3静定结构的内力分析习题解答解读
03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)

轴力仍以受拉为正,受压为负;轴力图可画在杆件的任一侧或 与纵坐标对称地画在杆件的两边,但需在轴力图上标明正负号。
§3.3 静定刚架的计算
例1 绘制如图所示门式刚架在半跨均布荷载作用下的内力图。
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
静定刚架的组成及类型
平面刚架是由直杆(梁和柱)组成的平面结构。
刚架中的结点部分或全部是刚节点。
在刚节点处,各杆件连成一个整体,杆件之间不能发生相对 移动和相对转动,刚架变形时各杆之间的夹角保持不变,因 此刚节点能够承受弯矩、剪力和轴力。
解:
1)求支座反力 由整体平衡方程可得
M A 0, 6 3 12FyB 0 M B 0, 6 9 12FyA 0
X 0, FxA FxB 0
取铰C右边部分为隔离体
MC 0, 6.5FxB 6FyB 0
求得
FyB =1.5kN() FyA=4.5kN() FxA =1.384 kN()
§3.3 静定刚架的计算
2)作弯矩图
求出杆端弯矩(设弯矩方正向为使刚架内侧受拉)后,画于受 拉一侧并连以直线,再叠加简支梁的弯矩图。
以DC杆为例
M DC 1.384 4.5 6.23kN m, MCD 0
CD中点弯矩为 1.3845.5 133 1 1 4.5 6 1.388kN m 22
(2)为计算静定刚架位移和分析超静定刚架打下基础。
2)刚架各杆内力的求法
从力学观点看,刚架是梁的组合结构,因此刚架的内力求法 原则上与梁的内力计算相同。 通常是利用刚架的整体或个体的平衡条件求出各支座反力和 铰接点处的约束反力,然后用截面法逐个计算杆件内力。
结构力学第三章静定结构受力分析

MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
结构力学 第三章 静定结构的内力计算(典型例题练习题).

[例题3-2-1]作简支梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-2]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-2-3]作外伸梁的剪力图与弯矩图。
解:求支座反力荷载叠加法平衡方程[例题3-3-1]作多跨静定梁的内力图。
解:求支座反力荷载叠加法[例题3-3-2]作三跨静定梁的内力图。
解:求支座反力[例题3-3-3] 作多跨静定梁的内力图。
解:求支座反力[例题3-4-1] 作静定刚架的内力图解:求支座反力[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3]作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力[例题3-4-5]作三铰刚架的内力图解:求支座反力[例题3-4-6]作三铰刚架的内力图解:求支座反力??[例题3-4-7]作静定刚架的内力图解:求支座反力[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:[例题3-4-12]作静定刚架的图解:[例题3-4-13]作静定刚架的图解:[例题3-4-14]作静定刚架的图解:求支座反力?[例题3-4-15]作静定刚架的图解:[例题3-5-1]???求支座反力当时?????? ? ?????[例3-5-2]??? 试求对称三铰拱在竖向均布荷载作用下的合理轴线。
解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。
[例3-6-1]用结点法求桁架各杆的内力。
解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。
解:求支座反力平衡方程荷载叠加法解题路径:以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-3]用结点法求桁架各杆的内力。
解:利用对称性,求支座反力解题路径:以结点为对象?以结点为对象以结点为对象以结点为对象例3-6-4]指出桁架的零杆。
3静定结构的内力分析习题解答

第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
3静定结构的内力计算

①简支梁
②外伸梁
③悬臂梁
3
二、梁的内力
1、内力计算法——截面法
P1
A
m
FAx
K
n
P2 B
8
斜梁介绍
工程中,斜梁和斜杆是常遇到的,如楼梯梁、刚架中的斜杆等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重),用 q’ 表示。
q 与 q’间的转换关系:
qdx = qds q = q
cos
dM dx
= FQ
无荷载区段 平行轴线
FQ图
M图
斜直线
均布荷载区段 集中力作用处 集中力偶作用处
↓↓↓↓↓↓
+ -
二次抛物线
凸向即q指向
发生突变
+P -
出现尖点
尖点指向即P的指向
无变化
发生突变
m
两直线平行
注备
FS=0区段M图 FS=0处,M 平行于轴线 达到极值
12
三、叠加法作弯矩图
1. 叠加原理: 几个载荷共同作用的效果,等于各个载荷单独
吊杆
带拉杆的三铰拱
拉杆折线形
拉杆
花篮螺丝
带吊杆的三铰拱
3、三铰拱的内力计算
1)、拱的内力计算原理仍然是截面法。 2)、拱通常以受压为主,因此规定轴力以受压为正。 3)、计算时常将拱与相应简支梁对比,通过对比完成计算。
45
建筑力学之 静定结构的内力分析知识详解

