⼆、单项选择题(本⼤题共7⼩题,每题3分,共21分)1、某⼈向同⼀⽬标独⽴重复射击,每次射击命中⽬标的概率为p ,则在第4次射击时恰好第2次命中⽬标的概率为( B )(A) 22)1(4p p -; (B) 22)1(3p p -; (C) 22)1(2p p -; (D) 3)1(p p -; 2、设随机变量X 的概率分布律为,2,1,0,!}{===k k A k X P ,则参数=A ( D )(A) 0 ; (B) 1; (C) e ; (D) 1-e ;3、设随机变量X 的分布函数为()F x ,则31Y X =+的分布函数为( A )(A )11()33F y -;(B ) (31)F y +;(C ) 3()1F y +;(D 11()33F y -;4、设连续型随机变量X 的概率密度为?<≥=-.0,0,0,)(x x e x f x λλ,则=≥})({X D X P ( C )(A) 0 ; (B) 1; (C) 1-e ; (D) e ;5、设随机变量X 与Y 相互独⽴,其概率分布分别为10.40.6XP 01(A )1}{==Y X P ;(B )0}{==Y X P ;(C )52.0}{==Y X P ;(D )5.0}{==Y X P ;6、若)2(,,,21≥n X X X n 为来⾃总体)1,0(N 的简单随机样本,X 为样本均值,2S为样本⽅差,则(C )(A ))1,0(~N X n ;(B ))(~22n nSχ;(C ))1(~/-n t nS X ;(D ))1,0(~N X ;7、总体X 的分布律 ()1/,0,1,2,,1P X k N k N ===- .已知取⾃总体的⼀个样本为(6,1,3,5,3,4,0,6,5,2),则参数N 的矩估计值是 ( A ))(A 8; )(B 7; )(C 6; )(D 5.(本⼤题共2⼩题,每题7分,共14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京林业大学 2006---2007学年第一学期考试试卷(A 卷)(适用专业: 草坪04;草业05;林学05-1、2、3、4;水保05-1、2、3;营销05-1、2;游憩05)注:这是以往数理统计I 的考试试卷,数理统计II 的学生若将该份试题作为复习资料的话,第一题的第7小题、第七题以及第八题可以不用做,因为已经超出了数理统计II 的教学大纲试卷名称: 数理统计I 课程所在院系: 理学院考试班级: 学号: 姓名: 成绩: 试卷说明:1. 本次考试为闭卷考试。
本试卷共4页,共八大部分,请勿漏答;2. 考试时间为120分钟,请掌握好答题时间;3. 所有试题答案写在试卷上;4. 答题中可能用到的数据如下:(3.1)0.9990Φ=,0.025 1.96Z =,0.025(5) 2.571t =,0.025(9) 2.262t =,0.025(11) 2.201t =,0.025(15). 2.131t =,9.21)11(2025.0=χ, 82.3)11(2975.0=χ,26.4)9,2(05.0=F , 7545.0)5(05.0=r一. 填空(每空2分,共30分)1. 设 A 、B 、C 为三个随机事件,则事件“A 、B 发生但C 不发生” 可表示为 C AB 。
2. 将一枚骰子连续投掷两次,第二次出现的点数为3的概率等于 1/6 。
3.每次试验结果相互独立,设每次试验成功的概率为p 。
则重复进行试验直到第10次才取得k )101(≤≤k 次成功的概率等于 C 9kp k (1-p)10-k。
4.已知x 为从某个总体ξ中抽取出来的容量为20的简单随机样本的样本平均,且ξE =7,ξD =4,则 =x E 7 ,=x D 0.2 。
5. 已知到连续型随机变量ξ的概率密度函数为||)(x Ae x f -=,则=A 0.5 。
6. 已知41)(=A P ,31)/(=AB P ,21)/(=B A P ,则=+)(B A P 1/3 ,=-)(B A P 1/6 。
*7. 为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 [0.2743,0.4057]或 [0.278,0.408] 。
8.已知1021,,x x x Λ是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x x ,则当=A 1/16时,xˆ为总体均值μ的无偏估计。
9.已知随机变量X 和Y 相互独立,且)2,2(~-N X ,)4,3(~N Y ,则Y X 3-所服从的分布为N(-11,38) 。
10.已知ξD =25, =ηD 36,且ξ和η的相关系数4.0),(=ηξρ,则=-)(ηξD 37 。
11.ξ为随机变量,且μξ=E ,=ξD 2σ.由车比雪夫不等知≥<-}4|{|σμξP 0.9375 。
12.已知ξ和η都是连续型随机变量,ξηln =,设ξ的概率密度函数)1(1)(2x x f +=πξ,则η的概率密度函数=)(x f η )1(2xxe e +π 。
13.已知ξ服从参数为1的泊松分布,则2ξE = 2 。
二. (12分)一个口袋里有三个球,这三个球上面依次标有数字0、1、1。
现在从袋里任取一个球,不放回袋中,接着再从袋里取出一个球。
设ξ表示第一次取到的球上标有的数字, η表示第二次取到的球上标有的数字。
(1) 求),(ηξ的联合概率分布律;(2)求),(ηξ关于 ξ的边缘概率分布和关于η的边缘概率分布,判断ξ和η是否独立;(3)求ξ和η 协方差),cov(ηξ。
解:(1)(2)ξ和η不独立。
(3)3/2=ξE , 3/2=ηE ,3/1)(=ξηE ,1)(),cov(-=-=ηξξηηξE E E 三.(8分)某商场所供应的电视机中,甲厂产品与乙厂产品各占50%;甲厂产品次品率是10% ,乙厂产品次品率是15% 。
(1)求该商场电视机的次品率;(2)现某人从该商场上买了一台电视,发现它是次品,求它由甲厂生产的概率。