第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。
第三章 静定结构的受力分析

第三章静定结构的受力计算1. 教学内容从几何构造分析的角度看,结构必须是几何不变体系。
根据多余约束n ,几何不变体系又分为:有多余约束( n > 0)的几何不变体系——超静定结构;无多余约束( n = 0)的几何不变体系——静定结构。
从求解内力和反力的方法也可以认为:静定结构:凡只需要利用静力平衡条件就能计算出结构的全部支座反力和杆件内力的结构。
超静定结构:若结构的全部支座反力和杆件内力,不能只有静力平衡条件来确定的结构。
2. 教学目的进一步巩固杆件受力分析和内力分析的特点;理解多跨静定梁、静定平面刚架、静定桁架的概念;熟练掌握多跨静定梁、静定平面刚架、静定桁架内力的计算方法,能够画出内力图;理解截面法、结点法、联合法,熟练求出静定桁架的内力。
3. 主要章节第一节、单跨静定梁第二节、多跨静定梁第三节静定平面刚第四节、三铰拱架第五节、静定平面桁架第六节、组合结构4. 学习指导本章所学内容的基础是以前所学的“隔离体和平衡方程”,但是不能认为已经学过了,就有所放松。
其实,在静定结构的静力分析中,虽然基本原理不多,平衡方程只有几种形式,但是其变化是无穷的,因此重要的是知识的应用能力。
为了能够熟中生巧,在学习时应多做练习。
5. 参考资料《建筑力学教程》P21~P57第一节、单跨静定梁一. 教学目的复习材料力学中的内力概念和计算方法,梁的内力图的画法;熟练掌握各种荷载作用下的梁的内力图画法;掌握叠加法画弯矩图。
二. 主要内容1. 内力的概念和表示2. 内力的计算方法3. 内力图与荷载的关系4. 分段叠加法三. 参考资料《建筑力学》P21~P26各种《材料力学》教材3.1.1 内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N、剪力F Q 和弯矩M(图3-1)。
轴力----截面上应力沿轴线方向的合力,轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力,剪力以截开部分顺时针转向为正。
结构力学 第三章 静定结构

MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁
•
由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H等于。
习题3.2(3)图(4) 习题3.2(4)图所示桁架中有根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
CDE部分在该荷载作用下自平衡;(2)M AB=288kN·m,左侧受拉;M B=32kN·m,右侧受拉;(3)F P/2;(4)11(仅竖向杆件中有轴力,其余均为零杆)。
习题3.3作习题3.3图所示单跨静定梁的M图和QF图。
(a)(b)qP(c) (d)2(e) (f)习题3.3图【解】C DM图(单位:kN·m)F Q图(单位:kN)(a)2aF2F P5M图F Q图(b)8ql22ql8ql5M图F Q图(c)F3P4M图F Q图(d)qa21.5qa22qaM图F Q图(e)M 图 (单位:kN·m )F Q 图(单位:kN )(f)习题3.4 作习题3.4图所示单跨静定梁的内力图。
(a)(b)m(c) (d)习题3.4图【解】M 图 (单位:kN·m ) F Q 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN )(c)M 图 (单位:kN·m ) F Q 图(单位:kN )(d)习题3.5 作习题3.5图所示斜梁的内力图。
习题3.5图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )习题3.6 作习题3.6图所示多跨梁的内力图。
(a)(b)A(c)(d) 习题3.6图【解】DM 图 (单位:kN·m ) F Q 图(单位:kN )(a)21M 图 (单位:kN·m ) F Q图(单位:kN )(b)AM 图(单位:kN·m )AF Q 图(单位:kN )(c)M 图(单位:kN·m )F Q图(单位:kN)(d)习题3.7 改正习题3.7图所示刚架的弯矩图中的错误部分。
(a) (b)(c)(d) (e)(f)习题3.7图【解】(a) (b)(c)(d) (e) (f)习题3.8 作习题3.8图所示刚架的内力图。
(a) (b) (c)q(d) (e) (f)习题3.8图【解】M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(a)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(b)M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(c)M 图 F Q 图 F N 图(d)3.5M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )(e)F PM 图 F Q 图 F N 图(f)习题3.9 作习题3.9图所示刚架的弯矩图。
(a) (b) (c)(d) (e)(f)(g) (h) (i)习题3.9图【解】P(a) (b) (单位:kN·m)(c)(单位:kN·m)(d) (e)(f)(单位:kN·m)aF P(g) (单位:kN·m)(h) (i) (单位:kN·m)习题3.10试用结点法求习题3.10图所示桁架杆件的轴力。
P(a) (b)习题3.10图【解】(1)提示:根据零杆判别法则有:N13N43F F==;根据等力杆判别法则有:N24N46F F=。
然后分别对结点2、3、5列力平衡方程,即可求解全部杆件的内力。
(2)提示:根据零杆判别法则有:N18N17N16N27N36N450F F F F F F ======;根据等力杆判别法则有:N12N23N34F F F ==;N78N76N65F F F ==。
然后取结点4、5列力平衡方程,即可求解全部杆件的内力。
习题3.11 判断习题3.11图所示桁架结构的零杆。
P(a) (b)(c)习题3.11图【解】P(a) (b)(c)提示:(c)题需先求出支座反力后,截取Ⅰ.Ⅰ截面以右为隔离体,由30M=∑,可得N120F =,然后再进行零杆判断。
习题3.12 用截面法求解习题3.12图所示桁架指定杆件的轴力。
(a)(b)(c) (d)习题3.12图【解】 (1) N P 32a F F =-;N P 12b F F =;N P 2c F F = 提示:截取Ⅰ.Ⅰ截面可得到N b F 、N c F ;根据零杆判断法则,杆26、杆36为零杆,则通过截取Ⅱ.Ⅱ截面可得到N a F 。
(2) N 0a F =;N P b F ;N 0c F =提示:截取Ⅰ.Ⅰ截面可得到N b F ;由结点1可知N 0a F =;截取Ⅱ.Ⅱ截面,取圆圈以内为脱离体,对2点取矩,则N 0c F =。
Ⅰ(3) N 12kN a F =-;N 10kN 3b F =;N 28kN 3c F = 提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM=∑,得N a F ;由0B M =∑,得N c F ;再取结点A 为脱离体,由0yF=∑,得N b F 。
=N F N c(4) N 5.66kN a F =-;N 1.41kN b F =-;N 8kN c F =-提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,将N a F 移动到2点,再分解为x 、y 的分力,由10M=∑,得4kN ya F =-,则N 5.66kN a F =-;取Ⅱ.Ⅱ截面以左为脱离体,由0yF=∑,得1kN yb F =-,则N 1.41kN b F =-;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点4可知N340F =,再由10M=∑,得N 8kN c F =-。
习题3.13 选择适当方法求解习题3.13图所示桁架指定杆件的轴力。
(a)(b)(c)(d)(e)(f)(g) (h)习题3.13图【解】(1)N PaF F=;NbF=;NcF=。
提示:由4M=∑,可得60yF=。
则根据零杆判别原则,可知N Nb cF F==。
根据结点5和结点2的构造可知,N23N35F F==,再根据结点3的受力可知N PaF F=。
(2) N 12.73kN a F =;N 18.97kN b F =;N 18kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0AM =∑,可得N 12.73kN aF =;取B 结点为脱离体,由0yF=∑,得N 12.73kN BD F =-;由0x F =∑,可得N 18kN cF =-;取Ⅱ.Ⅱ截面以右为脱离体,由0CM=∑,可得N 18.97kN b F =。
N B DN cF(3) N 0a F =;N P 3b F F =;N P c F F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以左为脱离体,由0yF=∑,可得N 0a F =;由30M=∑,可得N12/3P F F =;由0x F =∑,可得N34/3P F F =-;取结点3为脱离体,由0xF =∑,可得N b F;取结点A 为脱离体,由0xF =∑,可得N cF。
注意N1N12A F F =。
N 341A(4) N P 13a F F -=;N P 3b F F =;N 0c F =。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以上为脱离体,由10M=∑,可得N a F ;取Ⅱ.Ⅱ截面以右为脱离体,由0yF=∑,可得N b F ;取Ⅲ.Ⅲ截面以右为脱离体,注意由结点B 可知N 0BC F =,再由30M=∑,得N c F 。
(5) N P a F F =;N P b F =。
提示:根据求得的支反力可知结构的受力具有对称性,且结点A 为K 形结点,故可判别零杆如下图所示。
再取结点B 为脱离体,由0yF=∑,可得N N P b BC F F ==;由0xF=∑,可得N P a F F =。
(6) N 0a F =;N P /2b F F =;N 0ac F =。
提示:原结构可分为以下两种情况的叠加。
对于状态1,由对称性可知,R 0B F =,则根据零杆判别法则可知1N 0a F =。
取Ⅰ.Ⅰ截面以右为脱离体,由0DM=∑,可得1N 0b F =;根据E 、D 结点的构造,根据零杆判别法则,可得1N 0c F =。
对于状态2,根据零杆判别法则和等力杆判别法则,易得到:2N 0a F =;2N P /2b F F =;2N 0c F =。
将状态1和状态2各杆的力相加,则可得到最终答案。
222F P F P F P22F P F P 状态1 状态2 (7) N 0a F =;N 0b F =;N 40/3kN c F =-。
提示:先计算支座反力。
取Ⅰ.Ⅰ截面以右为脱离体,将N a F 移动到B 点,再分解为x 、y 的分力,由0AM=∑,可得0ya F =,则N 0a F =;根据结点B 的构造和受力,可得N 0b F =; 取结点C 为脱离体,可得N 40/3kN c F =-。