解:用A 表示“甲厂产品”, 用B 表示“次品率”, 则10050)(,10050)(==A P A P , 10010)|(=AB P , 10015)|(=A B P (1))|()()|()()(A B P A P A B P A P B P +=675.010015100501001010050=⨯+⨯=. ----- 4分(2))|()()|()()|()()()()|(A B P A P A B P A P A B P A P B P AB P B A P +==074.0675.010********=⨯=. ---- 8分四.(8分)设某研究所有200名研究人员,现该研究所准备在会议厅举行一个内部学术交流会。
假设每个研究人员都以0.6的概率去参加这个学术交流会,并且每一位研究人员是否去参加是相互独立的,问会议厅应至少准备多少个座位,才能以99.9%概率保证去参加交流会的人员都有座位坐。
解:假设准备x 个座位条,用ξ表示与会的人数,显然ξ 服从B (200,0.6), 1分np=120,np(1-p)=48, 2分因为n=10000,充分大由中心极限定理可以认为ξ近似服从)48,120(N , 4分, 根据题意知道:999.0)(≥≤∴x P ξ 6分 所以:120()0.99948x -Φ≥,即1.348120≥-x ,解得141≥x , 至少准备141个座位 8分五.(10分)一批糖袋的重量(单位:千克)服从正态分布。
现在从该批糖袋中随机抽取12袋,测得这12糖袋的平均重量为057.3,方差为0.1292(1) 求这批糖袋的平均重量μ的置信度为95%的置信区间,并计算估计的精度。
(2) 求这批糖袋的重量方差2σ的置信度为95%的置信区间。
解: 3593.0=S , 1分( 1)95.01=-α,05.0=α,11112=-=f ,查表得 0.0252(11) 2.201t t α==( 2.2010.2283t n α∆=-== μ的置信度为95%的置信区间为[,](3.0570.2383.0570.238)[2.819,3.295]X X -∆+∆=-+= 4 分估计精度为%2.92922.01==∆-=xA 7分 (2)2σ置信度为95%的估计: 查表得9.21)11()1(2025.022==-χχαn82.3)11()1(2975.0221==--χχαn2222(1)110.35930.06489(1)21.9n s n αχ-⨯==- 22212(1)110.35930.372(1) 3.82n s n αχ--⨯==- 所以,新生男婴儿体重的方差2σ的区间估计为[0.06489,0.372]. 10分六.(8分)某批电子元件的寿命(单位:小时)服从正态分布。
正常情况下,元件的平均寿命为225。
现在从中该批电子元件中任意抽取16件,测得它们的平均寿命为241,样本方差为92。
据此以显著水平=α0.05来判断是否可以认为这批电子元件的平均寿命与225无显著差异?解:样本标准差=s 9.591(1)建立统计假设.225:;225:100≠==μμμH H 1分 (2)建立统计量:x T =分(3)在.0H 成立前提下计算: 6.461T == 5分由.=α0.05求得2(15). 2.131t α= 6分(4)因为)15(αt T >,拒绝.0H 即不可以认为这批电子元件的寿命与225无显著差异.8分*七.(12分)一批由同一种原料织成的布,用不同的印染工艺处理,然后进行缩水处理。
假设采用A 、B 、C 三种不同的工艺,每种工艺处理4块布样,测得缩水率(单位:%)的数据如表1所示。
根据这些数据,完成下列问题:(1) 填写下列未完成的方差分析表(表2),并根据方差分析表以显著水平05.0=α来判断不同的工艺对布的缩水率的影响是否有显著差异?(2) 若有显著差异,则用费歇检验法(即LSD 检验法)做进一步多重比较,并且指出存在显著差异的工艺的总体均值差的置信度为95%的置信区间。
(10分)表2解:(1)完成方差分析表如上 4分(其中F 值1分,其他每空格0.5分) 由05.0=α知26.4)9,2(=αF , F= 5.366>26.4)9,2(=αF , 5分 可认为有显著差异. 6分(2)计算LSD 7分多重比较结果 10分均值差的取间估计 12分*八.(12分)为了研究某地区年度汽车拥有量y (单位:百台)与货运周转量x(1)求y 对x 的线性回归系数与回归剩余标准差,写出经验线性回归方程。
(2)计算样本相关系数,并进行线性回归的显著性检验(显著水平α=0.05)。
(3)求当货运周转量x=0.5时,该地区年度汽车拥有量y 的置信度为95%的置信区间。
解∶5503.12)(2111=-=∑∑==xni i ni i inSy x y xb 1分958.136.174251.2910=⨯-=-=x b y b 2分2212xy e nS b nS SS ⋅-= 206.004256.0)2/(==-=⋅n SS S e x y 4分(1):经验线性回归方程为 x y5503.12958.13ˆ+= 5分 (2)9986.0)(2211=-=∑∑==yxni i ni i inSnS y x y xr 7分检验假设0H :y 对x 的线性回归关系不显著。
α=0.05, 7545.0)5()2(05.0==-rn r α因为 )2(->n r r α 所以拒绝0H ,认为y 对x 的线性回归关系显著, 0>r y 关于x 是正相关的。
9分(3)因为经验回归方程为: x y5503.12958.13ˆ+=。
所以 5.00=x 时,233.205.05503.12958.13ˆ0=⨯+=y==-)5()2(05.0t n t α 2.571∑=⋅--++-=∆n i i xy x x x x nS n t 1220)()(11)2(α 0y 的置信区间为[19.67, 20.80],可靠性为95% 12分。